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ABSTRACT

Deep Learning (DL) has pervaded many areas of computing due to the confluence of the
explosive growth of large-scale computing capabilities, availability of datasets, and advances in
learning techniques. However, the infrastructure that supports DL is still in its early stage, bearing
mismatches among the hardware, the software stack, and DL applications. On the one hand, despite
the emergence of new unique hardware and new use cases, the software stack that abstracts and
schedules these hardware resources remains largely unchanged. On the other hand, user-defined
performance metrics common in DL applications urge better schedulers tailored to the application’s
specific needs. Motivated by the mismatch, this dissertation revisits the system design across the
stack, with a focus on the synergy between schedulers and application/system-specific information.

At the bottom level, the ever-growing adoption of specialized hardware like GPUs poses
challenges to efficient usage. Due to the lack of operating system arbitration, applications usually
assume exclusive access, making the otherwise underutilized resources unusable for other jobs on
the same host. We therefore design SALUS to realize proper efficient GPU sharing. It leverages
DL applications’ specific usage patterns to schedule iterations and manage memory allocations,
providing two missing primitives: fast job switching and memory sharing.

However, even with an efficient execution platform, it is still not trivial to harvest the hardware’s
full potential for higher-level applications. We investigate two such cases sitting on opposite sides
of a model’s lifecycle: hyperparameter tuning and inference serving.

Hyperparameter tuning – which constitutes a great portion of DL cluster usage given the
proliferation of distributed resources in clusters – generates many small interdependent training
trials. Existing tuning algorithms are oblivious of advanced execution strategies like intra-GPU
sharing and inter-GPU execution, often causing poor resource utilization. Hence, we propose FLUID

as a generalized hyperparameter tuning execution engine, that coordinates between tuning jobs and
cluster resources. FLUID schedules training trials in such jobs using a water-filling approach to
make the best use of resources at both intra- and inter-GPU granularity to speed up hyperparameter
tuning.

Moving on, inference serving also requires careful scheduling to achieve tight latency guarantees
and maintain high utilization. Existing serving solutions assume inference execution times to be
data-independent and thus highly predictable. However, with the rise of dynamic neural networks,
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data-dependent inferences see higher variance in execution times and become less predictable by a
single, point estimation of the true running times. With ORLOJ, we show that treating and modeling
inference execution times as probability distributions bring large gains for scheduling inference
requests in the presence of Service Level Objective (SLO) constraints.

In this dissertation, we consider combining application/system-specific information with schedul-
ing design as a means of efficiently supporting new hardware and new DL application use cases.
Nevertheless, the pursuit of higher efficiency never ends. This dissertation tries to lay down the
necessary mechanisms with the hope that our crude work may be a basis for further research to
better scheduling algorithms and more efficient systems in the DL infrastructure.
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CHAPTER 1

Introduction

The popularity of Deep Learning (DL) are soaring by the day, with ubiquitous adoptions
in many data-driven applications, ranging from autonomous vehicles running on the road and
recommendation systems supporting large commercial companies, to facial recognition and spam
filters found in personal devices [86]. DL has pervaded many areas of computing due to the
confluence of the explosive growth of large-scale computing capabilities [46, 49, 61], availability of
datasets [69, 94], and advances in learning techniques [2, 69, 72, 95].

The core of any DL application revolves around building a mathematical model – a function
that derives its outcomes from the input (inference) based on a set of model parameters that were
fit on previously observed data (training). In the simplest sense, the lifecycle of a DL model can
be summarized as: a) preparing data including any feature engineering and data augmentation;
b) training the model on large datasets; and c) deploying and serving the model for inference.
Deployment of the model is not the end of the lifecycle, rather, it is the beginning of the next round
of preparing-training-serving, as the problem domain keeps evolving with new data and insights
gained from the deployed model can influence the next one being developed.

Consequently, it has been of great interest in both industry and academia to build a whole
software stack that supports the lifecycle of DL models – e.g., TensorFlow [76], PyTorch [34],
Ray [48, 64], Clockwork [7] and others [38, 58, 65, 66, 83, 104, 107].

Such a software stack, or the deep learning infrastructure, is vital to the DL ecosystem as a
whole. On the one hand, it sits on top of the underlying computing devices like CPUs, GPUs or
other accelerators, providing a unified interface, thus isolating researchers and practitioners from the
details and subtleties of low-level systems. On the other hand, the DL infrastructure is the building
block of most DL applications and workflows, providing essential frameworks and libraries that
implement common tasks and making it possible to reuse the engineering efforts when applying DL
to new problem domains.

Therefore, the DL infrastructure must stay in tight integration with applications above it, as well
as the hardware below it. However, when compared to the last two, the DL infrastructure is still in
its early stages, creating mismatches between the advanced application and hardware requirements,
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Figure 1.1: The DL Infrastructure as a stack.

and the inadequate infrastructure abilities. For example, despite the emergence of new unique types
of hardware, the system that abstracts and schedules these hardware resources still leaves much to
be desired in terms of performance, utilization and flexibility [3, 25, 27, 55, 90, 102, 110], failing
to reach the full potential of the hardware. New application use cases also represent shifts in the
execution characteristics at runtime [44, 47, 78]. When combined with user-defined performance
metrics common in DL applications, they urge better schedulers tailored to the application’s specific
needs [7, 27, 58].

Motivated by the above-mentioned mismatches between the DL infrastructure and the appli-
cation/hardware surrounding it, this dissertation proposes scheduling systems and techniques in
different layers in the DL infrastructure, aiming to bring application and system-specific information
into scheduler designs and thus alleviating gaps among the applications, the hardware and the
infrastructure.

1.1 The Deep Learning Infrastructure as a Stack

One way to partition the field of systems research for DL, specifically its infrastructure, is by
dividing it into high-level systems that interface with and support workflows for DL application
development, and low-level systems that involve hardware or software to support training and
execution of models (Fig. 1.1).

Categorizing by the model lifecycle, the high-level layer can be roughly divided into two groups:
model training and model serving. Such a split in the ecosystem is a result of vastly different sets
of goals while the model progressing from development to deployment. Model training values
throughput (e.g., samples per second) and the ease of development, while model serving has
constraints like latency or utilization.

These high-level frameworks themselves are supported by a set of common low-level libraries,
like Tensorflow, PyTorch, or DL compilers and runtimes. Such low-level infrastructure layer handles
specialized hardware, and often provides new types of programming interfaces to the higher level,
and thus effectively decouples the model design and execution from applications.
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Figure 1.2: Training a typical image classification model.

The remainder of this section is organized as follows. Section 1.1.1 discusses important stages
in a DL model’s lifecycle, from hyperparameter tuning to production training, and finally model
serving. Section 1.1.2 surveys the advent of specialized hardware, or accelerators, used throughout
DL lifecycles and highlights the disconnect between the hardware and software stack above them.
Section 1.1.3 provides an overview of large deployments of DL systems in clusters and on the cloud.

1.1.1 DL Lifecycles

Model Training DL models must be trained before they can be deployed for any practical use.
The knowledge distilled from the training data is encoded in the model’s parameters, which are used
in addition to input data for the model to compute the final answer. Training of a DL model can be
done in supervised and/or unsupervised manner, both happening in an iterative fashion. During a
training iteration, the output of the model might not be correct. The magnitude of the error, which
is quantified by a loss function, is used to calculate gradients such that when applied to update
model parameters, the error can be minimized thereafter. This gradient calculating process is usually
implemented as some form of a gradient descent algorithm [101, 121]. Figure 1.2 gives an example
of an image classification model and its training data flow.

Model training is often expensive because of its need to keep and compute gradients for
intermediate results. The training process can often take hours or even days, or otherwise require
massive computing resources [56]. Because of the huge computational power required by DL
training, it is paramount to speed up training for researcher productivity, and for increasing the scale
of problems that can be tackled [59]. In addition to specialized hardware which will be discussed
in Section 1.1.2, it is becoming more prevalent to leverage multiple workers working on the same
model at the same time [51, 55], also known as parallel execution. For example, data parallelism
partitions the input data across workers [105], model parallelism partitions model layers across
workers [91, 104], and pipeline parallelism overlaps computation and communication of multiple
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training iterations [31].

Hyperparameter Tuning While conceptually hyperparameter tuning is part of model training,
it has its own characteristics that are worth separate explanation. The effectiveness of DL models
is highly sensitive to hyperparameters [62], which control the model architecture and/or training
process. It is important to settle down on a good set of hyperparameters before committing hours or
days of hardware time to actually train the model in production.

