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Abstract

Diffusion Transformer (DiT) models excel at generating high-
quality images through iterative denoising steps, but serving
them under strict Service Level Objectives (SLOs) is chal-
lenging due to their high computational cost, particularly at
larger resolutions. Existing serving systems use fixed-degree
sequence parallelism, which is inefficient for heterogeneous
workloads with mixed resolutions and deadlines, leading to
poor GPU utilization and low SLO attainment.

In this paper, we propose step-level sequence parallelism
to dynamically adjust the degree of parallelism of individual
requests according to their deadlines. We present TetriS-
erve, a DiT serving system that implements this strategy
for highly efficient image generation. Specifically, TetriS-
erve introduces a novel round-based scheduling mechanism
that improves SLO attainment by (1) discretizing time into
fixed rounds to make deadline-aware scheduling tractable,
(2) adapting parallelism at the step level and minimizing
GPU hour consumption, and (3) jointly packing requests to
minimize late completions. Extensive evaluation on state-
of-the-art DiT models shows that TetriServe achieves up to
32% higher SLO attainment compared to existing solutions
without degrading image quality.
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1 Introduction

Diffusion models [3, 4, 16, 21, 34, 37, 38] have significantly ad-
vanced text-to-image and text-to-video generation, enabling
photorealistic content from natural language descriptions.
They now power a wide range of commercial and creative ser-
vices such as OpenAl Sora [7] and Adobe Firefly [2]. At the
core of these breakthroughs are Diffusion Transformers (DiTs)
[34], which have become the backbone of leading models
including Stable Diffusion 3 (SD3) [3] and FLUX.1-dev [21].
By replacing conventional UNet architectures [16, 36], DiTs
achieve higher fidelity by iteratively refining a full-image
latent representation over a sequence of discrete denoising
steps, setting a new standard for generation quality.

As DiT models move into production, online DiT serving
becomes a key systems challenge. Deployments such as Flux
AI [13] must satisfy strict service level objectives (SLOs)
in the form of a deadline for each request while sharing a
fixed GPU pool across many users to minimize cost. Serv-
ing is particularly challenging because requests arrive with
heterogeneous output resolutions and tight deadlines.

Despite advances in LLM serving [10, 20, 27-29, 33, 43, 47],
these solutions are insufficient: DiTs have fundamentally
different serving characteristics. Specifically, DiT inference
differs from LLMs in three ways: (i) it is stateless, requiring
no KV cache; (ii) it is compute-bound, as multiple denoising
steps operate on the full set of latent image tokens; and (iii)
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Figure 1. Three DiT serving requests—each with 5 denoising
steps—arrive over time with different SLOs and output reso-
lutions. DiT serving solutions using static parallelism cannot
adapt and fail to meet multiple SLOs. TetriServe meets more
SLOs via SLO-aware scheduling and packing.

model sizes are small enough to fit on a single GPU. Conse-
quently, generating a high-resolution 2048 X 2048 image on a
single H100 GPU can take up to a minute, while a 4096 X 4096
image may exceed ten minutes. To meet the stringent latency
demands of online serving, parallelism is essential.

The most common approach for parallelizing DiTs is se-
quence parallelism (SP) [18, 25], which partitions the se-
quence of image tokens across GPUs. However, simply ap-
plying a fixed degree of SP to all requests is inefficient and
leads to poor SLO attainment. This is because the optimal
degree of parallelism is highly sensitive to the input image
resolution; a configuration that is ideal for one resolution can
be detrimental to another. As shown in the toy example in
Figure 1, the fixed-degree SP approach creates a fundamen-
tal tradeoff: low degrees of parallelism (e.g., SP=1 or 2) are
efficient for small inputs but underutilize the GPU cluster for
large ones by leaving some GPUs idle and prolonging request
runtime, while high degrees of parallelism (e.g., SP=4 or 8) ac-
celerate large inputs but introduce excessive communication
overhead for small ones, leading to head-of-line blocking.
Compounding this issue, existing DiT inference engines [12]
are non-preemptive: once a request begins execution with a
fixed degree of parallelism, it holds its allocated GPU(s) until
completion, preventing more optimal scheduling of other
requests in the queue.

We observe that step-level scheduling, in which the degree
of parallelism is adjusted across steps within each request
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based on its resolution and deadline, can significantly im-
prove the serving efficiency of mixed DiT workloads. High-
resolution or urgent requests can be accelerated with more
GPUs, while smaller or less urgent ones conserve resources.
Unfortunately, we prove that finding a globally optimal step-
level schedule that maximizes deadline satisfaction under a
fixed GPU budget is NP-hard (§4.1). In addition, the online
arrival of requests and the need for millisecond-level sched-
uling decisions make exhaustive optimization infeasible.

We present TetriServe, a step-level DiT serving system
designed to maximize SLO attainment under deadline con-
straints. At its core, TetriServe introduces a deadline-aware
round-based scheduler that transforms the continuous time
in the serving problem into a sequence of tractable, fixed-
duration rounds. In each round, the scheduler decides which
requests to serve and at what GPU parallelism degree. To
make these decisions, TetriServe leverages a cost model that
profiles per-step latency as a function of GPU count and iden-
tifies the minimal feasible GPU allocation for each request
that can still meet its deadline. This allows TetriServe to
construct a set of candidate allocations and perform request
packing with the explicit goal of minimizing the number
of requests that would otherwise become late in the next
round.

TetriServe further enhances GPU efficiency while preserv-
ing request deadlines. It uses selective continuous batching
to merge steps across small-resolution requests, reducing
kernel launch overhead and boosting throughput. Mean-
while, GPU placement preservation and work-conserving elas-
tic scale-up ensure idle GPUs are utilized without remap-
ping distributed jobs. Together with the round-based sched-
uler, these techniques allow TetriServe to handle diverse
DiT workloads—from small to large resolutions—while sub-
stantially improving deadline satisfaction over fixed-degree
baselines.

We evaluate TetriServe on popular open-source DiT mod-
els (FLUX.1-dev and SD3) and different hardware platforms
(8xH100 and 4xXA40 nodes). We show that TetriServe consis-
tently outperforms xDiT [12]—a DiT-serving engine that al-
lows different fixed SP configurations—across diverse experi-
mental settings by up to 32% in terms of SLO attainment ratio.
TetriServe is also robust to bursty request arrival patterns,
diverse workload mixes, and different model-hardware com-
binations.

We summarize the contributions as follows:

e We cast DiT serving as a step-level GPU scheduling
problem and prove its NP-hardness.

e We present TetriServe, a deadline-aware round-based
scheduler that minimizes late completions via dynamic
programming.

e We show that TetriServe achieves substantial gains in
SLO attainment over fixed-degree baselines on state-of-
the-art DiT models while maintaining image quality.
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2 Motivation

Serving DiT models has become a popular workload for
modern image generation systems [2, 12]. DiT inference is
both compute-intensive and latency-sensitive. To better un-
derstand the challenges of serving such workloads, in this
section, we discuss DiT background, workload characteris-
tics, and the resulting opportunities and challenges.

