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GPU Cluster for Deep Learning Training

* Deep learning (DL) is popular ) A
« 10.5x increase of DL training jobs in Microsoft L ° -

* DL training jobs require GPU
* Distributed deep learning (DDL) training with multiple GPUs

>
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* GPU cluster for DL training

* 5% increase of GPU cluster scale in Microsoft

[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. https://arxiv.org/abs/1901.05758



GPU Cluster Manager
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Design Objectives
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Cluster-Wide Average
Job Completion Time (JCT)
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High Resource (GPU)
Utilization



Challenge |: Unpredictable Training Time

» Unknown execution time of DL training jobs
" J]ob execution time Is useful when minimizing |JCT

" Predict job execution time
= Use the smooth loss curve of DL training jobs (Optimus ;)
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[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’ 18
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Challenge ll: Over-Aggressive Job Consolidation

* Network overhead in DDL training
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Challenge ll: Over-Aggressive Job Consolidation

* Network overhead in DDL training

for good training performance

* Fragmented free GPUs in the cluster

* [onger queuing delay
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Prior Solutions

. Unpredictable Training Time | 1l. Over-Aggressive Job Consolidation

( )

( )

YARN-CS FIFO None

Gandivay,, Time-sharing Trial-and-error

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’ |8

[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’|8



A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

|. Age-Based Scheduler Minimize JCT without
complete knowledge of jobs

2. Model Profile-Based Placement Place jobs without additional
information from users




Challenge |

How To Schedule DL Training Jobs
Without Complete Job Information?



Characteristics of DL Training Jobs

" Variations in both temporal and spatial aspects

128+

********

64+

Number of GPUs

10 102 103 10* 105

Job execution time (min)



Characteristics of DL Training Jobs
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Avallable Job Information

|, Spatial: number of GPUs
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Avallable Job Information

|, Spatial: number of GPUs

2. Temporal: time
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Age-Based Schedulers

* Least-Attained Servicer; (LAS)
* Prioritize job that has the shortest executed time
* Gittins Index policyp,,
* Need the distribution of job execution time
* Prioritize job that has the highest probability to complete in the near future

[1]. Feedback queueing models for time-shared systems. JACM, 1968
[2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989



Two-Dimensional Age-Based Scheduler (2DAS)

* Age calculated by two-dimensional attained service
* lLe,ajob’s (# of GPUs x executed time)

* No prior information

* With partial information: distribution of job GPU time




2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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2D-Girttins Index: Partial Information

* Higher probability to complete (Gittins Index), higher priority
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Two-Dimensional Age-Based Scheduler (2DAS)

* Age calculated by two-dimensional attained service
* lLe,ajob’s (# of GPUs x executed time)

* No prior information

* With partial information: distribution of job GPU time

* Fewer job switches
* Priority discretization:



Prior Solutions

. Unpredictable Training Time | 1l. Over-Aggressive Job Consolidation

( )
Optimusy; None None

YARN-CS FIFO None
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Gandivay,, Time-sharing Trial-and-error

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’ |8

[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’|8
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Challenge |l

How to Place DL Jobs
Without Hurting Training Performance!?



Characteristics of DL Models

e Tensor size In DL models
cause network imbalance and contention

Consolidated placement
is needed when the
model is highly skewed
in Its tensor size
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Model Profile-Based Placement

ResNetlO| Inception4 ResNet|52

GoogleNet Inception3 ResNet50

(- )

AlexNet VGGl 6

Model Profiler

VGGI9 VGG |




Central Master

O mm | | Discretized-2DAS
DL Job

(model, resource)

Model profiler

Placement scheme Evalu atio n

Placement Preemption

60-GPU
lestbed Experiment

Central Master
Network-Level Model Profiler

Large-scale &
Trace-driven Simulation

GPU Cluster




JCT Improvements in Testbed Experiment

* Testbed — Michigan ConFlux cluster
* |5 machines (4 GPUs each)
* |00 Gbps RDMA network

Avg. |CT improvement
(w.r.t. YARN-CS): 5.5%
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08 SRTF
0.6 —Tiresias ',’

! Comparable
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JCT Improvements in Trace-Driven Simulation

e Discrete-time simulator

* |O-week job trace from Microsoft
* 2,000-GPU cluster

1.0
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A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

* Optimize JCT with no or partial job information

* Relax placement constraint without hurting training performance

. . , L , UNIVERSITY OF
* Simple, practical, and with significant performance improvements ~ MICHIGAN
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DL Models

Total size (MB)

Largest tensor (MB)

VGGI9 548 382
VGGI6 527 392
VGGl | 506 392
AlexNet 235 |44
ResNet|52 230 9
ResNetl0l 170 9
ResNet50 98 9
Inception4 163 6
Inception3 91 8
GoogleNet 27 4



JCT In Testbed Experiment
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JCT Improvements in Testbed Experiment

27.7 734
® YARN-CS SRTF M Tiresias-G

Factor of Improvment
O — N WA U N O®

Avg. 95th | Avg. 95th | Avg. 95th | Avg. 95th | Avg. 95th

| (Small-Short) 2(Small-Long) 3(Large-Short)  4(Large-Long)

% of Jobs 63.5% 12.5% 16.5% 7.5%




GPU Utllization In Testbed Experiment

* The makespan is improved by .21 % (w.rt. YARN-CS)
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Queuing Delay in Testbed Experiment

Average Median 95th
YARN-CS 8146s 7464s 153275
SRTF 593s 32s 3133s
Tiresias-G 1005s 39s 7933s
Tiresias-L 963s |3s 7755s




Training Performance in Testbed Experiment

* Training time when Tiresias-L running with and without placement
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JCT In Trace-Driven Simulation
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JCT Improvements in Trace-Driven Simulation

Average Median 95th

YARN-CS 30.85x% |.25%
SRTF |.00% 0.84x
Gandiva 2.59x% 2.08x%
Tiresias-G |.00% 0.85x
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Sensitivity Analysis of 2D-Gittins Index
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Grttins Index

P(S—aj<A|S>a)
Gl; = sup :
A>0 E[mln{S — ay, A} ‘ S > ay]

* P is the probability that J can complete with in A

* E Is the expected service (cost) of | to be complete with in A
* A s the next service quantum

* P and E are calculated from the distribution of job GPU time