Naturally, hyperparameter tuning has taken a central stage in machine learning clusters. Because
of the high-dimensionality and non-differentiability of the search space, thousands of different
hyperparameter settings often have to be evaluated before finding a final set for training in production.
For instance, 2000 GPU days of reinforcement learning [75] or 3150 GPU days of evolution [52]
are needed to obtain a state-of-the-art architecture for CIFAR-10 and ImageNet. In addition, a recent
report suggested that over 86% of the jobs in a Microsoft GPU cluster with 5000 unique users
perform hyperparameter tuning [27, 30].

Model Serving Serving model inference requests constitutes an increasingly larger portion of
today’s web requests [39, 45]. For example, NVIDIA estimated that 80–90% of the cloud AI
workload was inference processing [138]. It is only likely to increase for the foreseeable future
with the proliferation of DNN-powered APIs [133, 134] that enable applications to build on top of
pre-built foundation models [1].

Inference requests are ideally handled at low latency, high throughput, and low cost, which
are demanding goals to meet at scale. For example, Facebook serves over 200 trillion inference
requests each day [12]. Unlike long-running model training, the underlying serving systems [7,
15, 38, 58, 66] that handle these inference requests aim to maximize throughput while reducing
Service Level Objective (SLO) misses. Usually the SLO is to respond to the request within a latency
budget, which may be derived from the user-facing service’s deadline requirements. Due to the high
throughput and low latency requirements of Deep Neural Network (DNN)-dependent applications
and the large computation needs of DNN inference requests, modern serving systems often rely on
expensive GPUs to serve many requests in parallel by batching them together [7, 38, 58].

1.1.2 Specialized Hardware in DL

DL models are primarily composed of many linear algebra computations (i.e. matrix-matrix,
matrix-vector operations) which can be easily parallelized [36]. Specialized hardware, or accelerators
are designed to accelerate those basic computation operations and reduce the execution latency and
the cost of deploying DL model based applications. Despite the end of Moore’s law [71], there is an
explosion of innovation in DL processors and accelerators [6, 26].
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While initially intended for graphics, GPUs with general purpose computing capabilities [143]
has been a popular choice for DL. In addition to specialized libraries [141], NVIDIA first introduced
Tensor Cores [144] in the Volta architecture [46], which enable mixed-precision computing, and
have superior performance than normal CUDA cores on DL workloads. Like NVIDIA V100 [46],
the later generation A100 [137] are pure computation cards intended for both inference and training,
while the T4 GPU [136] is geared primarily to inference processing, though it can also be used for
training.

Beyond GPUs, dataflow processors are custom-designed processors leveraging the deterministi-
cally laid out computation of DL models. They aim for dataflow processing in which computations,
memory accesses and inter-Arithmetic Logic Unit (ALU) communications are all placed and routed
on the physical hardware. Alibaba Hanguang 8000 [145] reported the highest inference rate for a
chip when it was announced. The Inferentia chip [132] from Amazon Web Services is known for its
perk inference performance with the int8 data type, while fp16 and bfloat16 types are also supported
for compatibility with common DNN models. Baidu announced the Kunlun [131] AI accelerator
chip with two variants for training and inference separately. Google has released 3 versions of
Tensor Processing Unit (TPU) [61, 146].

In the research domain, quite a number of research teams have mapped one or more neural
network models onto one or more Field-Programmable Gate Arrays (FPGAs) and collected a variety
of performance and model prediction accuracy metrics [82, 89, 114].

1.1.3 DL in a Cluster and on the Cloud

More and more large-scale DL clusters have been built and shared among many users [49, 76,
129, 139]. These DL clusters are often equipped with GPUs for acceleration, and it is common
for those clusters to directly adopt the resource management techniques that were designed for
the traditional big-data clusters [27, 55] or need special scheduling algorithms to address the
heterogeneity in the hardware [10]. DL jobs pose unique challenges on these existing resource
management solutions. For example, many schedulers require resource sharing which can not be
applied to GPU, since it only allows exclusive access [30, 51, 55].

Aside from internal infrastructures in large companies, there has also been the proliferation of
DNN-powered APIs [133, 134] and public cloud DNN serving systems [130, 135, 139] that offer
developers inference services that auto-scale based on load.

1.1.4 Summary

With the proliferation of DL-powered applications, we are likely to only see more distinctly new
types of hardware, new applications, and new metrics for the foreseeable future. It naturally follows
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the question, that is the DL infrastructure stack able to adapt such emerging trends, and how? We
seek to answer this question in this dissertation, starting with identifying three mismatches below
and above the DL infrastructure in the next section.

1.2 Mismatches at Boundaries Below and Above the Infrastructure

As discussed, while it is easier than ever to run state-of-the-art DL models on pre-packaged
datasets, the infrastructure that supports DL in real-world applications is still in its early stages and
becoming increasingly a major bottleneck in terms of adapting to new applications and hardware.

We identify three emerging trends that are creating challenges especially at the boundaries
among the hardware, the applications and the infrastructure in between:

• New Types of Hardware There are distinctly new types of hardware beyond CPU, but many
features we take for granted on CPUs, for example, time-sharing and space-sharing process
scheduling, are impossible or impractical on these new hardware, due to minimal flexibility
provided by accompanying low-level libraries. Such a lack of flexibility hinders the scheduler
design and can lead to undesirable resource utilization.

• New Application Use Cases There are new application use cases beyond long-running batch
processing jobs. However, their scheduling with respect to the cluster and lower-level frame-
works remains largely unchanged, missing optimization opportunities from leveraging their
unique runtime characteristics.

• New Metrics There are new metrics beyond predictive accuracy, like latency, cost, or power
efficiency. They urge application-level context to be available across the software stack, so
schedulers at lower levels can also enforce application defined metrics.

Thesis Statement – As the software stack interfacing with hardware and applications, the DL

infrastructure has yet to adapt to emerging new trends in layers below and above it, leading to

inefficiencies across the stack. Motivated by such mismatches, this dissertation revisits the system

design across the stack, with a focus on the synergy between schedulers and application/system-

specific information.

In this dissertation, we propose a suite of scheduling systems and techniques, tackling each of
the aforementioned mismatches in the software stack (Fig. 1.3), showing that incorporating the
combined information from applications and systems when designing schedulers can be a viable
means to reduce the gap, and consequently, provide efficient support for new hardware and DL
applications with broader use cases.

At the bottom level, the ever-growing adoption of specialized hardware like GPU poses chal-
lenges to efficient usage. Due to the lack of Operating System (OS) arbitration, applications usually
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Figure 1.3: Emerging trends create mismatches at the boundaries below and above the DL infrastructure.

assume exclusive access, making the otherwise underutilized resource unusable for other jobs on
the same host. We design SALUS to realize proper efficient GPU sharing. It leverages DL applica-
tion specific usage patterns to schedule iterations and manage memory allocations, providing two
missing primitives: fast job switching and memory sharing.

Even with an efficient execution platform, it is still not trivial to harvest the hardware’s full
potential for higher-level applications. We investigate two such cases sitting on opposite sides of a
model’s lifecycle: hyperparameter tuning and model inference serving.

Hyperparameter tuning – which constitutes a great portion of DL cluster usage given the
proliferation of distributed resources in clusters – generates many small interdependent training
trials. Existing tuning algorithms often ignore advanced execution strategies like intra-GPU sharing
and inter-GPU execution, and thus suffer from poor resource utilization. Hence, we propose FLUID

as a generalized hyperparameter tuning execution engine, that coordinates between tuning jobs and
cluster resources. FLUID schedules training trials in such jobs using a water-filling approach to
make the best use of resources at both intra- and inter-GPU granularity to speed up hyperparameter
tuning.

Moving on, model inference serving also requires careful scheduling to achieve tight latency
guarantees and maintain high utilization. Existing serving solutions assume inference execution
times to be data-independent and thus highly predictable. However, with the rise of dynamic
neural networks, data-dependent inferences see higher variance in execution times and become
less predictable by a single, point estimation of the true running time. With ORLOJ, we show that
probability distributions of execution times can be effectively exploited for scheduling inferences in
the presence of SLO constraints.

With SALUS, FLUID, and ORLOJ, this dissertation redesigns important aspects in the ecosystem
and aims to be a step towards the final answer of the question: How should the DL infrastructure

stack be adapted to new applications and new types of hardware?