2.1 DiT Background

Diffusion models [7, 16, 34, 37, 38] have significantly ad-
vanced text-to-image and text-to-video generation, enabling
photorealistic content from natural language descriptions.
Each step operates on the full latent representation, remov-
ing noise based on a learned denoising function. Although
early diffusion models used UNet architectures [16, 36], mod-
ern high-quality image generators use Diffusion Transformers
(DiTs) [9, 34] as their backbone. DiTs use attention [41] to
capture global context and long-range dependencies.

DiT vs. LLM Parallelism. Although both DiTs and LLMs
are built upon the Transformer architecture, their inference
characteristics diverge significantly, requiring different par-
allelism strategies. Traditional model-sharding strategies for
LLMs, such as tensor and pipeline parallelism, are inefficient
for DiTs. This is because DiT models are typically small
enough to fit on a single GPU. For example, the largest open-
source text-to-image DiT has only 12B parameters [21] and
fits comfortably on a single 80GB H100 GPU. Consequently,
applying model sharding introduces unnecessary commu-
nication overhead without the benefit of accommodating a
larger model, resulting in poor hardware utilization.

DiTs adopt sequence parallelism (SP) [18, 23, 25], a more
efficient parallel approach tailored to their compute-bound
nature. In SP, token sequences (image tokens) are distributed
across GPUs, enabling collaborative computation within
each transformer layer. Two representative implementations
are Ulysses attention [18], which uses all-to-all collectives to
transpose tokens and heads across GPUs before local atten-
tion, and Ring attention [25], which arranges GPUs in a ring
and passes partial Q, K, V slices peer-to-peer, overlapping
communication with computation. In practice, Ulysses at-
tention is often preferred on systems with high-bandwidth
interconnects like NVLink, as its use of collective primitives
can be more efficient [12].

2.2 Characteristics of DiT Workloads

DiT serving exhibits distinctive workload characteristics that
affect the design of scheduling and resource management.

Heterogeneous Inputs. Unlike LLM workloads, where
input text can vary widely in length, DiT serving workloads
are characterized by a small, discrete set of possible input
image resolutions [13, 39]. In this work, we focus on four
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Table 1. Characteristics of representative input sizes for the
FLUX.1-dev model [21], including latent tokens and compu-
tational cost (TFLOPS). Execution stability (CV) is measured
over 20 steps on 8xH100 GPU for different sequence paral-
lelism (SP) degrees.

Image Size Tokens TFLOPs SP=1 SP=2 SP=4 SP=8

256 X 256 256 556.48 0.13% 0.31% 0.67% 0.62%
512 X 512 1024 1388.24 0.06% 0.15% 0.14% 0.53%
1024 x 1024 4096 5045.92  0.07% 0.12% 0.04% 0.09%
2048 x 2048 16384  24964.72 0.05% 0.11% 0.14% 0.28%
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Figure 2. Percentage of time spent in communication for
FLUX.1-dev for four resolutions on an 8xH100 server (Batch
Size = 4). Larger resolutions benefit more from increased par-
allelism because of relatively less communication overhead.

representative resolutions common in production environ-
ments; their characteristics for the FLUX.1-dev model [21]
are detailed in Table 1. Despite the small number of distinct
input sizes, the substantial differences in their computational
demands still lead to highly heterogeneous resource require-
ments across requests.

Predictable Execution. Despite input diversity, DiT infer-
ence remains compute-bound and therefore exhibits stable
per-step runtimes across a wide range of input resolutions.
As shown in Table 1, execution time is highly stable: profiling
over 100 runs with varying sequence-parallel degrees yields a
coeflicient of variation (CV) below 0.7% in all cases. This low
variability indicates that DiT model inference is predictable
across resolutions and degrees of parallelism, enabling ac-
curate performance modeling and effective deadline-aware
scheduling.

Insight 1: DiT workloads consist of heterogeneous input
requests with different output resolutions, but per-step run-
time for each resolution is highly predictable.

Scaling Efficiency of Sequence Parallelism. Sequence
parallelism distributes tokens across GPUs, but its scaling
efficiency is sublinear to the degree of parallelism. Two fac-
tors drive this: (i) communication overhead from collectives
(all-to-all or ring exchanges) that scales with the degree of
parallelism and sequence length; and (ii) reduced per-GPU
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Figure 3. End-to-end scaling efficiency of FLUX.1-dev for
four resolutions on an 8xH100 server for different batch size
(BS). Efficiency scales sublinearly. Larger resolutions benefit
more from increased parallelism, while smaller resolutions
exhibit limited scalability. Note different Y-axes scales.

kernel efficiency when workloads are split, lowering occu-
pancy and cache locality. Figure 2 quantifies this by showing
the communication percentage across image sizes and de-
grees of parallelism. For small inputs (e.g., 256 X 256 and
512 X 512), increasing the degree of parallelism rapidly in-
creases the communication percentage, exceeding 30% at
higher degrees. In this case, communication dominates ex-
ecution time, leading to poor scaling and decreasing the
benefits from additional GPUs. Figure 3 shows that small
inputs (e.g., 256 X 256, 512 x 512) underutilize GPUs and scale
poorly, while larger inputs (e.g., 1024 X 1024, 2048 X 2048)
improve efficiency though computation remains the bottle-
neck. This explains why in Figure 1, latency does not scale
linearly with the number of GPUs.

Insight 2: Sequence parallelism in DiT workloads scales
sublinearly with the degree of parallelism and differently
for each input resolution.

2.3 Challenges and Opportunities

Limitations of Current Solutions. Conventional serv-
ing strategies using a fixed degree of parallelism are ill-suited
for the heterogeneous nature of DiT workloads, a limitation
illustrated in the toy example in Figure 1. With data paral-
lelism (xDiT, SP=1), the small request meets its deadline, but
the larger requests fail due to insufficient processing speed.
Conversely, a high fixed degree of parallelism (xDiT, SP=4)
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handles the large request well, but it still misses the deadline
(along with the medium one) due to head-of-line blocking
and inefficient resource use of the small request.

Experimental results confirm this trade-off. As shown in
Figure 4a, under a Uniform workload with a tight SLO Scale
of 1.0X, no fixed-parallelism strategy achieves an SLO At-
tainment Ratio (SAR) above 0.6. The spider plot in Figure 4b
reveals why: each fixed strategy only works well for spe-
cific resolutions. SP=1and SP=2 achieve near-perfect SAR for
256 x 256 images but fail completely for 2048 x 2048, while
SP=4 and SP=8 handle 2048 x 2048 effectively but perform
poorly on smaller resolutions due to scaling inefficiency and
head-of-line blocking. No single parallelism degree works
across the board.

Optimization Opportunities. The limitations of fixed
parallelism highlight a key opportunity: moving to dynamic,
step-level sequence parallelism. As shown in Figure 1(c), our
approach, TetriServe, meets all three deadlines by adapting
the degree of parallelism for each request at the step level. It
assigns fewer GPUs to the initial steps of the medium request,
freeing up resources, and then scales up to meet the deadline,
thus avoiding the rigid trade-offs of fixed strategies.

This flexibility to adjust the sequence parallelism degree
per step allows a scheduler to allocate more GPUs when
deadlines are tight and fewer when they are not, freeing
capacity for other requests. By exploiting DiTs’ predictable
step execution times and heterogeneous scaling behavior,
this approach enables finer-grained resource shaping and
better SLO attainment than conventional fixed-SP policies.

