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ABSTRACT
We propose remote direct code execution (RDX), which ele-
vates the power of RDMA from memory access to code execu-
tion. We target runtime extension frameworks such as Wasm
filters, BPF programs, and UDF functions, where RDX en-
ables an agentless architecture that unlocks capabilities such
as fast extension injection, update consistency guarantees,
and minimal resource contention. We outline the roadmap for
RDX around a new CodeFlow abstraction, encompassing pro-
gramming remote extensions, exposing management stubs,
remotely validating and JIT compiling code, seamlessly link-
ing code to local context, managing remote extension state,
and synchronizing code to targets. The case studies and initial
results demonstrate the feasibility of RDX and its potential to
spark the next wave of RDMA innovations.
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1 INTRODUCTION
Remote Direct Memory Access (RDMA), initially developed
for high-performance computing, has since expanded well
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beyond the boundaries of HPC and revolutionized modern dat-
acenters. Bypassing the OS kernel and CPU, RDMA allows
networked hosts to access each other’s memory at hardware
speeds, while riding upon conventional Ethernet substrates
(i.e., RoCE) with high compatibility. Our community now has
over a decade of innovation in the use of RDMA within dat-
acenters: accelerating memory-intensive workloads [41, 47]
and storage services [20, 39], disaggregated remote mem-
ory [42] and database systems [38, 64], efficient network
telemetry [48] and system monitoring [58], and memory
forensics for malware detection [49, 53, 54]. The ability to di-
rectly operate on data in a remote node’s memory, without its
software involvement, has proven to be a powerful primitive.

However, despite such tremendous progress, we believe
that RDMA still holds vastly-untapped potential that could
unlock the next wave of innovation. In this paper, we make a
case for elevating the power of RDMA from memory access
to code execution, whereby one node can inject and execute
code on another remote node via RDMA. The intuition is that
code is data, so it should be possible to inject a compiled
binary to a machine’s memory over RDMA, and attach the
code to some software entity (e.g., a predefined sandbox) for
execution. Like classic RDMA operations, this new task is
performed by the RNIC, with negligible overhead. It does not
require any modification to RDMA stack (e.g., OS, libraries,
or driver), and is transparent to the remote node. We call this
new primitive Remote Direct Code Execution (RDX).

We envision RDX to enable a wide variety of use cases, and
as a start, we demonstrate one such application: executing run-
time extensions, such as service mesh Wasm filters [44, 67],
kernel- or user-level BPF [31, 65], or user-defined functions
(UDFs) [23, 28, 51]. These frameworks allow custom logic
to be expressed in some constrained language, then validated
and compiled just-in-time to execute in a sandboxed environ-
ment. Compared to ahead-of-time programming with static
compilation, runtime extensions can be loaded and unloaded
on-the-fly based on workload characteristics, and they can
be applied in a modular manner without application recom-
pilation or service downtime. Requests are routed to dedi-
cated sandboxes, where the extension logic is executed safely.
Runtime extensions provide diverse benefits for security de-
fenses [29, 45, 57], performance acceleration [13, 26, 37, 66],
as well as monitoring and telemetry [15, 55].

To enable automation at scale, existing runtime extensions
typically adopt an agent-based architecture, where a central
controller maintains a repository of runtime extensions and
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transmits the desired extension logic to cluster nodes over the
network. Each node is equipped with local agents that verify
and validate the logic, execute just-in-time (JIT) compilation,
and incorporate it into sandboxes. This design leads to several
inherent limitations in practice:
• Injection delay: Agent operations (e.g., compiling, validat-

ing, and loading the extension) inevitably introduces CPU
processing overhead on each local host. Our evaluation
shows that this overhead introduces at least millisecond-
level injection delay, making it impossible to support use
cases that require microsecond-scale reactions, such as
short-lived per-query UDF extensions [19, 23, 27] and rapid
auto-scaling in serverless computing [35, 46, 60].

• Update inconsistencies: Rolling out a collection of in-
terdependent extensions across a chain of interconnected
hosts [50] introduces lengthy periods of inconsistencies to
the data path, where requests experience disruptions due to
the mix of old and new extension logic under an eventual
consistency model [11, 12, 18, 30]. In practice, developers
rely on manual planning and testing to avoid inconsisten-
cies, but this is by itself an error-prone process [3, 6, 8].
Theoretically, we can buffer all requests during the update
to eliminate inconsistencies [32], but the long update injec-
tion time requires an impratically large buffer.