In the next section, we highlight our contributions and summarize the results.
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1.3 Summary of Contributions and Results

SALUS The minimum granularity of GPU allocations today is often the entire GPU, which leads
to two major inefficiencies. First, the coarse-grained, one-at-a-time GPU allocation model hinders
the scheduling ability of GPU cluster managers, because a running DL job must be fully purged
from the GPU before another one can start, incurring large performance overhead. Second, not all
DL jobs can fully utilize a GPU all the time, but GPU’s exclusive access model makes the otherwise
underutilized resource unusable for other jobs on the same host.

We address these issues by presenting SALUS [18], which enables fine-grained sharing of
individual GPUs with flexible scheduling policies among co-existing, unmodified DL applications.
SALUS exposes two GPU sharing primitives: fast job switching and memory sharing. The former
ensures that we can quickly switch the current active DL job on a GPU, enabling efficient time-
sharing and preemption. The latter ensures high utilization by packing more small DL jobs on the
same device. The unique memory usage pattern of DL applications is the key to why such primitives
can be efficiently implemented in SALUS: we identify three different memory usage types and apply
different management policies when handling them.

We have integrated SALUS with TensorFlow and evaluated it on a collection of DL workloads
consisting of popular DL models. Our results show that SALUS improves the average completion
time of DL training jobs by 3.19× through efficiently implementing the Shortest Remaining Time
First (SRTF) scheduling policy to avoid Head-of-Line (HOL) blocking. In addition, SALUS shows
2.38× improvement on GPU utilization for the hyperparameter tuning workload, and 42× over not
sharing the GPU and 7× over NVIDIA MPS for DL inference applications with small overhead.

FLUID Hyperparameter tuning constitutes a great portion of DL cluster usage, generates many
small interdependent training trials. It however suffers from poor resource usage in today’s dis-
tributed computation environment due to the oblivion of advanced execution strategies like intra-
and inter-GPU sharing. We observe that the root cause of such suboptimal uses is hyperparameter
tuning solutions’ indifference to how trials are executed. But it is also unrealistic to leave the burden
to Machine Learning (ML) researchers, expecting them to manually determine good execution
strategies when tuning hyperparameters. However, the wide variety of algorithms, the dynamicity of

hyperparameter tuning workloads and the differences in training trial profiles make it non-trivial
to design a generalized hyperparameter tuning execution engine that can make efficient use of
resources and speed up evaluating a group of hyperparameter configurations.

We propose FLUID [4], an algorithm- and resource-aware hyperparameter tuning execution
engine that coordinates between the cluster and hyperparameter tuning algorithms. By abstracting
hyperparameter tuning job as a sequence of TrialGroups, FLUID provides a generic high-level

8



interface for hyperparameter tuning algorithms to express their execution requests for training trials.
FLUID then automatically schedules the trials considering both the current workload and available
resources to improve utilization and speed up the tuning process.

FLUID models the problem as a strip packing problem where each rectangle has different shapes
and the goal is to minimize the height of the strip. By combining techniques like elastic training and
GPU multiplexing, FLUID is able to change the trial size, scaling out across many GPUs, or scaling
in sharing one GPU with other trials. We also propose heuristics in FLUID to solve the strip packing
problem efficiently and prove that FLUID’s performance is bounded within 2× of the optimal.

ORLOJ Existing DNN serving solutions can provide tight latency SLOs while maintaining high
throughput via careful scheduling of incoming requests, whose execution times are assumed to be
highly predictable and data-independent. However, inference requests to emerging dynamic DNNs
– e.g., popular Natural Language Processing (NLP) models and Computer Vision (CV) models
that skip layers – are data-dependent. They exhibit poor performance when served using existing
solutions because they experience large variance in request execution times depending on the input –
the longest request in a batch inflates the execution times of the smaller ones, causing SLO misses
in the absence of careful batching.

We develop ORLOJ, a dynamic DNN serving system, that captures this variance in dynamic
DNNs using empirical distributions of expected request execution times, and then efficiently
batches and schedules them without knowing a request’s precise execution time. Going beyond
prior distribution-based solutions for cluster scheduling and query processing [25, 50, 97], ORLOJ

addresses two challenges unique to model serving. First, batching is vital to achieve high throughput,
but it also affects execution times, as all requests in the same batch start and finish at the same
time, regardless of their individual execution times. ORLOJ proposes a batch-aware priority score
that derives batch execution time distributions given those of individual requests, and uses the
score to guide its batching decisions. Second, because a model can receive requests from different
applications, the joint distribution can be multimodal with even higher variance. To this end, ORLOJ

tags each request with its originating application and relies on probability theory to accurately
estimate batch execution times even when execution times of requests in the same batch follow
different distributions.

ORLOJ significantly outperforms state-of-the-art serving solutions for high variance dynamic
DNN workloads by 51–80% in finish rate under tight SLO constraints, and over 100% under
more relaxed SLO settings. For well-studied static DNN workloads, ORLOJ keeps comparable
performance with the state-of-the-art.

9



1.4 Thesis Structure

The rest of this dissertation is organized as follows. Chapter 2 introduces new GPU sharing
primitives to enable more flexible scheduling and higher utilization through SALUS. Following
the route of improving resource utilization, Chapter 3 presents FLUID, a hyperparameter tuning
execution engine that mediates between the cluster and hyperparameter tuning algorithms to
automatically adapt training trials to make the best use of available resources. Chapter 4 discusses
ORLOJ, a dynamic neural network inference serving scheduler to improve inference scheduling
finishing rate with tight SLO bounds under the condition of request execution time being data-
dependent. We finally conclude the dissertation and discuss future work in Chapter 5.
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CHAPTER 2

SALUS: Fine-Grained GPU Sharing Primitives for Deep
Learning Applications

2.1 Introduction

GPUs have emerged as a popular choice in the context of DL training because of their excellence
of highly parallelizable matrix operations common in DL jobs [46, 61, 76, 82]. Unfortunately, the
minimum granularity of GPU allocation today is often the entire GPU – an application can have

multiple GPUs, but each GPU can only be allocated to exactly one application [27]. While such
exclusiveness in accessing a GPU simplifies the hardware design and makes it efficient in the first
place, it leads to two major inefficiencies.

First, the coarse-grained, one-at-a-time GPU allocation model 1 hinders the scheduling ability
of GPU cluster managers [24, 25, 55, 90, 102, 110, 143]. For flexible scheduling, a cluster manager
often has to suspend and resume jobs (i.e., preempt), or even migrate a job to a different host. How-
ever, a running DL job must be fully purged from the GPU before another one can start, incurring
large performance overhead. As such, GPU clusters often employ non-preemptive scheduling, such
as First-In, First-Out (FIFO) [24, 27], which is susceptible to the HOL blocking problem; or they
suffer large overhead when using preemptive scheduling [25].

Second, not all DL jobs can fully utilize a GPU all the time (Section 2.2). On the one hand,
DL training jobs are usually considered resource-intensive. But for memory-intensive ones (e.g.,
with large batch sizes), our analysis shows that the average GPU memory utilization is often less
than 50% (Section 2.2.1) due to varied memory usage over time and between iterations. Similar
patterns can also be observed in compute-intensive training jobs. DL model serving also calls for
finer-grained GPU sharing and packing. As the request rate varies temporally within the day as well
as across models, the ability to hold many DL models on the same GPU during low request rates
can significantly cut the cost by decreasing the number of GPUs needed in serving clusters [58, 63].

1It is possible to forcibly run multiple processes on the same GPU, but that leads to high overhead compared to
exclusive mode.
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Additionally, the increasingly popular trend of automatic hyperparameter tuning of DL mod-
els [68, 78, 96] further emphasizes the need to improve GPU utilization. This can be viewed as
“pre-training.” One exploration task usually generates hundreds of training jobs in parallel, many
of which are killed as soon as they are deemed to be of poor quality. Improved GPU utilization
by spatio-temporal packing of many of these jobs together results in shorter makespan, which is
desirable because exploration jobs arrive in waves and the result is useful only after all jobs are
finished.

We address these issues by presenting SALUS, which enables fine-grained sharing of individual
GPUs with flexible scheduling policies among co-existing, unmodified DL applications. While
simply sharing a GPU may be achievable, doing so efficiently is not trivial (Section 2.2.2). SALUS

achieves this by exposing two GPU sharing primitives: fast job switching and memory sharing

(Section 2.3). The former ensures that we can quickly switch the current active DL job on a GPU,
enabling efficient time-sharing and preemption. The latter ensures high utilization by packing more
small DL jobs on the same device. The unique memory usage pattern of DL applications is the
key to why such primitives can be efficiently implemented in SALUS: we identify three different
memory usage types and apply different management policies when handling them (Section 2.3.2).
Combining these two primitives, we implement a variety of GPU scheduling solutions (Section 2.4).