Insight 3: Step-level parallelism adapts GPU allocation
to request deadlines, avoiding the resource waste of fixed
parallelism and improving SLO attainment.
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Figure 5. TetriServe architecture and request lifecycle.

3 TetriServe Overview

TetriServe allows more DiT serving requests with heteroge-
neous output resolutions to meet their SLOs by judiciously
scheduling and packing them on shared GPU resources. In
this section, we provide an overview of how TetriServe fits
in the DiT serving lifecycle to help the reader follow the
subsequent sections.

System Components. TetriServe is designed around a
scheduler that makes deadline-aware GPU allocation deci-
sions in a round-based manner. Its key components are:

e Request Tracker: Maintains metadata on active re-
quests, including resolutions, deadlines, and execution
states (e.g., remaining steps).

e Scheduler: The core component consists of deadline-
aware GPU allocation and round-based request packing.
At every round, it minimizes individual requests’ GPU
consumption while maximizing SLO attainment.

e Execution Engine: A distributed pool of GPU work-
ers that execute assigned diffusion steps in parallel.

e Latent Manager: Handles intermediate latent repre-
sentations across steps, reducing redundant computa-
tion and memory overhead.

Together, these components enable TetriServe to adapt re-

source allocation at millisecond scale, sustaining high through-

put and SLO attainment for heterogeneous DiT workloads.

Request Lifecycle. When a request arrives, the Request
Tracker records its resolution, state, and deadline. The Sched-
uler then places it into the next scheduling round (I), where a
deadline-aware policy determines GPU allocations in terms
of step numbers for each request for one round. For example,
in Figure 5, it selects Request 1 to run 20 steps on 2 GPUs
(orange) and Request 2 to run 15 steps on 1 GPU (blue) for
the scheduling round. Different requests are dispatched to
GPU workers in the Execution Engine (2), which compute
diffusion steps and produce intermediate latents managed
by the Latent Manager (3). Upon completion, workers notify
the request tracker to update dependent steps (3. After all
steps finish, the final output is returned to the user.
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4 Deadline-Aware Round-Based Scheduler

TetriServe introduces a deadline-aware scheduler designed
to optimize SLO attainment for DiT serving. We begin with
a formal definition of the GPU scheduling problem in the
offline scenario and prove that it is NP-hard. We then pro-
pose a round-based scheduling mechanism, which maximizes
goodput via minimizing GPU-hour consumption for each
request. Later we proposes enhancements so that TetriServe
balances utilization, latency, and scalability in DiT serving.

4.1 Problem Statement

Given a collection of GPUs and requests, the DiT serving
objective for each invocation of the scheduler is the follow-
ing: Find a step-level schedule that maximizes the number of
requests meeting their deadlines given a fixed number of GPUs.

Problem Formulation. Consider an N-GPU cluster and
R outstanding requests. Each request req; consists of a se-
quence of S; dependent diffusion steps {s;1, si2, . - ., Sis, }. Each
step s;; can be executed using k € {1,2,4,...,N} GPUs,
where k is a power of two. The execution time of a step,
denoted T;;(k), is a function of k. The completion time of a
request is defined as:
Si
Gi= Z [Qij + Tij (Aip)],
j=1
where Q;; is the queuing delay before step s;; begins and A;;
is the number of GPUs allocated. Then we can formulate the
DiT serving objective as:

R
Maximize Z I;, wherel; =

i=1

1 ifC; <D,
0 otherwise.

This formulation is subject to the following conditions:

1. Step Dependency: A step s;; can start only after the
previous step completes:

Start(s;;) > Completion(s;(j-1)). Vi, Vj>1

Therefore, at most one step of a request can be exe-
cuted at any time.

2. GPU Capacity: At any time, the total number of GPUs
allocated across all steps cannot exceed N:

R Si
Z Aij (l’) <N, Vt
i=1 j=1
where A;;(t) denotes the GPUs allocated to step s;; if
it is running at time ¢, and zero otherwise.
The goal is to find a set of GPU assignments {A;;} that
maximizes the number of requests meeting their deadlines.

NP-hardness. To highlight the computational complexity,
we consider the special case where each request has a single
non-preemptive step (S; = 1). Time is discretized into slots
T ={0,1,...,Tiax — 1}. Let K ={1,2,4,..., N} denote the
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Table 2. Notations used in the GPU Scheduling Problem.

Symbol Description

N Total number of GPUs.
R Number of requests.
Si Number of steps in request reg;.

D; Deadline of request regq;.

Tij (k) Execution time of step s;; with k GPUs.
Qij Queueing delay before step s;; starts.
Ajj GPU allocation for step s;;.

Ci Completion time of request req;.

allowed GPU allocations. For each request i, start time t € 77,
and GPU count k € K, introduce a binary decision variable:

1 ifrequest i starts at time ¢ with k GPUs,
Xitk = .
b 0 otherwise.

Objective. Maximize the number of requests completing

by their deadlines:
maxz Z Z Xitk-
i teT keK
Constraints.

Z Z xi,t,k < 1, Vl, (1)

teT ke
arrival_time(i) < t, Vi, (2)
t+Ti(k) < Dy, Vi, t, k, 3)
Z Z Z k-xitr <N, YibueT, (4)

i keKuelt,t+T;(k)—1]

xi,t,k € {0’ 1}’ Vl, t, k (5)

Constraint (1) ensures each request starts at most once.
Constraints (2) and (3) enforce arrival times and deadline
feasibility. Constraint (4) enforces that at any time slot u, the
sum of GPUs assigned to running requests does not exceed
system capacity N. Constraint (5) enforces integrality.

This Zero-one Integer Linear Program (ZILP) exactly cap-
tures the offline DiT serving problem in the single-step case,
where I; = }},cq Dkex Xirk- We show in Appendix A that
solving such formulations is NP-hard [5, 14, 19, 32, 45]. There-
fore, multi-step DiT serving is NP-hard as well.

4.2 Round-Based Scheduling

Step-level scheduling for DiT serving is NP-hard, making
global optimization expensive. To enable practical schedul-
ing, TetriServe adopts a round-based heuristic: instead of
scheduling steps arbitrarily in a continuous global timeline,
we discretize execution into rounds, where each round corre-
sponds to a fixed-length GPU execution window. This allows
us to (i) limit the scheduling search space and (ii) enable effi-
cient preemption between rounds. Within each round, TetriS-
erve determines the minimal required GPU allocation for
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requests and dynamically packs these requests to maximize
SLO attainment ratio.

4.2.1 Deadline-Aware GPU Allocation. Exhaustively
enumerating GPU allocations for each step is infeasible, and
over-allocation wastes resources due to scaling inefficiencies
in DiT models (e.g., kernel launch and communication over-
heads). While more GPUs reduce latency, they increase total
GPU hours. To balance these trade-offs, TetriServe identifies
the minimal GPU allocation needed for each request to meet
its deadline at the beginning of each round. Since required
allocation depends mainly on resolution and deadline, this
approach avoids exploring the full allocation space.

For a step s;;, the execution time T;;(k) is a function of
the number of GPUs k. The GPU hour for executing step s;;
with k GPUs is k x T;; (k). The goal is to minimize the total
GPU hour for each request:

Si Si

&}1% (Aij X T;j(Aj)) st Z (Qij + Tij(Aij)) < D
V=1 j=1

where A;; is the GPU allocation for step s;;.