• Resource contention: The sharing of hardware resources
between control and data paths further introduce mutual
resource contention to each other [10, 24, 43, 67]. The
control path extension injection operations experience sig-
nificant slowdown under heavier data path workloads, and
the data path also faces service degradation during control
operations. We also observe that the contention could lead
to safety hazards by hampering the live patching/rollback
capabilities of the control path, leading to lockout effects
(i.e, stalled operations) when the contention level is high.
The key benefit that RDX brings to runtime extensions

is a drastically different, agentless architecture, enabled by
one-sided RDMA operations. By this, we mean that the clus-
ter nodes no longer have to run local software agents. With
RDX, we can restructure each remote extension framework
into (1) a remote control plane that consolidates the function-
ality of existing local agents, acting as a centralized authority
to oversee the entire runtime lifecycle of extensions; and (2)
local data planes running on each hosts, dedicated to execut-
ing extension logic. The control plane transparently manages
the data plane through a set of RDMA code manipulation
primitives, completely bypassing the CPU of local hosts. This
mitigates the limitations of existing approaches by enabling
micro-second scale extension injection, offering strong update
consistency guarantees, and minimizing resource contention.

The design of this agentless system raises a set of technical
challenges, including how to align with the programming
model of existing frameworks, how to expose local host infor-
mation to the remote control without the help of agents, how
to compile and validate extension logic out of the local hosts,
how to correctly load the extension logic into host contexts,
and how to manage extensions with stateful behaviors and
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Figure 1: State-of-the-art vs. agentless design with RDX.

external function calls. We outline our technical roadmap to
resolve these challenges via a unified programming abstrac-
tion called Codeflow, along with initial results showing the
feasibility and benefits of our approach.

2 MOTIVATION
In this section, we provide more background on runtime exten-
sions, further motivate our problem, and outline the workflow
of RDX.

2.1 Background: Runtime extensions
Runtime extensions, such as Wasm filters [44], eBPF pro-
grams [31, 65], and UDFs [23], are widely adopted in cloud
data centers [56]. As shown in Figure 1(a), a runtime exten-
sion is a piece of executable logic that the control plane can
load onto the data plane, without the need for draining traffic
or restarting processes. Take service mesh as an example,
which supports two distinct types of runtime extensions: (1)
Wasm filters to customize application-level, request-aware
policies (e.g., L7 routing), and (2) eBPF programs [15, 55] to
support low-level network and security controls (e.g., mTLS
termination). Regardless of extension types, existing frame-
works typically involve two phases, namely control path injec-
tion and data path execution. In the injection phase, extensions
written in high-level languages are validated (or verified) via
static checks, then compiled to binary code using JIT, and
eventually attached onto isolated sandboxes such as contain-
ers [14] or lightweight VMs [25, 36, 52, 59]. In the execution
phase, the data path requests trigger the execution of runtime
extension logic to implement the desired functionality.

Agent-based runtime extension frameworks are thus far
the norm, and they rely on on node-local agents to manage
extensions at scale. Concretely, each server runs a user-space
daemon that retrieves configuration from a control plane (e.g.,
Kubernetes [9]) and handles deployment orchestration, access
control, control-path injection, and extension state access. In
containerized clouds, agents are often deployed per pod for
isolating different workloads. For example, Istio users a per-
pod agent [7] to load Wasm filters in service mesh. Likewise,
eBPF also relies on user-level and kernel control agents [21]
to manage data plane extension injection and removal.
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Figure 2: Motivating examples: (a) the relationship be-
tween program complexity and injection overhead; (b)
the inconsistent time in eBPF and Wasm-based extensions,
on four apps (1-4) with 4, 11, 17, and 33 microservices; (c)
the impact of control path contention (updates injected
per 10 second) on data path request completion.