We have integrated SALUS with TensorFlow and evaluated it on a collection of DL workloads
consisting of popular DL models (Section 2.5). Our results show that SALUS improves the average
completion time of DL training jobs by 3.19× by efficiently implementing the SRTF scheduling
policy to avoid HOL blocking. In addition, SALUS shows 2.38× improvement on GPU utilization
for the hyperparameter tuning workload, and 42× over not sharing the GPU and 7× over NVIDIA
MPS for DL inference applications with small overhead.

2.2 Background and Motivation

2.2.1 DL Workloads Characteristics

We analyzed a collection of 15 DL models (Table A.1 in Appendix) to understand the re-
source usage patterns of DL jobs. This set of models are compiled from the official TensorFlow
Convolutional Neural Network (CNN) benchmarks [147] and other selected popular models in
respective fields.

In order to cover a wider range of use cases, while keeping the native input characteristics, we
varied the batch size to create 45 distinct workloads, as shown in Table A.1. Note that the batch size
specifies the number of samples (e.g., images for CNNs) trained in each iteration and affects the
size of model parameters. Thus, the larger the batch size, the longer it takes to compute an iteration.
Throughout the paper, we uniquely identify a workload by the model name plus the input batch size.
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Figure 2.2: Part of the GPU memory usage trace
showing the spatio-temporal pattern. 2

For example, alexnet 25 means a job training alexnet, with a batch size of 25.
In terms of GPU resource usage, one can consider two high-level resources: (i) GPU computation

resources (primarily in terms of computation time, often referred to as GPU utilization in the
literature) and (ii) GPU memory. We found that both are often correlated with the complexity of
the DL model. However, GPU memory is especially important because the entire DL model and

its associated data must reside in memory for the GPU to perform any computation; in contrast,
computations can be staggered over time given sufficient GPU memory.

In the following, we highlight a few key GPU memory usage patterns in DL workloads that lead
to memory underutilization issues and/or opportunities for improvements.

Heterogeneous Peak Memory Usage Across Jobs DL workloads are known for heavy memory
usage [76, 91, 93]. Figure 2.1 visualizes the average and peak memory usages of our workloads.
As models become larger (with more and wider layers) and the batch size increases, memory
requirements of DL jobs increase as well. For example, we observed peak memory usages as high
as 13.8 GB for resnet152 and as low as less than 1 GB for vae. Such high variations suggest
that even during peak allocation periods, it may be possible to run multiple models on the same
GPU instead of FIFO.

Temporal Memory Usage Variations Within a Job Within each job, however, each iteration
of a DL training job is highly predictable with a well-defined peak memory usage and a trough in

1Measured in TensorFlow and running on NVIDIA P100. The average and peak usage for vae is 22 MB, 35 MB,
which are too small to show in the figure. The appendix also includes the measurement in PyTorch (Fig. A.1), which
shares a similar pattern.

2Measured when training resnet101 75 on NVIDIA P100.
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between iterations. Figure 2.2 shows an example. This is because DL jobs go through the same
sequence of operations and memory allocations in each iteration. The presence of predictable peaks
and troughs can help us identify scheduler invocation points.

Low Persistent Memory Usage Another important characteristic of GPU memory usage of
DL jobs is the use of persistent memory to hold parameters of a model – this corresponds to the
consistent troughs across iterations. Even though the peak usage can be very high, most of it is
temporary data created and destroyed within the same iteration. Fortunately, the size of persistent
memory is often very low in comparison to the peak, ranging from 110.9 MB for googlenet 25

to 822.2 MB for resnet152 75. As long as the model parameter is already in GPU memory,

we can quickly start an iteration of that model. This gives us an additional opportunity to improve
sharing and utilization.

2.2.2 Existing Techniques for Sharing GPUs

Given that DL workloads leave ample room for GPU sharing, a straw man approach would be
disabling the exclusive access mode and statically partitioning the GPU memory among DL jobs.
This cannot completely address the underutilization problem due to high peak-to-average memory
usage of DL jobs.

NVIDIA’s Multi-Process Service (MPS) [140] can be used to speed up the static partitioning
approach for GPU sharing by avoiding costly GPU context switches. Nonetheless, MPS has limited
support for DL frameworks or companies’ in-house monitoring tool according to our experiments
and various bug reports.

Static partitioning and MPS also fail to provide performance isolation. Co-located DL jobs can
cause large and hard to predict interferences. A recent work, Gandiva [55] approaches this by trial
and error and fallback to non-sharing mode. Xu et al. [40] propose to use machine learning model to
predict and schedule GPU-using Virtual Machines (VMs) in the cluster to minimize interferences.

NVIDIA’s TensorRT Inference server [63] and the prior work by Samanta et al. [37] achieve
simultaneous DL inference in parallel on a single GPU. But they lack support for DL training.

Finally, earlier works on fine-grained GPU sharing fall into two categories. Some attempt to
intercept GPU driver API calls and dynamically introduce concurrency by time-slicing kernel
execution at runtime [87, 100, 112]. Others call for new APIs for GPU programming [57, 73, 81].
These solutions are designed for jobs with a few GPU kernels; as such, they are not scalable to DL
applications, where the number of unique kernels can easily go up to several hundreds.
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2.3 SALUS

SALUS 1 is our attempt to build an ideal solution to GPU sharing. It is designed to enable efficient,
fine-grained sharing while maintaining compatibility with existing frameworks (Section 2.3.1). Its
overall design is guided by the unique memory usage characteristics of DL jobs. Packing multiple
jobs onto one GPU changes the combined memory allocation patterns and special care must be
taken to mitigate increased fragmentation, because existing DL frameworks are designed for the
job-exclusive GPU usage scenario. SALUS addresses both temporal and spatial aspects of the
memory management problem by enabling two GPU sharing primitives:

• Fine-grained time-sharing via efficient job switching among ongoing DL jobs (Section 2.3.2);

• Dynamic memory sharing via the GPU lane (Section 2.3.3).

Together, these primitives open up new scheduling and resource sharing opportunities. Instead
of submitting one job at a time, which can easily lead to HOL blocking, one can perform preemption
or run multiple DL jobs in a time- or space-shared manner – all of which can be utilized by a GPU
cluster scheduler [25, 55]. We demonstrate the possibilities by implementing common scheduling
policies such as preempting jobs for SRTF or fair sharing, and packing many jobs in a single GPU
to increase its utilization (Section 2.4).

2.3.1 Architectural Overview

At the highest level, SALUS is implemented as a singleton execution service, which consolidates
all GPU accesses, thus enabling sharing while avoiding costly context switch among processes on
the GPU. As a result, any unmodified DL job can leverage SALUS using a DL framework-specific
adaptor (Fig. 2.3).

From a framework’s point of view, the adaptor abstracts away low level details, and SALUS

can be viewed as another (virtual) computation device; From a user’s perspective, the API of the
framework does not change at all. All scripts will work the same as before.

It is perhaps better to explain the architecture via an example of the life cycle of a DL job.
When a job is created in a user script, SALUS adaptor in the DL framework creates a corresponding
session in SALUS ( 1a ). The computation graph of the DL job is also sent to SALUS during the
creation. The session then proceeds to request a lane from the memory manager ( 1b ). Depending
on existing jobs in the system, this process can block, and the session will be queued (Section 2.3.3).
During the job’s runtime, either training or inferencing, iterations are generated by the user script
and forwarded to the corresponding session in SALUS ( 2a ). They are then scheduled according to
their associated GPU lanes by the iteration scheduler ( 2b ), and send to the GPU for execution.

1SALUS is available as an open-source software at https://github.com/SymbioticLab/Salus.
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Figure 2.3: SALUS sits between frameworks and the hardware in the DL stack, transparent to users.

The SALUS execution service thus achieves GPU sharing via iteration-granularity schedul-
ing of DL jobs. We elaborate on a performance-efficiency tradeoff in choosing this granularity
(Section 2.3.2.2).

2.3.2 Efficient Job Switching

The ability to switch between jobs is paramount to implement time-sharing and preemption –
two techniques extensively used by modern schedulers in many contexts. Suspending a running
job and resuming the same or another one have always been possible on GPU as well. Modern
DL frameworks extensively use checkpoints to mitigate data and computation loss due to the
long-running nature of DL training jobs. The same technique is applied by Gandiva [55] to achieve
second-scale suspend/resume. Nevertheless, checkpoints can result in large data transfers from
and to the GPU memory, even in the best case when only model parameters are transferred, the
communication time is still non-negligible. It even becomes unacceptable if the system ever wants to
support inference workloads: the theoretical minimal transfer time can be even several times longer
than the inference latency itself, according to the measurement on our collection of workloads
(Fig. 2.4).