Offline Profiling for Cost Model. To make the optimiza-
tion tractable, TetriServe profiles execution times offline. For
every step type s;; and GPU count k € {1,2,4,...,N}, we
measure the actual execution time T;; (k). From this, we de-
rive the GPU hour k x T;;(k) and store it in a lookup table.
At runtime, TetriServe simply enumerates candidate GPU
assignments using these pre-profiled values.

The above process aims to assign each request the mini-
mum number of GPUs required to meet its deadline while
minimizing the total GPU hours. Figure 6 illustrates this pro-
cess with a concrete example: three requests (R1-R3), each
with five steps, arrive over time. R1 has a small resolution
(e.g., 256) and is fixed at SP=1 since higher parallelism would
reduce efficiency (see Figure 3). For R2 and R3, TetriServe
identifies GPU allocations with two parallelism degrees that
just meet their deadlines while minimizing overall GPU us-
age. The GPU allocations produced by this selection serve
as the input to the subsequent request packing stage, where
TetriServe schedules requests across GPUs to maximize good-
put.

4.2.2 Request Packing. The objective of scheduling is
to maximize the number of requests that complete before
their deadlines. To make the problem tractable, we approxi-
mate it by minimizing the number of requests that become
definitely late—those that cannot meet their deadlines even
under maximal parallelism if not advanced in the current
round. Deadline-aware GPU allocation determines the min-
imal GPU allocations needed for each request to meet its
deadline while minimizing GPU hours. This makes it pos-
sible to pack more requests into each round and thereby
reduce the number that would otherwise be definitely late.
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Figure 6. Illustration of TetriServe’s scheduling process.
The progression is shown from top to bottom: each row
represents an intermediate scheduling step, while the final
row shows the actual GPU allocation decision. Time is fixed
across rows.

After deadline-aware GPU allocation, each request reg; is
described by a set of allocations (s]", A"), where s]" is the
number of steps executed with allocation A}", and per-step
times T;(A") are obtained from the cost model. To schedule
requests across N GPUs, TetriServe divides time into rounds
of fixed duration 7, which serves as the scheduling granular-
ity. The choice of 7 balances overhead and responsiveness:
shorter rounds allow finer-grained preemption and more
adaptive scheduling, while longer rounds reduce overhead
but make scheduling coarser.

At the beginning of each round r (time t,), the scheduler
considers all pending requests and their allocations, and
decides which to place within the N GPUs. Within a round
of duration r, if GPU allocation m of request i is chosen, the
number of steps that can complete is

qr =min{5im’ [WJ}

Options with g" = 0 are discarded to avoid wasting re-
sources. Choosing option o € {none, 1,2,...} updates the
remaining steps as

$i'(0) =" = 1[0 =m] q;",

clipped at zero, where I[o = m] equals 1 if o = m and 0
otherwise. The next round begins at ¢,4; = t, + 7.

To decide which requests must be scheduled now, we iden-
tify those that would become definitely late at t,.; if not
advanced in this round. Using the fastest possible step time
Timin = minge(1,24,..N} 1i(k), we define the residual comple-
tion time lower bound under option o as

LBi(0) = ( ) (o)) T,

m
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Algorithm 1: DP Round Scheduler
Input :Pending requests R with {(s", A"") } me m,
and T;(+); capacity N; round length z;
current time ¢,
Output:Selected plan
1 by <t +7
2 foreach i € Rdo
3 foreach m € M; do
s | | g e min{s]", [7/T(A]) ]}

s | TP mingeg k)

6 O; < {none} U{me M; | q*>0ANA" <N}
7 foreach o € O; do

8 foreach m € M; do

9 LE;"(O)HS{"—I[ozm]-q;"

10 LB (0) « (Zmem, §(0)) T

11 svi(0) « I[ t,41 + LB;(0) < D; ]

12 wi(0) < 01if 0 = none else A?
13 Initialize dp[0..N] « —oo, dp[0] « 0

14 foreachi € R do
15 next[0..N] « dp
16 forc=0to N do

17 foreach o € O; do
18 if w;(0) < c then
19 next[c] «
L max{next[c], dp[c—w;(0)] +sv;(0)}

20 dp < next

21 ¢* « argmax,dp[c]
22 return plan reconstructed from back-pointers at ¢*

where $”(0) is the updated step count. A request survives
only if

try1 + LBZ(O) < Di.

Each option o consumes w;(0) GPUs: w; (none) = 0, w;(m) =
AT". The per-round scheduling problem is therefore to select
at most one option per request, with total GPU < N, maxi-
mizing the number of requests that survive to the next round.
For requests that have already missed their deadlines, we
assign at most one GPU in a best-effort manner without im-
pacting other requests, and scale them up later if idle GPUs
become available. By anchoring scheduling decisions on the
round duration 7, TetriServe balances preemption overhead
and responsiveness, while ensuring urgent requests receive
priority.

Dynamic Programming. Naively enumerating all per-
request options O; for feasible packings within a round is
exponential in the number of requests and quickly becomes
intractable. We observe that the per-round decision has the
group-knapsack structure: for each request i (a group), we
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must choose at most one option o (run one of its GPU alloca-
tion this round or none), each option consumes width (GPUs)
and yields a binary “survival” value indicating whether the
request is not definitely late at the next round start. This lets
us replace exhaustive search with a dynamic program (DP)
that maximizes the number of surviving requests under the
round capacity N.

Concretely, the DP state dp[c] stores, after processing the
first i requests, the maximum number of surviving requests
achievable with exactly capacity ¢ € {0,..., N} consumed
in the current round. For request i, we build its option set
O; once (group constraint): none (consume zero GPUs, no
progress) and one option per allocation m that can make
progress in this round, i.e., g]* = |_T/T,-(A;”)J > 0and AT <
N. For each option o € O;, we compute:

1. Line 9: the updated remaining steps 57" (o).
2. Line 10: a conservative lower bound LB;(0) on the
residual processing time from t,41 = t, + 7.
3. Line 12: its width w; (o) (0 for none, A" for allocation
We then set the survival indicator sv;(0) = I[ t,+1+LB;(0) <
D;]. The DP transition iterates options once per request
(respecting the group constraint) and, for each capacity c,
admits only options with w;(0) < ¢ (respecting the capacity
constraint):

next[c] « max {next[c], dplc —wi(0)] + svi(o)}.

Using a rolling array yields O(N) space. Since each request
contributes at most |O;| options, DP runs in O(RN)) time and
O(N) space per round (rolling array), which is tractable even
at millisecond-scale rounds for moderate N. This is orders
of magnitude cheaper than enumerating all feasible packing
combinations.

Round Duration. Algorithm 1 schedules in fixed-length
rounds of duration 7. The choice of 7 balances two factors:
short rounds reduce admission delay for new requests but
increase scheduling frequency, while long rounds amortize
scheduling cost but risk larger queueing delay and dead-
line misses. For a given GPU configuration (e.g., NVIDIA
H100), TetriServe adapts 7 to the step execution times of
requests across different resolutions, so that requests with
heterogeneous step lengths can finish around the same round
boundary. This minimizes idle bubbles while keeping 7 short
enough to avoid excessive queueing delay. In practice, we
determine 7 by the step granularity, which means each round
executes multiple diffusion steps. We will further discuss the
impact of round duration in the evaluation section (§6.4).

