TPP : Transparent Page Placement for CXL-Enabled Tiered-Memory

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia, Prakash Chauhan

ASPLOS 2023, Vancouver, Canada, 29 March 2023
Memory Today Tightly Coupled to CPU

Memory is homogeneous

• same type, latency, capacity, bandwidth etc.

Rack-level memory power and cost increases with new hardware generations

![Memory as a % of total rack Power/Cost](chart)

- Gen 0: 14.6%
- Gen 1: 19.8%
- Gen 2: 19.7%
- Gen 3: 20.7%
- Gen 4: 28.8%
- Gen 5: 33.3%

- Memory as homogeneous
- Power and Cost increases with new hardware generations
CXL-based Heterogeneous Memory

Flexible CPU and memory bus

- different memory capacity to bandwidth ratio
- combine different generation of DIMMs
- use cheaper and low power memory alternatives
- utilize near memory accelerators
CXL-Memory Characteristics

Byte addressable in same physical address space
- transparent allocation with cache-line granular access

Memory bandwidth is like DDR channels
- NUMA BW is better than a dual socket system

Close to NUMA latency on dual socket systems
- adds ~100ns latency over normal DRAM access
Performance Drops with Large CXL-Memory

Cache Application
86.00
91.00
14%

Web Application
82.00
84.00
18%

Data Warehouse
92.00
90.00
10%
1. Effective placement of hot pages
 - faster page allocation
 - apt hot page detection
 - lightweight page movement
 - sensitivity towards different page types

2. Workload characterization
 - page temperature and re-access time
 - application’s expected behavior
Effective memory management for tiered-memory system

- lightweight demotion to slow memory tier
- efficient hot page promotion to fast memory tier
- optimized page allocation path to reduce latency
- workload aware page allocation policy

Without modifying any

- applications, or
- hardware

source code available at https://lwn.net/Articles/876993/
Every node maintains a watermark to determine load

- reclamation triggers when number of free pages goes below the watermark
- new pages get allocated to remote node
- reclamation stops when free pages goes above the watermark
- new allocations again happen on local node
Demotion in TPP - Migrate to Slow Tiers

Maintains a separate demotion page list
- scans inactive pages first
- if not enough, move to active pages

Tries to migrate scanned pages to slow memory tier
- failed pages follows default reclamation path
Optimized Allocation Path in TPP

Decouples page allocation and reclamation logic

- reclamation triggers when x% memory is left
- allocation happens on local node as long as allocation watermark is satisfied

User-space interface to control reclamation watermark

- `vm.demote_scale_factor` (by default, set to 2% of local node’s capacity)
Effective Promotion of Trapped Hot Pages

Samples only CXL-node

- promoting local node pages is meaningless

Considers page activeness during promotion

- NUMA hint may come from *infrequently accessed page*
- such pages become demote candidate after being promoted
- include *active LRU* heuristics in promotion
- move *inactive hinted page to active LRU* and wait for next fault
- anon and file promotion rate varies on respective LRU activities
User Interface

TPP appears as a new AutoNUMA mode

- `echo x > /proc/sys/kernel/numa_balancing`
 - 0x0: NUMA_BALANCING_DISABLED
 - 0x1: NUMA_BALANCING_NORMAL
 - 0x2: NUMA_BALANCING_MEMORY_TIERING

- If there is a single CPU-attached memory node, automatically falls back to NUMA_BALANCING_MEMORY_TIERING mode
Evaluate

Deploy and evaluate on **Meta cluster in production** w/ CXL-Memory expander ASIC

- Caching applications
- Social media application
- Data warehouse & analytics
Better Allocation and Promotion with TPP

Decoupling allocation and reclamation logic helps handle bursts more effectively

- **1.6x** better allocation rate at 95th percentile
- promotion can be **30x** faster than default Linux
Performs Great w/ 80% CXL-Memory

Cache Application
- Default: 86.00
- AutoNUMA: 91.00
- TPP: 99.50

Web Application
- Default: 82.00
- AutoNUMA: 84.00
- TPP: 99.00

Data Warehouse
- Default: 92.00
- AutoNUMA: 90.00
- TPP: 97.00

13%

17%

7%
Effective memory management for tiered-memory system

- lightweight demotion
- **30x** faster hot page promotion
- **1.6x** optimized page allocation
- workload aware page allocation policy

Without modifying any

- applications, or
- hardware

source code available at https://lwn.net/Articles/876993/
Thank You!

for any queries, contact at
hasanal@umich.edu