Observation 1. Transferring GPU memory back and forth is not practical to achieve low latency

given current GPU communication bandwidth.

2.3.2.1 Characterizing DL Memory Allocations

We observe that one can push things further by taking a close look at different types of memory
allocations in a DL job. Specifically, we define three types of memory allocations with unique
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characteristics.

1. Model: These mostly hold model parameters and typically consist of a few large chunks of
memory. They are persistent because they have to be available throughout the whole job’s
lifetime. Because the model size is typically fixed during the entire training process, model data
has little or no temporal variations and is predictable.

2. Ephemeral: These are the scratch memory needed during each iteration. They usually hold inter-
mediate layers’ outputs as well as temporary data generated by the algorithm itself. Ephemeral
allocations are only needed during computations and are released between iterations, giving rise
to the temporal memory usage patterns of DL jobs. They are often large memory allocations as
well.

3. Framework-internal: These are usually used by the DL framework for bookkeeping or for data
preparation pipeline. They often persist across iterations.

Collectively, model and framework-internal memory are persistent across iterations. As an
example, Fig. 2.5 gives the memory allocation size distribution for a popular CNN workload:
inception3 50.

Observation 2. There is significantly less persistent memory than ephemeral ones in a DL job. It is

possible to keep more than one job’s persistent memory in GPU while still having enough space for

either one’s ephemeral memory.

The above two observations naturally lead to the conclusion that fast job switching can be
enabled by not removing persistent memory from GPU at all. Thus unlike existing works [55],
SALUS is designed to enable significantly faster suspend/resume operations by keeping persistent
memory around, and then an iteration-granularity job scheduler (e.g., time-sharing or preemption-
based) decides which job’s iteration should be run next.
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2.3.2.2 Scheduling Granularity

Given that iterations are typically short in DL jobs (ranging from tens of milliseconds to a
few seconds), with an even finer granularity, e.g., at the GPU kernel level, it may be possible to
further utilize GPU resources. However, finer-grained scheduling also adds more overhead to the
execution service. Indeed, there is a tradeoff between maximum utilization and efficiency for a
given scheduling granularity.

To understand this tradeoff, we prototyped a GPU kernel-level switching mechanism as well
only to find that scheduling at that level incurs too much overhead for little gain. It requires all GPU
kernels to go through a central scheduler, which, in addition to becoming a single bottleneck, breaks
common efficiency optimizations in DL frameworks such as kernel batching and pipelining.

2.3.3 Spatial Sharing via GPU Lane

Although DL jobs’ memory usages have spatio-temporal variations, many cannot reach the total
capacity of a GPU’s memory. Naturally, we must consider ways to better utilize the unused memory.

Built on top of the efficient job switching, we design a special memory layout scheme, the GPU

Lane, that achieves memory sharing and improves memory utilization.
First, learning from classic memory management techniques of stack and heap to separate

dynamic allocations from static ones, we divide GPU memory space into ephemeral (Eph.) and
persistent (Pst.) regions, growing from both end of the memory space (Fig. 2.6a). A DL job’s
ephemeral memory goes into the ephemeral region, while other types of memory is allocated in the
persistent region.

The ephemeral region is further divided into lanes, which are continuous memory spaces that
can contain ephemeral memory allocation for iterations. Lanes are not only about memory, though.
Iteration execution is serialized within a lane and parallelism is achieved across lanes, which
is implemented using GPU streams. Each lane can be assigned to multiple DL jobs, which are
time-shared within the lane.

The lane’s restriction on execution is necessary because different from the other two types of
memory, ephemeral allocations happens in small chunks and cannot be predicted ahead. As a result,
simply putting two iterations together may cause deadlock because there is no swapping 1 for the
oversubscribed memory.

Even if enough memory is ensured for both peak memory usage for two iterations, memory
fragmentation can still cause superfluous out-of-memory errors if not handled correctly. More
specifically, while the framework-internal memory allocations are small in size, they can have a
large impact on the overall memory layout and may create more memory fragments when multiple

1The existing memory overcommit technique Unified Memory Access is too slow to use. See Section 2.5.4.
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Figure 2.6: The memory layout of the GPU lane scheme.

iterations are allocating simultaneously. While there are works implementing a memory planner
before actually starting the iteration [83], they are not available to all frameworks.

Since our goal is to fully support existing workloads with minimal impact on the user, we
approach the problem by limiting the dynamic allocation in the ephemeral region and isolate
memory allocations across lanes to ensure maximum compatibility while achieving adequate
flexibility.

2.3.3.1 Lane Auto Defragmentation

Having lanes does not eliminate memory fragmentation, it moves fragmentation within lane to
fragmentation at the lane level. However, defragmentation is much easier at this level. Traditionally,
defragmentation is achieved by first moving data out of memory and later moving it back again.
In case of lanes, the allocations are released completely at the end of each iteration – they are
ephemeral memory after all. Therefore, defragmentation happens almost automatically at no cost:
no extra memory movement is needed.

Consider the situation illustrated in Fig. 2.6b, when job C stops, its lane space is quickly
reclaimed (the red arrow) at the iteration boundary by job B that was allocated below it.

2.3.3.2 Lane Assignment

It is vital to determine the size and number of lanes in the GPU, as well as how lanes are assigned
to jobs. SALUS uses a simple yet efficient algorithm to decide between opening a new lane and
putting jobs into existing lanes.

Throughout the process, the following “safety” condition is always kept to make sure the
persistent region and ephemeral region do not collide into each other:

∑
job i

Pi +
∑
lane l

max
job j in l

(Ej) ≤ C (2.1)

where P and E are respectively the persistent (model and framework-internal) and ephemeral
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Algorithm 2.1: Find GPU Lane for Job
Input:

P ← the job’s persistent memory requirement
E ← the job’s ephemeral memory requirement
C ← total memory capacity of the GPU
Pi ← persistent memory usage of existing job i
Lj ← lane size of existing lane j
L← set of existing lanes

1 if
∑

i Pi + P +
∑

j Lj + E ≤ C then
2 lane ← new GPU lane with capacity E
3 return lane

4 foreach j ∈ L do
5 if Lj ≥ E and is the best match then
6 return j

7 foreach r ∈ L in Lr ascending order do
8 if

∑
i Pi + P +

∑
j Lj − Lr + E ≤ C then

9 Lr ← E
10 return r

11 return not found

memory usage of a job. C is the capacity of the GPU. The second term is the sum of all lanes’ size,
which is defined as the maximum ephemeral memory usage of all jobs in the lane.

By ensuring enough capacity for persistent memory of all the admitted jobs and enough re-
maining for the iteration with the largest temporary memory requirement, SALUS increases the
utilization while making sure that at least one job in the lane can proceed.

Implementation-wise, the system is event-driven, and reacts when there are jobs arriving or
finishing, or at iteration boundaries when auto defragmentation happens. The lane finding logic is
shown in Algorithm 2.1, which outputs a suitable lane given a job’s memory requirement.

It is beyond the scope of this work to find the best strategy to reorganize lane assignments.
We find the one implemented in our algorithm works fairly well in practice, but there are more
possibilities about finding the optimal number of lanes given a set of jobs.

2.4 Scheduling Policies in SALUS

The state-of-the-art for running multiple DL jobs on a single GPU is simply FIFO, which can
lead to HOL blocking. Although recent works [25, 55] have proposed time-sharing, they enforce
sharing over many minutes due to high switching overhead.

Thanks to its fine-grained GPU sharing primitives, SALUS makes it possible to pack jobs
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together to increase efficiency, or to enforce any priority criteria with preemption. It opens up a
huge design space to be explored in future works.

To demonstrate the possibilities, in our current work, we have implemented some simple
scheduling policies, with SALUS specific constraints (i.e., safety condition). The PACK policy aims
to improve resource utilization and thus makespan, the SRTF policy is an implementation of SRTF,
and the FAIR policy tries to equalize resource shares of concurrent jobs.

2.4.1 PACK to Maximize Efficiency

To achieve higher utilization of GPU resources, many jobs with different GPU memory require-
ments can be packed together in separate GPU lanes based on their memory usages. However,
packing too many lanes exceeding the GPU memory capacity will either crash the jobs or incur
costly paging overhead (if memory overcommit is enabled), both of which would do more harm
than good. Consequently, this policy works with “safety” condition to ensure that the total peak
memory usage across all lanes is smaller than the GPU memory capacity. No fairness is considered
among lanes.