4.2.3 Efficient GPU Placement and Allocation. In the
round-based framework (Algorithm 1), TetriServe improves
efficiency via two complementary steps: placement preserva-
tion and work-conserving elastic scale-up, illustrated in Fig-
ure 6. First, to avoid idle bubbles between rounds, TetriServe
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adopts a placement-aware policy: requests continue on the
same GPUs across consecutive rounds whenever possible.
This eliminates state-transfer delays and ensures immediate
progress at round boundaries.

Second, any GPUs left idle after placement are reclaimed
through a work-conserving elastic scale-up policy. Requests
with sufficient remaining steps are granted additional GPUs
if T;(k]) < T;(k;), prioritizing those that benefit most from
parallelism. This ensures no GPU remains unused within a
round, reducing future load and improving deadline satis-
faction. Together, placement preservation minimizes inter-
round stalls, while elastic scale-up guarantees work-conserving
allocation within each round.

5 Implementation

TetriServe is implemented in 5,033 lines of Python and C++
code. We reuse components from existing solutions, includ-
ing the sequence parallelism engine from xDiT [12], async
logic from vLLM [20], and process launcher from MuxServe
[11] and SGLang [47].

Scheduler. The scheduler’s core decision loop is imple-
mented in C++ and exposed via lightweight bindings, achiev-
ing millisecond-level control-plane latency.

VAE Decoder Sequential Execution. The VAE decoder
imposes a large activation-memory footprint at high reso-
lutions and batch sizes, whereas its wall-clock cost is very
small relative to diffusion steps. Accordingly, we adopt se-
quential per-request decoding to bound peak memory by
avoiding concurrent decoder activations across a batch. Be-
cause the decoder is largely off the critical path, this design
does not increase end-to-end latency. The reduced peak us-
age also increases headroom for model state and communi-
cation buffers, lowering the risk of out-of-memory failures
under mixed workloads.

Communication Process Groups Warmup. We pre-
create process groups for all relevant combinations of de-
vices (e.g., (i) groups for degrees k € {1,...,8}). Creating
the group itself is lightweight and does not materially con-
sume GPU memory. However, the first invocation on a group
initializes NCCL [31] channels and allocates persistent de-
vice buffers for subsequent collectives. Proactively warming
every group therefore inflates memory usage and can ex-
ceed available HBM. To balance startup latency and memory
footprint, we warm only a compact set of commonly used,
overlapping groups (e.g., [0,1,2,3], [0,2,3,4]) and defer others
to on-demand warmup. Empirically, this strategy preserves
performance while maintaining low peak memory.

Latent Transfer. Because TetriServe executes at step
granularity, intermediate latents and lightweight metadata



TetriServe : Efficiently Serving Mixed DiT Workloads

must be handed off across GPU groups. We provide a Future-
like abstraction for latents that enables asynchronous, non-
blocking transfer between steps. Latent tensors are compact
(in the compressed latent space), so transfer overhead is neg-
ligible; consequently, the scheduler excludes latent-transfer
time from deadline accounting. We quantify this overhead
in Section 6.4 and show it remains below 0.05% of per-step
latency across all configurations.

Selective Continuous Batching. Batching in diffusion
inference is only effective for identical, small-resolution re-
quests that would otherwise underutilize GPUs. This creates
a throughput-latency trade-off. Our scheduler employs a
selective, step-level batching strategy that only groups re-
quests if their SLOs are not compromised, thus improving
resource utilization without harming latency.

6 Evaluation

We evaluate TetriServe against state-of-the-art baselines
across diverse workloads. Key findings:

o TetriServe outperforms baselines by up to 32% across all
resolutions (§6.2).

e TetriServe is robust to bursty arrivals and adapts to chang-
ing resolution mixes (§6.3).

e Sensitivity analysis confirms TetriServe’s advantage holds
across varying arrival rates, step granularities, and ho-
mogeneous workloads (§6.4).

e Ablation studies show that GPU placement preservation
and elastic scale-up are crucial to TetriServe’s perfor-
mance (§6.5).

6.1 Methodology

Testbed. We conduct experiments on two GPU clusters.
The first comprises nodes with 8 NVIDIA H100-80GB HBM3
GPUs interconnected via NVLink 4.0 (900 GB/s inter-GPU
bandwidth). The second features nodes with 4 NVIDIA A40-
48GB GPUs connected in pairs via NVLink and interfaced
to the host via PCle 4.0. Our software environment is based
on NVIDIA’s NGC container with CUDA 12.5, NCCL 2.22.3
[31], PyTorch 2.4.0 [46], and xDiT [12] (git-hash 8f4b9d30).

Models and Metrics. We select FLUX.1-dev [21] and Sta-
ble Diffusion 3 Medium (SD3) [3] as representative models,
evaluating them on H100 and A40 clusters, respectively. We
report SLO Attainment Ratio (SAR; fraction of requests fin-
ishing within SLO) as our primary metric and plot end-to-end
latency CDFs to show the latency distribution.

Baselines. We compare TetriServe against:
e xDiT (SP=1/2/4/8). Fixed sequence parallelism degree;
each request uses a constant number of GPUs.

¢ Resolution-Specific SP (RSSP). Selects the best SP de-
gree per resolution via offline profiling: SP=1 for 256 X 256
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and 512x512, SP=2 for 1024x1024, and SP=8 for 2048x2048.
Represents an oracle static configuration.

SLO Settings. We adopt resolution-specific latency targets
grounded in user-perceived responsiveness. Prior research
[1] reports that 63% of users prefer a maximum response
delay of 5 seconds in interactive settings. Accordingly, we cap
the target at 1.5 seconds for small images and set an upper
bound of 5.0 seconds for the largest resolution: (256, 256) =
1.5s, (512,512) = 2.0 s, (1024, 1024) = 3.0 s, and (2048, 2048)
= 5.0 s. We sweep SLO Scale from 1.0Xx to 1.5X relative to
each resolution’s baseline.

Workload and Dataset. We sample 300 prompts from
DiffusionDB [42] to generate requests. By default, requests
arrive as a Poisson process at 12 requests/minute.

We consider two resolution mixes:

o Uniform: equal number of requests across resolutions {256,
512, 1024, 2048}.

o Skewed: resolutions sampled with exponential weight over
latent length, p; o« exp(a - Lij/Lmax), With @ = 1.0 and
L; = (H; - W;)/162, biasing toward larger resolutions.

6.2 End-to-End Performance

TetriServe Improves SAR.. Figures 7 and 8 show the end-
to-end SLO Attainment Ratio (SAR) of TetriServe compared
to fixed-parallelism baselines for FLUX on H100s for both
the Uniform and Skewed workload mixes at an arrival rate
of 12 requests per minute. As shown in Figures 7a and 8a,
TetriServe consistently achieves the highest SAR across all
SLO scales and both workload distributions. This demon-
strates the effectiveness of its step-level parallelism control
and request packing, which allow it to dynamically adapt
to the workload and outperform the rigid strategies of the
baselines.