2.2 Challenges: Runtime extension injection
Despite their popularity, modern agent-based runtime exten-
sion frameworks still face fundamental challenges.
Observation #1: Microsecond-scale runtime extension injec-
tion is essential for various cloud-native applications; today,
this is hard to achieve due to local CPU overhead. Concretely,
microsecond-scale injection is crucial for fast auto-scaling
in serverless platforms [46, 60] and per-query extensions in
data processing pipelines [19, 23], where the speed of exten-
sion injection has to match that of serverless function live
migration and data processing queries at the microsecond
scale. Figure 2a shows that extension injection time in ex-
isting frameworks is at the millisecond level even for small
pieces of extension logic. Our profiling further attributes this
delay to the compilation and validation overhead on local host
CPU, which amounts to 90+% of overall loading time.
Observation #2: Safety-critical runtime extension updates
should avoid introducing inconsistencies; today, there is no
principled approach to offering consistency guarantees. We
define update inconsistency time as the interval between the
initiation and completion of runtime extension update. This
interval exists due to both intra-agent and inter-agent depen-
dencies: Within each local agent (e.g., service mesh sidecar
or eBPF controller), pieces of extension logic can be attached
to multiple locations (e.g., filters or hook points) as a depen-
dency chain. Across local agents in a cluster, extension logic
further forms a directed acyclic graph (DAG) structure ac-
cording to inter-host dependencies. Figure 2b shows that the
inconsistency could span hundreds of milliseconds even for
applications with less than 20 microservices.

Update inconsistency has safety implications [4, 5]. If ser-
vice B depends on A, but an extension update reaches B
before it reaches A, then calls from A to B could fail during
the update. In practice, developers have to rely on manual
planning and testing to avoid such inconsistencies [3, 6, 8]. A
more automated approach is to buffer all incoming requests
before the update completes, but this is impractical given the
time scale—if an application supports 10M req/sec [22], then
a 100ms update interval would require buffering 1M requests,
which is infeasible given resource and platform limits [2].

Observation #3: The performance of control path injection
and data path execution should not be affected by each other;
today, they contend heavily due to shared resources. Service
mesh advocates separation of concerns by offloading oper-
ational complexities from application code to a dedicated
infrastructure layer, so in principle its control path should be
engineered to minimize interference with application-level re-
quests. In reality, however, application requests and extension
injection contend with each other over shared CPU/memory
resources, especially when the request load is high.

As shown in Figure 2c, when the server CPUs are almost
saturated with request load, application request completion
rate could be halved during extension injection, leading to
severe SLO degradation. The major overhead of injecting ex-
tensions in agent-based frameworks is from code validation,
which uses CPU-intensive static analysis to check for correct-
ness and safety. This overhead will be further exacerbated
in cloud production due to high-density agent deployment.
Apart from injection, periodic access to the injected exten-
sion’s data structures for runtime state also introduces non-
negligible CPU overhead (e.g., 25.3% performance degrada-
tion of Redis workload with eBPF extensions). We also note
that network/RNIC contention between control and data paths
is negligible, as network traffic used by extension injection is
minimal compared to the data path.
Summary. Overall, the limitations of agent-based design
include the mismatch between injection delay and workload
demands, the lack of automation and global visibility for
consistency guarantees, and the performance interference
with application workloads due to resource contentions.

2.3 RDX: Remote Direct code eXection
RDX aims to arm RDMA with remote direct code execution
capabilities, so that code logic can be loaded into remote hosts
without involvement of their CPUs. As shown in Figure 1(b),
this would enable an agentless architecture for runtime ex-
tension frameworks. Instead of relying on host agents to load
extension logic into local data planes, we can use a central-
ized remote control plane to directly inject extension logic
into hosts via RDMA. This approach holds the promise to (1)
bring down extension (binary) injection delay to align with
RDMA speed, thus covering microsecond-scale scenarios; (2)
make it possible to buffer all requests during updates, thus
ensuring consistency without extensive developer efforts; (3)
minimize resource sharing between extension injection and
application requests by eliminating the injection footprints
locally, thus mitigating contention.