Apart from running training jobs or hyperparameter searching jobs in parallel, this can also
enable highly efficient inference serving. By simultaneously holding many models in the same
GPU’s memory, SALUS can significantly decrease the GPU requirements of model serving systems
like Clipper [58].

2.4.2 SRTF to Enable Prioritization

Developing DL models are often an interactive, trial-and-error process where practitioners go
through multiple iterations before finding a good model. Instead of waiting for an ongoing large
training to finish, SALUS can enable preemption – the large job is paused – to let the smaller
one finish faster. This way, SALUS can support job priorities based on arbitrary criteria, including
size and/or duration to implement the SRTF policy. The higher priority job is admitted as long as
its own safety condition is met – i.e., at least, it can run alone on the GPU – regardless of other
already-running jobs.

Note that we assume the job execution time is known, and it is thus possible to implement SRTF.
While there are works on how to estimate such job execution time [51], the subject is beyond the
scope of this paper, and we only focus on providing primitives to enable the implementation of such
schedulers.
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2.4.3 FAIR to Equalize Job Progress

Instead of increasing efficiency or decreasing the average completion time, one may want to
share the GPU among DL jobs during high contention periods. Note that there may be different
definitions of fairness, and we demonstrate the feasibility of implementing one or more of them
instead of proposing the optimal fairness policy. Specifically, we admit new jobs into the GPU while
maintaining the safety condition, and equalize total service over time for jobs in each lane.

2.5 Evaluation

We have integrated SALUS with TensorFlow and evaluated it using a collection of training,
hyperparameter tuning, and inference workloads [80, 92, 95, 99, 147] to understand its effectiveness
and overhead. The highlights of our evaluation are as follows:

• SALUS can be used to implement many popular scheduling algorithms. For example, the
preemptive SRTF scheduler implemented in SALUS can outperform FIFO by 3.19× in terms of
the average completion time of DL training jobs (Section 2.5.1).

• SALUS can run multiple DL jobs during hyperparameter tuning, increasing GPU utilization by
2.38× (Section 2.5.2).

• Similarly, for inference, SALUS can improve the overall GPU utilization by 42× over not sharing
the GPU and 7× over NVIDIA MPS (Section 2.5.3).

• SALUS has relatively small performance overhead given its flexibility and gains (Section 2.5.4).

Environment All experiments were done on a x86 64 based Intel Xeon E5-2670 machine with
2 NVIDIA Tesla P100 GPUs available in CloudLab [23]. Each GPU has 16GB on-chip memory.
TensorFlow v1.5.0 and CUDA 8.0 are used in all cases.

Baseline (s) Our primary baseline is the FIFO scheduling commonly used in today’s GPU
clusters [55]. We also compare against NVIDIA MPS.

2.5.1 Long-Running Training

We start by focusing on SALUS’s impact on training. To this end, we evaluate SALUS using a
job trace of 100 workloads, generated using the jobs described in Table A.1. We considered multiple
batch sizes and durations of each training job in the mix. The overall distribution followed one
found in a production cluster [25].

We compare four different schedulers:
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Figure 2.7: CDFs of JCTs for all four scheduling policies.

Table 2.1: Makespan and aggregate statistics for different schedulers.

Scheduler Makespan Average Queuing Average JCT 95% JCT

FIFO 303.4 min 167.6 min 170.6 min 251.1 min

SRTF 306.0 min 28.6 min 53.4 min 217.0 min

PACK 287.4 min 129.9 min 145.5 min 266.1 min

FAIR 301.6 min 58.5 min 96.6 min 281.2 min

1. FIFO refers to processing jobs in order of their arrival. This is the de facto mechanism in use
today.

2. SRTF is a preemptive shortest-remaining-time-first scheduler. We assume that the duration is
known or can be estimated [51].

3. PACK attempts to pack as many jobs as possible in to the GPU. The goal is to minimize the
makespan.

4. FAIR uses time-sharing to equally share the GPU time among many jobs.

2.5.1.1 Overall Comparison

Figure 2.7 presents the distributions of Job Completion Times (JCTs) for all four policies,
while Table 2.1 presents makespan and aggregate statistics. Given the similarities of makespan
values between FIFO, SRTF, and FAIR, we can conclude that SALUS introduces little overhead.
Furthermore, packing jobs can indeed improve makespan. Note that because of online job arrivals,
we do not observe large improvement from PACK in this case. However, when many jobs arrive
together, PACK can indeed have a larger impact (Section 2.5.2).

These experiments also reestablishes the fact that in the presence of known completion times,
SRTF can indeed improve the average JCT – 3.19× w.r.t. FIFO in this case.
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Figure 2.8: Details of a snapshot during the long trace running with SRTF. In both slices, time is normalized.

2.5.1.2 Impact of Fast Job Switching

We evaluate SALUS’s ability to perform fast job switching in two contexts. First, we show that
it allows cheap preemption implementation, which, in turn, makes possible the SRTF scheduling
policy. Second, we show fast job switching can achieve fair sharing among DL jobs in seconds-
granularity – instead of minutes [55]. In both cases, we consider a single GPU lane.

SRTF Consider the following scenario: a large training job has been running for a while, then
the user wants to quickly do some test runs for hyperparameter tuning for smaller models. Without
SALUS, they would have to wait until the large job finishing – this is an instance of HOL blocking.
SALUS enables preemption via efficient switching to run short jobs and resumes the larger job later.

We pick a segment in the long job trace, containing exact the scenario, and record its detailed
execution trace, showing in Fig. 2.8a. When job #1 arrives, the background job #0 is immediately
stopped and SALUS switches to run the newly arrived shorter job. Job #2 comes earlier than job #3,
but since #3 is shorter, it is scheduled first. And finally since job #5 is shorter, #4 is preempted and
let #5 run to completion. During the process, the background job #0 is only scheduled when there is
no other shorter job existing.

Figure 2.8b is another example demonstrating SALUS’s ability to fast switch. It visualizes
memory allocations in the scale of seconds: at the moment of a job switching, the second job’s
iteration starts immediately after the first job stops.

Time Sharing/Fairness To better illustrate the impact of fairness, we show another microbench-
mark, demonstrating SALUS’s ability to switch jobs efficiently using 3 training jobs and focusing
on the fair sharing of GPU throughput in Fig. 2.9.

For ease of exposition, we picked three jobs of the same DL model inception3 50 – this
allows us to compare and aggregate training throughput of the three models in terms of images
processed per second. In this figure, in addition to the throughput of individual jobs, the black
dashed line shows the aggregate throughput.
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The training jobs start at time 0s, 15s and 30s. At 15s, when the second job starts, while the total
throughput remains unchanged, each job’s share is halved. It further reduces to about a third when
the third job arrives. Similarly, the reverse happens when jobs finishes in the reverse order. The
system throughput roughly remains the same throughout the experiment. Note that SALUS reacts
almost immediately for job arriving and leaving events.

In contrast, FIFO scheduling or other sharing policies (e.g., MPS) cannot enforce fair sharing.

2.5.2 Hyperparameter Exploration

Using SALUS to PACK many jobs is especially useful when many/all jobs are ready to run. One
possible use case for this is automatic hyperparameter tuning. Typically, hundreds of training jobs
are generated in parallel for parameter exploration. Most of the generated models will be killed
shortly after they are deemed to be of poor quality. In this case, increasing the concurrency on GPU
can help improve the parameter exploration performance by running multiple small jobs together,
whereas today only FIFO is possible.

We evaluate two sets of hyperparameter exploration jobs: resnet50 50 and superres 128,
for image classification and resolution enhancement, respectively. Each set has 300 jobs, and
each one completes after all 300 complete. A comparison of achieved makespan using FIFO (in
TensorFlow) and SALUS is shown in Fig. 2.10. In the resnet50 50 case, there is 1.07×makespan
improvement while it is 2.38× for superres 128.

Little improvement is seen for resnet50 50 because while the GPU has enough memory,
computation becomes the bottleneck under such heavy sharing. Consequently, the makespan does
not see much improvement.

2.5.3 Inference

So far we have only discussed DL training, but we note that serving a trained model, i.e.,
inference, can also be a good – if not better – candidate for GPU memory sharing. Rather than

25



al
ex

ne
t

go
og

le
ne

t

in
ce

pt
io

n3

in
ce

pt
io

n4

ov
er

fe
at

re
sn

et
10

1

re
sn

et
15

2

re
sn

et
50

se
q2

se
q

su
pe

rr
es va
e

vg
g1

1

vg
g1

6

vg
g1

9

0

20

40

60
La

te
nc

y 
(m

s) Salus
TF
MPS

TF

M
PS

Sa
lu

s

0

20

40

# 
of

 G
PU

s n
ee

de
d

Figure 2.11: The latencies and number of GPUs needed to host 42 DL models for inference at the same time.
3 instances of each model is created. Each instance has a low request rate.

focusing on throughout when training, latency of individual inference request becomes a more
important requirement when serving DL models [58, 63].