On average, TetriServe outperforms the best fixed par-
allelism strategy by 10% for the Uniform mix and 15% for
the Skewed mix. The performance gap is particularly pro-
nounced at tighter SLOs. For instance, with an SLO scale of
1.1X in the Uniform mix, TetriServe outperforms the best
baseline by 28%. Similarly, in the Skewed mix with a 1.2x
SLO scale, TetriServe’s SAR is 32% higher than the best-
performing fixed strategy.

Notably, this advantage holds even when compared against
RSSP, a strong per-resolution baseline that selects the best
fixed parallelism degree for each input resolution. Despite
this, RSSP remains fundamentally limited by its lack of dead-
line awareness and runtime adaptation, whereas TetriServe
dynamically adjusts parallelism at the step level to meet
per-request SLOs. This highlights TetriServe’s superior per-
formance under challenging, tightly constrained Workloads.

TetriServe Benefits All Resolutions. TetriServe’s strength
lies in its ability to deliver high SAR across all request res-
olutions, unlike fixed strategies that only excel at specific
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Figure 7. End-to-end performance on the Uniform workload
at 12 req/min. (Top) TetriServe achieves the highest SLO
Attainment Ratio (SAR) across all SLO scales. (Bottom) The
spider plots show that xDiT variants only perform well for
specific resolutions, TetriServe delivers high SAR across all
resolutions no matter tight or loose SLO Setting.

ones. The spider plots in the bottom row of Figures 7 and 8
break down SAR by resolution. With a relaxed SLO of 1.5%
(Figures 7c and 8c), TetriServe achieves near-perfect SAR
across all resolutions for both workload mixes, consistently
outperforming all xDiT baselines. Under the tightest SLO of
1.0x (Figures 7b and 8b), TetriServe provides the best overall
performance. While some fixed-parallelism strategies may
marginally outperform TetriServe on a single resolution (e.g.,
xDiT SP=1 on 256px), they perform poorly on others. In con-
trast, TetriServe dynamically adapts its parallelism, provid-
ing high SAR across the entire spectrum of resolutions.

Conceptually, RSSP is a restricted variant of TetriServe in
which the scheduler cannot adjust parallelism beyond a fixed
configuration. Since RSSP explores only a subset of TetriS-
erve’s decision space, it cannot exploit additional parallelism
for deadline-critical requests, resulting in uniformly lower
SAR across resolutions. In contrast, TetriServe avoids over
parallelization for less urgent requests and prioritizes more
GPU resources for more urgent requests, thus performing
well on all resolutions.

Tail Latency. Figure 9 plots the CDF of end-to-end re-
quest latency under the tightest SLO setting (SLO scale =
1.0x) for both the Uniform and Skewed mixes. We com-
pute the CDF over completed requests only, i.e., requests
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Figure 8. End-to-end performance on the Skewed workload
at 12 req/min. (Top) TetriServe again achieves the highest
SLO Attainment Ratio (SAR) across all SLO scales. (Bottom)
The spider plots confirm that TetriServe’s adaptive paral-
lelism provides robust performance across all resolutions,
even in a workload dominated by large images

that finish execution at least once (those that miss the dead-
line and are dropped/timeout are excluded from the latency
distribution). Across both workload mixes, TetriServe pro-
duces a consistently more favorable tail distribution than
fixed-parallelism baselines and RSSP. Compared to fixed SP
baselines, TetriServe shifts the latency distribution left and
reaches high completion probability at lower latency, indicat-
ing that most served requests finish quickly even under strict
deadlines. Compared to RSSP, which restricts scheduling to a
smaller decision space, TetriServe further reduces tail latency
by dynamically reallocating GPUs toward more urgent re-
quests and avoiding over-parallelization on less critical ones.
Overall, these results show that TetriServe improves not only
SAR but also keep the steady long tail latency under tight
SLO scale.

Compatibility with Cache-Based Diffusion Accelera-
tion. TetriServe is orthogonal and compatible with cache-
based diffusion acceleration techniques. To demonstrate this,
we integrate Nirvana [2] into our system. Nirvana accelerates
diffusion inference by reusing intermediate denoising latents
from prior requests. Each incoming prompt is embedded us-
ing CLIP [35] and matched against a cache of previously
served prompts. Based on prompt similarity, the system de-
termines how many initial diffusion steps can be skipped,
yielding an effective diffusion length of N — k steps, where
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Table 3. SAR with Nirvana Integration. SLO Attainment
Ratio (SAR) under uniform and skewed workload mixes
(12 req/min, SLO Scale = 1.0x). TetriServe combined with
Nirvana [2] achieves the highest SAR by jointly exploiting
cache-based step reduction and adaptive GPU parallelism.

Workload RSSP TetriServe RSSP TetriServe
+ Nirvana + Nirvana
Uniform 0.32 0.42 0.77 0.88
Skewed 0.04 0.19 0.53 0.75
TetriServe xDiT (SP=2) —— xDiT (SP=8)
xDiT (SP=1) xDiT (SP=4) —— RSSP
1.0 1.0
0.8 0.8
1 0.6 1 0.6
o [m)]
Oo4 Oo4
0.2 0.2
0'00 5 10 15 O'00 5 10 15

Latency (s) Latency (s)

(a) Uniform mix (b) Skewed mix
Figure 9. End-to-end latency CDF under strict SLOs
(FLUX on H100, SLO scale = 1.0x). TetriServe shows more
consistent and better tail latency distribution than other
baselines under strict SLO settings. The x-axis is truncated
at 17s for readability; the SP=1 baseline has a much heavier
tail beyond this range.

k € {5,10,15,20,25} and N = 50 by default. We warm up
the cache using the first 10K requests and then maintain a
fixed-size cache with LRU eviction for online requests.

Table 3 compares four configurations: RSSP, TetriServe,
RSSP combined with Nirvana, and TetriServe combined with
Nirvana, under both Uniform and Skewed mix workloads un-
der the SLO Scale of 1.0x. While Nirvana alone substantially
improves SLO attainment by reducing per-request computa-
tion, it does not address resource fragmentation caused by
heterogeneous request resolutions. By contrast, TetriServe
further improves SLO attainment by dynamically adjusting
GPU parallelism to match the reduced and variable step
counts introduced by caching. As a result, the combined sys-
tem achieves the highest SLO attainment across both mixes,
confirming that cache-based step reduction and TetriServe’s
scheduling operate on complementary and orthogonal di-
mensions.

6.3 Performance Stability under Bursty Traffic

TetriServe maintains a high and stable SAR even under bursty
arrival patterns, whereas fixed-parallelism approaches ex-
hibit significant performance oscillations. For instance, Fig-
ure 10 plots the SAR over time for the Uniform mix (12

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

TetriServe (ours)
xDiT (SP=1)

xDIT (SP=2)
—— xDiT (SP=4)

—— xDiT (SP=8)

SLO Attainment Ratio
o o o -
i o © o

o
o

o
o

0 5 10 15 20 25
Time (minutes)

Figure 10. Performance stability under the Uniform work-
load at 12 req/min with a 1.5x SLO Scale. TetriServe main-
tains a high and stable SLO Attainment Ratio (SAR) over
time, which handles burstiness well.
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Figure 11. Average parallel degree of TetriServe during serv-
ing under the Uniform workload (1.5% SLO Scale). TetriServe
dynamically adjusts sequence parallelism (SP) per request,
assigning more GPUs to intensive requests (longer bars) to
meet deadlines.

req/min, SLO Scale=1.5%). TetriServe’s SAR remains consis-
tently high with low variance. In contrast, the fixed xDiT
variants suffer from periodic drops in SAR, a result of utiliza-
tion bubbles and subsequent queueing delays when bursty
arrivals create contention.