At first glance, realizing this agentless architecture is a
daunting task. Essentially, the new paradigm requires the de-
coupling between control path extension injection and data
path extension execution onto different nodes. The remote
control plane has to take over the responsibility of local agents
in terms of validating, compiling, and loading the extension
logic, but not all control knobs available to local extension
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Figure 3: The technical roadmap of RDX and the key challenges; (a)~(f) correspond to the solution sketch in §3.1~§3.5.

injection are accessible to the remote. This is further com-
plicated by our desire that this new architecture should stay
transparent to developers, without affecting the programming
model of existing extension frameworks (e.g., Wasm and
eBPF specifications). To bridge these gaps, we propose an
abstraction called CodeFlow to streamline remote runtime ex-
tension injection, abstracting away the low-level complexities
of handling RDMA semantics and remote/local context gaps
from developers.

Figure 3 shows the roadmap of RDX. First, when a new
data plane sandbox boots, it initializes a setup module to ex-
pose control to the remote control plane. Subsequent steps are
performed at runtime—the user informs the remote control
plane the desired runtime extensions based on their goals.
Next, the remote control plane validates, and compiles (using
JIT or interpreters) the given runtime extensions into binaries
(can be skipped if binary already exists), then performs binary
rewriting to ensure that they are aligned with the context of
target sandbox nodes (e.g., Global Offset Table). After that,
the control plane sets up the needed shared data structures
for eXtension State called XState, including their metadata
and layouts, and eventually injects the extension binaries and
XState into the local sandboxed data plane using remote
transaction primitives. Throughout this process, the injection
does not require application recompilation, traffic draining,
or any other forms of downtime.

3 SYSTEM SKETCH
Next, we propose a set of building blocks to realize RDX.

3.1 Interacting with remote mgmt. stubs
RDX should expose the local sandbox’s runtime context to the
remote control plane. If extension code were just a standalone
piece of raw binary data, this task would not be difficult—
remote code injection would simply be an RDMA memory
write, with its payload containing the extension binary. How-
ever, the challenge is that extensions come with complex
metadata structures (e.g., hook points) and global dependen-
cies (e.g., global offset tables (GOT)). For instance, an eBPF
program’s metadata struct bpf_program contains no
less than 30 variables far beyond a code pointer, while a Wasm
filter carries more than 20 metadata variables. Thus, exten-
sion injection not only requires supplying the code itself but
also “filling in” its associated variables with correct values;
additionally, this and other data structures are continuously

created and destroyed at runtime. Directly “handcrafting” all
these variables from afar is exceedingly difficult, as we need
to infer variable values remotely without context; even a slight
error could cause sandbox failures.

We propose to plant a minimal set of management stubs
when each sandbox boots. There are three management stubs
in total—ctx_init which creates the sandbox context (e.g.,
extension metadata) for runtime extensions by preloading
empty extensions at locations of interest; ctx_register
which registers the memory address for control knobs (e.g.,
select metadata variables and scratchpad pages) with RDMA,
and ctx_teardown which provides assistance in detach-
ing extensions based on a reference counting mechanism.
All three stubs are contained in a loadable module, which
is installed on each sandbox as a one-time setup operation.
Each node spawns a CodeFlow (rdx_create_codeflow()) via
remote management stubs to handle subsequent extension
injection, removal, and access.

3.2 Remotely validating & JIT-compiling code
Validating and compiling extensions are essential for ensuring
correctness and efficiency. Today, both steps are performed
locally: the validator checks the extension IR (e.g., bytecode)
against static safety rules such as memory boundary and
extension termination, and the JIT compiler then generates
the architecture-specific machine code (e.g., x86 or ARM).
These steps must remain context-aware, as they rely on local
architectural specifications and runtime environments (e.g.,
global variables and functions) in the local host. For example,
an eBPF program may refer to its metadata descriptor and
helper functions; a Wasm filter relies on host-function calls
in Proxy-Wasm. Thus, RDX’s remote control plane must
identify and align with (1) the target architectures and (2) the
required local context.