In order to keep responsive to requests, DL models have to be online 24 × 7 hours. In the
traditional setting, each model must reside on a dedicated GPU. However, the traffic of serving
requests is not always constant throughout the day, and there are times when the request rate is
significantly lower compared to peak. Consolidating DL models into fewer GPUs while remain
responsive can save the maintains cost for service providers.

We demonstrate SALUS’s ability to reduce the number of GPUs needed while maintaining
reasonable response latency in Fig. 2.11. 42 DL inference jobs are selected consisting of 14 different
models, 3 instances for each model. Without MPS or SALUS, 42 GPUs are needed to hold these
DL models. In contrast, SALUS needs only 1 GPU, achieving 42× improvement, while the average
latency overhead is less than 5ms. For comparison, MPS needs 6 GPUs.

A future work is to detect current request rate for inference jobs and automatically scale
up or down horizontally. Nevertheless, SALUS provides the essential primitives that makes the
implementation possible.

2.5.4 Overhead

SALUS has to be efficient, otherwise the benefits gained from sharing can be easily offset by
the overhead. Figure 2.12 shows per iteration training time in SALUS, normalized by per iteration
training time in baseline TensorFlow.

For most CNN models, SALUS has minimal overhead – less than 10%, except for a few. The
common point of these high-overhead DL models is that they also perform large portion of CPU
computation in addition to heavy GPU usage. Since SALUS implements its own execution engine,
the CPU computation is also redirected and sent to SALUS for execution, which is not yet heavily
optimized.

We finally proceed to compare the performance to run two jobs on a single GPU using existing
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Figure 2.12: Per iteration time per workload in SALUS, normalized by that of TensorFlow. Only the largest
batch size for each model is reported, as other batch sizes have similar performance.
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Figure 2.13: Two concurrent alexnet 25 training jobs for 1 min.

solutions. Two alexnet 25 training jobs are started at the same time and each runs for a minute.
The jobs share a single GPU using SALUS, static partitioning (SP), static partitioning with MPS

(SP+MPS), and static partitioning with MPS and memory overcommit (SP+MPS+OC). We collect
and compare the average JCT and report the result in Fig. 2.13.

The result confirms that MPS is indeed better than SP due to the avoidance of GPU context
switching. Unfortunately, the SP+MPS+OC solution has significantly bad performance that is
beyond useful at the moment. SALUS manages to achieve almost the same performance as MPS
while providing much more flexibility in scheduling policy. As shown before, in lightly-loaded
inference scenarios, it can significantly outperform MPS in terms of utilization.

2.6 Concluding Remarks

GPUs have emerged as the primary computation devices for DL applications. However, modern
GPUs and their runtimes do not allow efficient multiple coexisting processes in a GPU. As a
result, unused memory of a DL job remains inaccessible to other jobs, leading to large efficiency,
performance loss, and HOL blocking.

SALUS enables fine-grained GPU sharing among complex, unmodified DL jobs by exposing
two important primitives: (1) fast job switching that can be used to implement time-sharing and
preemption; and (2) the GPU lane abstraction to enable dynamic memory partitioning, which can
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be used for packing multiple jobs on the same GPU. Together, they can be used to implement
unforeseen new policies as well.

However, SALUS is only a first attempt, and it opens many interesting research challenges. First,
SALUS provides a mechanism but the question of policy – what is the best scheduling algorithm
for DL jobs running on a shared GPU? – remains open. Second, while not highlighted in the paper,
SALUS can be extended to multiple GPUs or even other accelerators on the same machine. Finally,
we plan to extend it to GPUs across multiple machines leveraging RDMA.
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CHAPTER 3

FLUID: Resource-Aware Hyperparameter Tuning Engine

3.1 Introduction

The effectiveness of DL models, is highly sensitive to hyperparameters [62], which control the
model architecture and/or training process, and have to be set before training. Naturally, hyperparam-
eter tuning has taken a central stage in machine learning clusters. Because of the high-dimensionality
of the search space, thousands of different hyperparameter settings often have to be evaluated before
finding a final set for training in production.

Hyperparameter tuning is an optimization loop in order to find the best set of hyperparameters
that are likely to produce the highest validation accuracy. A hyperparameter tuning job contains
a large group of training trials, each with its own configuration. It gets feedback from running
previous trials before selecting new ones to explore until reaching a target accuracy or stopped by
the user. Distributed computation is commonly used to speed up the tuning process [44, 47, 111].

Unfortunately, current hyperparameter tuning solutions cannot efficiently leverage distributed
computation. Instead of planning a group of training trials as a whole, each training trial is often
independently submitted to a cluster manager, most of the time as a single task running on a
single worker GPU [25, 27]. The cluster manager then launches those trials without considering
the possibility of intra-worker and inter-worker sharing, failing to make good use of the available
resources. For example, there can be more workers than training trials, which can lead to resource
underutilization if each training trial only uses one worker. Moreover, a single training trial may
not fully occupy one worker; the single-trial-to-single-worker mapping then leaves room to further
improve resource utilization when there are more training trials than workers. Even the state-of-the-
art cluster managers, which support users to submit a collection of jobs [30], focus on fair sharing
of resources between multiple users but leave it up to the users to decide how to execute them.

In an attempt to better utilize cluster resources, some recent works have proposed fully asyn-
chronous execution methods [44, 47] that launch a new trial whenever there is an idle worker in
their allocation of resources. However, this execution strategy tightly couples the concurrency of
the tuning algorithm itself to the number of available workers. In addition to problems caused
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by the single-trial-to-single-worker mapping mentioned above, it fails to concentrate resources
on promising hyperparameter configurations. Although all resources are used in this case, many
configurations do not necessarily do useful work – i.e., their results are discarded rather than used
to guide the generation of the final configuration.

In this paper, we observe that the root cause of the suboptimal use of resources in current
hyperparameter tuning solutions is their indifference to how trials are executed. But it is also
unrealistic to leave the burden to ML researchers expecting them to manually determine good
execution strategies when tuning hyperparameters. We, therefore, take a different approach and
propose to decouple the execution strategy from hyperparameter tuning algorithms into a separate
execution engine. This has the following advantages: a) by separating the concern between tuning
algorithms and execution engines, both components can evolve independently; b) resource usage
can be optimized, which results in faster tuning speed for any tuning algorithms, benefiting a wider
range of applications.

However, the wide variety of algorithms, the dynamicity of hyperparameter tuning workloads and
the differences in training trial profiles make it non-trivial to design a generalized hyperparameter
tuning execution engine that can make efficient use of resources and speed up evaluating a group of
hyperparameter configurations.

To this end, we propose FLUID, an algorithm- and resource-aware hyperparameter tuning
execution engine that coordinates between the cluster and hyperparameter tuning algorithms. By
abstracting hyperparameter tuning job as a sequence of TrialGroups, FLUID provides a generic
high-level interface for hyperparameter tuning algorithms to express their execution requests for
training trials. FLUID then automatically schedules the trials considering both the current workload
and available resources to improve utilization and speed up the tuning process.

FLUID models the problem as a strip packing problem where each rectangle has different shapes
and the goal is to minimize the height of the strip. The intuition behind FLUID is to grant more
resources to more demanding/promising configurations, such as those with larger training budget,
higher resource requirement, or higher priority. By combining techniques like elastic training and
GPU multiplexing, FLUID is able to change the trial size, scaling out across many GPUs, or scaling
in sharing one GPU with other trials. We also propose heuristics to solve the strip packing problem
efficiently and prove that their performance is bounded within 2× of the optimal.

To the best of our knowledge, we make the following contributions:

• FLUID is the first generalized hyperparameter tuning execution engine. It captures the character-
istics of a hyperparameter tuning algorithm as a sequence of TrialGroups and models TrialGroup
scheduling as a strip packing problem;

• FLUID proposes efficient heuristics with theoretical guarantees to solve the packing problem,
and it applies elastic training and GPU multiplexing to enforce the solutions;

30








2

3Config Generation

Evaluation & Execution

1 4

Hyperparameter Tuning Algorithm

Figure 3.1: Hyperparameter tuning today: The tuning algorithm which implicitly contains execution logics
interacts with the cluster directly.