The key to TetriServe’s stability is its ability to adapt the
degree of sequence parallelism (SP) at the step level. As
shown in Figure 11, when bursty arrivals create contention,
TetriServe dynamically raises the SP degree for computation-
ally intensive, urgent requests to shorten their critical path
and reduce SLO violation risk. Conversely, it scales down
the degree for less urgent requests steps while maintain SLO
Attainment Ratio. This fine-grained, adaptive parallelism is
how TetriServe handles burstiness and achieves superior ef-
ficiency and responsiveness compared to rigid, fixed-degree
systems.
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Figure 12. TetriServe’s performance on the Stable Diffusion
3 (SD3) model. The plots show the SLO Attainment Ratio
(SAR) as a function of SLO Scale for the Uniform mix (left)
and Skewed mix (right) on 4xA40 GPUs. In both workloads,
TetriServe consistently outperforms all xDiT variants
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Figure 13. SLO Attainment Ratio vs. arrival rate under the
Uniform mix (SLO Scale=1.0x). TetriServe gracefully handles
increasing load, maintaining a high SAR.

6.4 Sensitivity Analysis

Different GPU Settings and Models. On SD3, trends
align with FLUX. In both the Uniform mix (Figure 12a) and
Skewed mix (Figure 12b), TetriServe achieves the highest
SAR across all SLO scales, with the largest margins at tight
SLOs (1.0x). As SLOs loosen, fixed SP2 and SP4 improve but
remain below TetriServe, while fixed SP1 underutilize and
plateau. This indicates the benefits generalize to a different
DiT architecture. On the A40 cluster, NVLink links GPUs
only in pairs; at SP=4, collectives traverse PCle, and even at
SP=2 poor placement can cross PCle. For SD3 this communi-
cation path becomes the bottleneck, so SP2 and SP4 perform
notably worse than on H100.
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Figure 14. SLO Attainment Ratio for homogeneous work-
loads at 12 req/min with a 1.5x SLO Scale. Each group of
bars represents a workload with only one resolution type.
TetriServe consistently achieves the highest SAR across all
resolutions.
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Figure 15. Sensitivity of SLO Attainment Ratio to step
granularity and arrival rate under the Uniform mix (SLO
Scale=1.0x). A moderate granularity (5/10 steps) provides the
most robust performance as system load increases, balancing
scheduling flexibility and overhead.

Arrival Rate. Figure 13 shows the SAR of different sched-
uling strategies under the Uniform mix with a tight SLO
of 1.0x as the arrival rate increases from 6 to 18 req/min.
TetriServe demonstrates superior performance across the full
range of arrival rates. At low-to-medium rates, TetriServe
maintains a consistently high SAR, while fixed-parallelism
strategies already show signs of degradation. At high arrival
rates, where the system is under heavy load, TetriServe’s SAR
remains relatively high, showcasing graceful degradation.

Homogeneous Resolutions. To isolate the effect of input
resolution on parallelism strategies, we evaluate homoge-
neous workloads containing only a single resolution. Fig-
ure 14 shows the SLO Attainment Ratio (SAR) for workloads
consisting of only one resolution type at an arrival rate of 12
req/min and an SLO Scale of 1.5x. Even in these simplified
scenarios, TetriServe still achieves the highest SAR across all
resolution types. This demonstrates that TetriServe’s adap-
tive scheduling is effective not only for mixed workloads but
also for homogeneous ones, as it can still optimize resource
allocation to better meet deadlines.

Step Granularity. We examine the impact of step granu-
larity, which defines how frequently TetriServe can resched-
ule and change the degree of parallelism for an in-flight
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Table 4. Latent transfer overhead as a percentage of infer-
ence step latency. Across all configurations, the overhead is
negligible (< 0.05%).

Batch Size ‘ 256X256 512x512 1024x1024 2048x2048

BS=1 0.03% 0.03% 0.04% 0.01%
BS=2 0.04% 0.03% 0.05% 0.02%
BS=4 0.04% 0.05% 0.03% 0.01%

request. This presents a fundamental trade-off: fine-grained
control (e.g., every 1-2 steps) offers maximum flexibility at
the cost of high scheduling overhead, while coarse-grained
control (e.g., every 10 steps) minimizes overhead but creates
longer, non-preemptible execution blocks that reduce adapt-
ability. Figure 15 illustrates this trade-off under the Uniform
mix (SLO Scale=1.0x) across different arrival rates. At low
rates, performance is less sensitive to granularity. However,
as load increases, a moderate granularity of 5 steps proves
most robust, balancing adaptability and overhead. Very fine-
grained control (1 step) suffers from excessive overhead,
while coarse-grained control (10 steps) is too inflexible to
handle preemption, leading to lower SLO attainment.

Parallel Reconfiguration Overhead. TetriServe performs
step-level scheduling, which requires transferring intermedi-
ate latent representations and metadata across GPU groups
when parallelism changes between steps. Table 4 quantifies
this parallel reconfiguration overhead as a percentage of per
step inference latency across varying resolutions and batch
sizes. We observe that the overhead is consistently negligible,
accounting for at most 0.05% of step latency in all configura-
tions. As a result, TetriServe’s scheduler can safely ignore
latent transfer time in deadline accounting without affecting
SLO accuracy.

6.5 Ablation Study

TetriServe includes two practical mechanisms on top of the
round-based DP scheduler: (i) GPU Placement Preservation,
which keeps a request on the same GPU set across rounds
whenever possible to avoid remapping stalls; and (ii) Elastic
Scale-up, which makes use of idle GPUs after placement and
temporarily grants extra GPUs to requests that benefit from
higher parallelism. To quantify their impact, we ablate these
components under two SLO scales (1.0X and 1.5X) on two
workload mixes: Uniform and Skewed. Table 5 reports the
SLO Attainment Ratio and mean latency.

Overall, both mechanisms are important for improving
serving efficiency. GPU Placement Preservation improves
SAR and/or mean latency in most settings by avoiding remap-
ping overhead and enabling immediate progress at round
boundaries, while Elastic Scale-up consistently increases
SAR (up to +0.11 absolute on Skewed mix at 1.5X) and typ-
ically further reduces mean latency by utilizing idle GPUs.
Consequently, enabling both GPU placement preservation
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Table 5. Ablation of scheduling mechanisms. GPU Place-
ment Preservation reduces inter-round stalls by keeping
requests on the same GPU set; Elastic Scale-up opportunis-
tically reallocates idle GPUs to requests that benefit from
extra parallelism.

(a) Uniform Mix.