RDX relies on existing validators and JIT compilers (on
the remote control plane) whenever possible to reuse their
functionalities. To start with, RDX uses cross-architecture JIT
compilers [16, 17] to generate binary for each architecture
(e.g., X86 and ARM), removing the architecture dependency
of the target nodes. Within each generated binary, RDX (1)
locates entity references (e.g., function calls) using bytecode-
level descriptors, (2) inserts placeholders for future relocation
from remote to local contexts, and (3) records entity refer-
ences information in a symbol table. The instrumented bina-
ries, along with the symbol table, are packaged and stored
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Operation Description

rdx_create_codeflow(node, ext_spec)⇒ handle Create a CodeFlow handle bounded with a remote node
rdx_validate_code(handle, ext_prog)⇒ result Remotely validate the ext_prog using CodeFlow
rdx_JIT_compile_code(handle, ext_prog)⇒ result Remotely JIT compile the ext_prog into binary code using CodeFlow.
rdx_link_code(handle, ext_prog)⇒ result Link the binary of ext_prog to remote context via rewriting
rdx_deploy_prog(handle, ext_prog)⇒ result Deploy the binary of ext_prog onto remote node bounded with handle
rdx_deploy_xstate(handle, XState)⇒ result Deploy the data structure of XState onto remote node

rdx_tx(handle, inter_obj, qword_swap) Transactionally update remote qword_swap obj with new inter_obj
rdx_cc_event(handle, event_hook, mem_addr) Flush remote mem_addr by injecting cache-coherent binary to event_hook
rdx_mutual_excl(handle, hook_ctx) Update remote pointers with mutual exclusion locks in hook_ctx

rdx_broadcast(codeflow_group, ext_progs, n)⇒ result Transactionally “broadcast” n ext_progs to n nodes codeflow_group

Table 1: The proposed set of CodeFlow API operations.

in the control plane for future reuse. Working together, the
rdx_validate_code() and rdx_JIT_compile_code() APIs en-
able RDX to validate and compile each extension once and
deploy them anywhere, on demand.

3.3 Linking code to local context
Next, RDX should link the instrumented binaries to target
runtime contexts. If one extension is fully inline, this is easy
for RDX as it just needs to remotely write the binary to the
target node without linking. However, extensions often rely
on some global utilities (e.g., global variables and functions)
of the target sandbox runtime. Without careful relocation,
injecting a binary would cause runtime failures. So the chal-
lenge is how to align the generated binary with the context of
the local runtime (i.e., node or sandbox).

This can be achieved by binary rewriting techniques. Dur-
ing the linking stage (rdx_link_code()), the entity placehold-
ers within the JIT-compiled binary are replaced with the ad-
dresses of their local counterparts in target node’s runtime.
Since JIT-compiled extension binaries rely on node-specific
global context, such as the global offset table (GOT), we ex-
pose this global context—containing addresses of all global
variables and functions—to the RDX remote control plane
when creating the CodeFlow via rdx_create_codeflow(). By
combining this global context information with relocation
metadata generated during rdx_JIT_compile_code(), Code-
Flow can remotely link the extension binary accurately to the
target node’s runtime, followed by rdx_deploy_prog() call
to remotely deploy the well-linked binary over RDMA.

3.4 Managing remote XState data structures
While runtime extensions are event-driven, they may keep
state in various data structures called XState, such as eBPF
maps and shared queues in Wasm filters. Thus, an important
task of RDX is remote XState management, including allo-
cation, destruction, lookup and update. The key challenge is
the dynamic lifecycle of XState—due to the wide variety of
XState types and sizes that users request for at runtime. A
strawman solution is thus to register many XState instances
for each possible type with a maximal allowed size. However,
this could cause non-trivial memory waste.

Our key insight is to create one level of indirection, instanti-
ating a “Meta” XState at setup time in the ctx_register

management stub, which allocates a scratchpad of reserved
pages upon boot. The top layer “Meta” XState, which is
simply an “array”, indexes other bottom-layer XState in-
stances that are created at runtime. When injecting an ex-
tension with a XState, the RDX remote control plane (1)
allocates a memory chunk from the scratchpad according to
XState size, (2) injects a header (including XState’s type
and size) before the XState. (3) and injects an entry (i.e.,
the memory address of the header) in the “Meta” XState.
The design, which is implemented in rdx_deploy_xstate(),
enables RDX to create or destroy XStates with any sizes at
runtime. RDX also offers compatible lookup and update in-
terfaces to access XState data elements from RDX remote
control plane (via RDMA) and local extensions.

3.5 Remote Sync. primitives
Due to the asynchronous nature between CPU and RNICs,
injecting code remotely to the local data plane introduces
synchronization challenges. Concretely, one-sided RDMA op-
erations lead to three critical issues: (1) Non-atomic RDMA
writes may cause objects (e.g., injected Wasm filters) to be
partially read by CPUs; (2) the lack of cache coherence be-
tween the RNIC and CPU could delay CPUs from noticing
injected objects in a timely manner; and (3) software support
for mutual exclusion operations between the RNIC and CPUs.

To address these challenges, RDX proposes a set of remote
synchronization primitives, as summarized in Table 1. Remote
transaction (rdx_tx()) ensures atomicity by fully loading all
required objects into the local runtime before they become vis-
ible for execution. Remote cache coherence (rdx_cc_event())
allows the remote control plane to flush cachelines in the local
data plane, immediately exposing newly injected objects to
CPUs. Lastly, remote mutual exclusion (rdx_mutual_excl())
provides sandbox-level locks, enabling safe concurrent inter-
actions between CPUs and RDMA operations. These primi-
tives are also used for XState injection.

4 USING RDX: CASE STUDIES
We now demonstrate how RDX extends today’s runtime ex-
tension frameworks and enables new use cases.
Agentless architecture for runtime extensions. We explore
how RDX realizes an agentless runtime extension framework.
For service mesh Wasm filters, we extend Istio’s Extension
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Discovery Service (XDS) with a new filter manager, where
each Envoy sidecar hosts a CodeFlow handle. The local data
plane exposes contexts via management stubs at boot time and
only handles data plane execution at runtime. On the control
plane, a filter registry stores Wasm binaries and relocation
records validated and JIT-compiled through RDX APIs. A
filter dispatcher remotely links and deploys requested filters,
while a filter inspector introspects runtime states via XState
APIs. For eBPF programs, we integrate RDX with Cilium in a
similar fashion, though with additional sandboxing challenges
due to kernel dependencies.
Fast and consistent extension updates. Modern deploy-
ments often need to broadcast extension updates across many
nodes without introducing inconsistencies [11, 12, 18]. RDX
introduces a Collective CodeFlow API (rdx_broadcast())
for microsecond-scale, atomic updates that simplify cluster-
wide rollouts. Inspired by RDMA-based distributed transac-
tions [61, 63], RDX treats a group update as a transaction
whose write set spans all target hooks, deploying code in
parallel with remote synchronization. To ensure consistency,
RDX supports Big Bubble Update (BBU) [32], which buffers
incoming requests during updates so that no request observes
mixed logic. Once deployed, buffered requests are released
in dependency order. This automated, transactional workflow
eliminates inconsistencies and relieves operators from manu-
ally reasoning about update correctness.
Rollback and hot-patching for buggy extensions. Runtime
extension failures have increasingly caused production out-
ages, forcing emergency rollbacks or node restarts that re-
quires draining request traffic for seconds or more [10, 24, 43].
Recovery can be delayed or stalled under CPU contention,
leading to deadlocks and prolonged maintenance downtime.
We rearchitect the current extension failure handling service
with a remote rollback module that reverts faulty extensions
to stable states in microseconds using CodeFlow link+deploy
APIs or Collective CodeFlow operations. Hot patching can
then be rapidly deployed online via the CodeFlow injection
pipeline, improving overall service reliability.
Extension live migration for microsecond auto-scaling.
There is a growing trend towards microsecond-scale elasticity
in cloud-native deployments [46, 60, 62]. Existing studies
leverage a “warm pod pool” and transfer intermediate states
over RDMA to achieve scale-out in microseconds. However,
scaling out a microservice pod means migrating both the
application container and its sidecar (e.g., Envoy Proxy) to
the new replica pod; reloading Wasm filters in the sidecar
adds overhead by up to seconds, becoming the bottleneck.
By contrast, RDX provides a promising optimization oppor-
tunity to cut the filter reloading cost to microsecond-scale
with its CodeFlow APIs, enabling seamless live migration of
extensions for auto-scaling.