SLO = 1.0% SLO = 1.5%
SAR 7/ Mean Lat. | SAR T/ Mean Lat. |

Variant

TetriServe schedule 0.54 / 4.45 0.74 / 4.81
+ Placement 0.56 / 3.96 0.69/5.14
+ Elastic Scale-Up 0.63 / 3.89 0.78 / 4.83
(b) Skewed Mix.
Variant SLO = 1.0x SLO = 1.5%
SAR T/ Mean Lat. | SAR T/ Mean Lat. |
TetriServe schedule 0.27 / 8.43 0.38/9.92
+ Placement 0.31/7.64 0.45/8.16
+ Elastic Scale-Up 0.36 / 7.68 0.55/7.71

and Elastic Scale-up achieves the best SLO Attainment Ra-
tio across all tested scenarios, while also improving latency
compared to disabling these optimizations.

7 Related Work

LLM Serving Frameworks. LLM serving systems [20, 47]
are not directly applicable to DiT workloads. LoongServe [43]
optimizes prefill-decode stages for long-context LLMs, while
PrefillOnly [10] targets memory efficiency for short, prefill-
intensive requests. Neither suits the multi-step, stateless
inference pattern of DiTs.

DiT Inference and Serving. DiT-specific serving systems
are still emerging. xDiT [12] uses fixed sequence parallelism,
which is inefficient for heterogeneous workloads. DDIT [17]
targets video generation and maximizes throughput rather
than meeting SLOs. TetriServe uniquely prioritizes SLO at-
tainment for heterogeneous requeststhrough cost-model-
driven scheduling.

Text-to-Image Caching. Several systems accelerate text-
to-image diffusion via caching. AsyncDiff [8] parallelizes
diffusion through asynchronous denoising cross requests.
Caching-based approaches exploit reuse across prompts or
adapters, including approximate latent caching in Nirvana [2],
layer-level caching [26], final image caching [44], workflow-
aware reuse [24], and patch-level reuse [40]. These tech-
niques reduce redundant computation; TetriServe addresses
an orthogonal dimension by scheduling GPU parallelism
across concurrent requests and could integrate these meth-
ods for further gains.

Resource Scheduling. In VM allocation frameworks [6],
machine count is fixed at admission. GPU schedulers like
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Gavel [30], Tiresias [15], and AlloX [22] focus on job place-
ment and fairness but require users to specify parallelism. In
contrast, TetriServe treats parallelism as a scheduling deci-
sion, dynamically adjusting GPU degree at step granularity
based on deadlines and scaling efficiency.

8 Conclusion

We presented TetriServe, a deadline-aware round-based DiT
serving system that addresses the challenge of meeting SLOs
under heterogeneous workloads. TetriServe dynamically
adapts parallelism at the step level, guided by a profiling-
driven cost model and a deadline-aware scheduling algo-
rithm. Extensive evaluation shows that TetriServe consis-
tently outperforms fixed-parallelism baselines, achieving up
to 32% higher SLO attainment and robust performance across
varying resolutions, workload distributions, and arrival rates.
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A NP-Hardness of DiT Serving

We prove NP-hardness for the DiT serving problem defined
in TetriServe, which maximizes the number of requests that
complete by deadlines under GPU capacity constraints.

Let us first define the decision problem D1T-SERVING-
DEcisION: given an instance, and an integer target B, decide
whether there exists a schedule in which at least B requests
meet their deadlines. This is the natural decision version of
TetriServe’s objective max .; I;.
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#Reqs  Time (s) # Reqs Time (s)
1 <0.01 1 0.02
2 0.27 2 11.12
3 52.56 3 >60.00
4 >60.00 4 >60.00
(a) 4 GPUs (b) 8 GPUs

Table 6. Scheduling overhead of exhaustive search. Con-
trol plane scheduling time under different GPU budgets and
queue sizes. TetriServe remains lightweight: it takes <0.01 s
compared to exhaustive search following the same settings,
enabling online scheduling in practice.

Bar-Noy et al. [5, 14] state that the following real-time (RT)
scheduling feasibility decision problem (RT-FEASIBILITY) is
NP-hard in the strong sense: on a single machine, given jobs
with release times r;, deadlines d;, and processing times [;, de-
cide whether all jobs can be scheduled within their time win-
dows. Since RT-FEASIBILITY is strongly NP-hard, it remains
NP-hard even when all numeric parameters are bounded by
a polynomial in the input size. Therefore, T,y = max; d; is
polynomially bounded, and our time-indexed reduction is
polynomial-time.

Reduction to DiT serving with K = {1}. Given a RT-
FEASIBILITY instance [5] with jobs i = 1,...,n and parame-
ters (r;, d;, 1;), let us construct a single-step DiT instance as
follows: N := 1,R :=n,S; := 1,K := {1}, arrival_time(i) :=
ri, Dj :=d;, T;(1) := I;. Set the throughput target B := n.

Equivalently, in TetriServe’s single-step time-indexed for-
mulation with variables x;; and constraints (1)—(5), we
restrict to k = 1 and N = 1, and disallow infeasible start
times by setting x; ;1 = 0 whenever t < r; or t + [; > d.

Correctness. (=) If the RT-FEASIBILITY instance is feasi-
ble, let s; be the start time of job i in a feasible single-machine
schedule. Schedule each corresponding DiT request i to start
at time s; using one GPU. All requests meet deadlines, so
Zi Ii =n2>B.

(&) If the constructed DiT instance has a schedule with
2. Ii = n, then all n requests meet deadlines. Since N = 1 and
each request uses one GPU, the capacity constraint implies
no two requests overlap. Thus the chosen start times form
a feasible non-preemptive single-machine schedule for all
jobs in the original RT-FEASIBILITY instance.

Therefore, we can convert any RT-FEASIBILITY instance
into a DIT-SERVING-DECISION instance in polynomial time
such that a feasible schedule exists in the former iff one exists
in the latter. DIT-SERVING-DECISION is NP-hard even for the
restricted case S; = 1 and K = {1}; consequently, the general
multi-step DiT serving problem is NP-hard.
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B Scheduling Overhead Analysis

To validate the necessity of TetriServe’s heuristic approach,
we quantify the computational cost of finding a globally
optimal schedule via exhaustive search. As established in
Appendix A, the underlying step-level scheduling problem
is NP-hard.

Experimental Setup. We implement an exact baseline
solver that enumerates the complete decision space to maxi-
mize SLO attainment. The solver explores two dimensions
of complexity for each request: (1) all feasible sequence-
parallel degrees per diffusion step (e.g., k € {1,2,4,8}), and
(2) all valid permutations of physical GPU mapping for those
degrees. The objective is to identify the schedule with the
highest SLO attainment, using minimum total GPU hours as
a tie-breaker. We measure the wall clock latency required to
generate a single scheduling plan using an AMD EPYC 7513
32-Core CPU, varying the queue depth (R) under fixed GPU
budgets of N € {4, 8}.

Results. Table 6 presents the scheduling overhead. The
baseline exhibits immediate combinatorial explosion: with
a budget of 8 GPUs, optimally scheduling merely three re-
quests exceeds a 60-second timeout. This intractability stems
from the factorial growth of permutation possibilities as the
number of available GPUs increases. In contrast, TetriServe
maintains a decision latency of <10 ms. These results confirm
that exhaustive optimization is prohibitive for online serv-
ing, necessitating the efficient round-based planning strategy
employed by TetriServe.

Runyu Lu et al.
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