5 DISCUSSION
We now discuss the security implications of RDX in terms of
confidentiality, integrity, and availability. For confidentiality,
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Figure 4: eBPF program load overhead. Agent baseline
(shown on the left) incurs verify, JIT compile, and other
forms of overhead. The breakdown is shown on the right.
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Figure 5: Remote synchronization primitives significantly
reduce the incoherence time of remote extension injection.

the control plane serves as a remote gatekeeper with role-
based privilege model that prevent unauthorized access to ex-
tension entities (e.g., helpers, XState). For integrity, RDX
can adopt JIT hardening [33] to insert runtime guards against
tampering and speculative attacks, and perform signature-
based remote runtime checks or remote memory introspec-
tion [49] over code, states, and hooks. For availability, RDX
control plane can enforce strict runtime limits (e.g., instruc-
tion count), maintain extension state machines, and support
atomic preemption with versioning to safely recover faulty ex-
tensions. Together, we envision RDX to naturally incorporate
security techniques to protect remote code execution.

6 PRELIMINARY VALIDATION
We prototyped RDX with eBPF as it offers a mature and
representative proving ground for remote runtime extensions:
(1) eBPF already includes a verifier, JIT compiler, and LLVM
toolchain—allowing us to focus on remote injection, not basic
plumbing. (2) eBPF supports service-mesh use cases (e.g., L3
policy in Cilium), mirroring one role played by Wasm filters.
(3) eBPF underpins a broader range of use cases—networking,
storage, telemetry, and security—giving RDX a wider payoff
than other candidates. Given their shared injection mechanics,
our success with eBPF suggests other extensions (e.g., Wasm)
are feasible, which we leave as future work.

Testbed setup. The RDX remote control plane operates
on a dedicated server within the same rack as the servers
running local data planes. All servers run Ubuntu 20.04, each
equipped with a 24-core Intel Xeon E5-2643 CPU (3.40GHz),
128GB DRAM, and a Mellanox CX-4 RDMA NIC. The
Agent solution uses per-node eBPF agents as the baseline.
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End-to-end feasibility. We repeatedly deploy the synthetic
Socket Filter eBPF programs from the official Linux eBPF
stress test [1], where the program instruction size ranges from
1.3K to 95K. Every program is repeatedly deployed 100K
times to accurately measure the average completion time, with
automated checks ensuring functional correctness. As Fig. 4a
shows, RDX remotely injects all programs successfully, and
consistently reduces injection time by orders of magnitude
(47× ∼ 1982×). RDX mainly benefits from eliminating the
program verification and JIT compilation overheads in injec-
tion path relative to Agent baseline (Fig. 4b).
RDX’s benefits. RDX greatly reduces CPU contentions with
workloads by eliminating per-node agent “tax.” For example,
agentless eBPF over RDX improves Redis throughput by up
to 25.3% over the agent baseline. Likewise, injecting Wasm
filters via RDX could improve microservice performance
by up to 65%, based on CPU interference observed in §2.
Finally, RDX enhances reliability through hardware-level in-
jection—avoiding lockout effects and ensuring microsecond-
level policy rollout consistency, even under full CPU load,
injecting each policy in microseconds.
Effectiveness of remote sync. primitives. The remote sync.
primitives in RDX effectively improve the injection synchro-
nization efficiency between RNIC and host CPU. For instance,
in Fig. 5, RDX consistently achieves orders of magnitude
lower incoherence time (∼2𝜇s across all CPKI levels) com-
pared to the vanilla RDMA without remote synchronization
primitives (up to ∼746𝜇s under low cache stress).

7 SUMMARY & FUTURE WORK
We present RDX, a vision that extends RDMA from memory
access to code execution, using runtime extensions as a moti-
vating use case. RDX enables an agentless architecture that
decouples control path injection from data path execution,
achieving microsecond-scale updates, strong consistency, and
minimal contention. Our proposed CodeFlow abstraction ex-
poses remote stubs, validates and JIT-compiles on the con-
trol plane, links binaries with local context, manages remote
states, and performs hardware-level synchronization. Early
case studies indicate its feasibility and performance benefits,
which could lead to further RDMA innovation.

Looking forward, there is a set of open directions. (1) A
declarative language for cluster-wide extension orchestration.
(2) QoS-aware isolation to mitigate cross-extension interfer-
ence. (3) Seamless integration with Wasm/UDF frameworks
via formalized semantics. (4) New use cases, including living
patching [34] and fault injection for reliability testing. (5)
Data-driven control loops for datacenter resource manage-
ment. (6) Replace RDMA with cache-coherent PCIe inter-
connects [40] to cut synchronization overhead. (7) Rigorous,
at-scale validation and optimization for CodeFlow.
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