• FLUID can boost the performance of various hyperparameter tuning algorithms with higher
utilization and shorter end-to-end time. According to our experiment, FLUID can speed up
synchronous BOHB by 100%, BOHB and ASHA by 30%, with similar final accuracy.

3.2 Motivation

3.2.1 Background and Related Work

3.2.1.1 Hyperparameter Tuning Algorithms

Figure 3.1 gives an overview of how hyperparameter tuning algorithms work in general. 1 The
hyperparameter configurations are generated and passed on for evaluation; 2 the evaluation logic
creates corresponding training trials and submits them directly to the cluster; 3 the training trial
finishes execution and the tuning algorithm gets notified; 4 the results are passed back to the
generation mechanism for future trial generations.

There are five primary trends in existing hyperparameter tuning algorithms tweaking parts of
the aforementioned process to accelerate the evaluation and searching process for a good set of
hyperparameter.

1. Parallel search: Improved upon grid or random search, Parallel hyperparameter search ap-
proaches [103, 122] introduce parallelism to speed up evaluation. However, because finding the
best configurations in a large space requires guidance, random-based methods cannot quickly
converge to good configurations.

2. Model-based search: Model-based hyperparameter search approaches [79, 106, 116] sequen-
tially generate better hyperparameter configurations based on feedback from previous evaluation
results. However, such adaptive selecting and evaluating process is inherently sequential and
thus not suitable for the large-scale regime.
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Table 3.1: An overview of common hyperparameter tuning algorithms and how they employ the techniques
mentioned in Section 3.2.1.1. The last column indicates if they have dedicated execution logic.

Method Parallel Model-based Early-stopping Async Dedicated Execution

Grid/Rand. ✓

SMBO ✓

Hyperband ✓ ✓

BOHB ✓ ✓ ✓ ✓ Async
ASHA ✓ ✓ ✓ Async

PBT ✓ ✓

HyperSched ✓ ✓ ✓ ✓

3. Early-stopping: Early-stopping evaluation strategies [84] aim at detecting and stopping poor
configurations earlier in order to avoid wasting resources on unpromising configurations. Suc-
cessive Halving [98], for example, iteratively kills the poor trials and allocates more training
time to the top fraction of trials. However, under this iterative process, only a few promising
configurations end up being evaluated end-to-end, creating triangular shaped resource usage
pattern over time, which degrades the resource efficiency in distributed environments.

4. Asynchronous search: Fully asynchronous algorithms [47] always align the number of training
trials with the number of workers, which aim at fully utilize all the resources to evaluate config-
urations. However, these algorithms fail to concentrate resources on promising configurations
but spend them on exploring hyperparameter search space.

5. Hybrid approach: Hybrid approaches combine the ideas of the four trends aforementioned [19,
44, 47, 60, 78].

3.2.1.2 The Default Execution Logic

As already discussed, current hyperparameter tuning methods focus on speeding up searching
mostly in the algorithm, while hardly considering their interactions with the cluster.

In fact, as shown in Table 3.1, only a few algorithms have dedicated execution logic. Most others
simply assign one pending job on one idle worker and maintain a FIFO queue. Some newer ones,
such as ASHA and BOHB [44, 47], use a simple fully asynchronous strategy to launch a new trial
whenever there is an idle worker. Although HyperSched [11] has its own execution logic on the top
of ASHA that makes use of distributed training when deadline approaches, this logic is too specific
to generalize to other tuning algorithms.

Overall, the execution logic is tightly coupled with the evaluation logic in tuning algorithms,
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Figure 3.2: GPU utilization of 4 algorithms on the CIFAR-10 task, running to completion. Each algorithm
has 8 workers and each data point is averaged over a 30 seconds window.

and they lack any generalization to be efficiently applied to every algorithm.

3.2.2 Motivation

Our work is motivated by the low resource utilization in existing hyperparameter tuning algo-
rithms. Here we illustrate that the default execution strategy fails to efficiently use all available
resources, while asynchronous execution strategies aim to increase utilization but not all resource
usage contribute to selecting the final configuration.

3.2.2.1 Resource (Under-)Utilization

We consider four representative algorithms – ASHA, Hyperband, BOHB, and Synchronous
BOHB – to understand their resource usage characteristics.

In Fig. 3.2, we observe ample room for improvement in terms of resource usage. The underuti-
lization has two root causes: a) No trial is running during the purple-shaded time slots in a particular
worker. Distributed training can be used to balance workloads from other workers onto these free
ones; b) Even when a GPU is used, the overall utilization is at most 60%, suggesting that a single
trial often cannot fully saturate the GPU. Multiple trials can be stacked/packed together to reduce
the average trial completion time.
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Table 3.2: Resource utilization and runtime over different number of workers with Successive Halving.

# Workers Average Utilization Runtime

2 81.20% 2356
4 63.00% 1432
8 45.80% 1073

16 47.00% 475
32 25.20% 432

3.2.2.2 Case Study: Lack of Elasticity Reduces Utilization

In the default setting of many early-stopping based algorithms like Successive Halving, the
number of available workers is static while the number of trials is diminishing. Training trials are
executed on the workers in a FIFO order.

In Table 3.2, we set up a basic Successive Halving based tuning session and measure the average
resource utilization as well as tuning speed over varying number of workers. (See Section 3.6 for
details about the CIFAR-10 task.) As we can see, when the number of workers increases, the tuning
process is indeed faster, but the resource utilization is lower. While more workers can help with the
beginning stages of Successive Halving, latter stages only have a smaller number of trials; even
though there are idle workers, the algorithm is unable to make use of them. Furthermore, increasing
resource allocation further is of no use.

3.2.2.3 Case Study: High Utilization ̸= Useful Work

To increase utilization, a common fully asynchronous execution strategy is starting a new trial
whenever there is an idle worker. As a result, the tuning algorithm can use all available workers,
and its training concurrency is bounded by the number of workers.

Unfortunately, our analysis of ASHA, a popular asynchronous tuning algorithm, shows that not
all work is useful work. In this experiment, we measure the best accuracy vs total GPU seconds and
wall clock time over different training trial concurrency levels (Fig. 3.3a and Fig. 3.3b). We observe
that as we increase the training trial concurrency, the best configuration is not necessarily identified
faster; however, more GPU seconds are consumed to reach the same search target.

This is because the hyperparameter tuning is an exploration and exploitation process. Even
though more workers are kept busy working on something fresh (exploration), not necessarily all
the work done contribute to the final configuration’s generation (exploitation), which makes it fail
to concentrate resources on promising configurations. To this end, instead of blindly improve the
resource utilization, hyperparameter tuning should spend its resource where it counts the most. An
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Figure 3.3: ASHA best validation accuracy over wall clock time and total GPU seconds (averaged across 3
ASHA jobs respectively).

ideal evaluation and execution strategy should achieve the target accuracy with shorter wall clock
time and smaller total GPU seconds.

3.3 FLUID

In this section, we start with the problem statement and review the challenges FLUID must
solve to become a generalized execution engine for hyperparameter tuning. Then we introduce the
high-level interface used by FLUID and how it interacts with other components in a hyperparameter
tuning job. Finally, we illustrate the intra- and inter-GPU sharing considerations in FLUID.

3.3.1 Problem Statement

Given a hyperparameter tuning job and available resources, the objective of FLUID is to carefully
allocate resources to each training trial in the job such that resources are efficiently used and the
makespan is minimized. In addition, FLUID should generalize to most hyperparameter tuning
algorithms and react to cluster resource changes.

FLUID must address the following challenges.

1. The wide variety of tuning algorithms There are many strategies for hyperparameter tuning,
each of which generates configurations and evaluates their performance in different ways (Sec-
tion 3.2.1.1). It is challenging to design a general execution engine that can take algorithm-aware
scheduling decisions and minimize the makespan of a collection of training trials (Section 3.3.2).

2. Highly dynamic training workloads and resources Training trials generated by hyperpa-
rameter tuning dynamically change over time due to the use of early-stopping strategy (Sec-
tion 3.2.1.1). Cluster resource allocation can also be dynamic for fairness and efficiency reasons.
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Hence, it is challenging to capture the dynamic resource usage to reallocate correspondingly.

3. Heterogeneity in training trial profiles Differences in hyperparameters across training trials
may cause different resource demands and be given different amounts of training budgets.
Hyperparameter configurations may react differently for different resource allocations too. This
challenges the execution engine to treat different trial profiles accurately (Section 3.3.4 and
Section 3.4.2.2).

3.3.2 The TrialGroup Abstraction

To generalize different hyperparameter tuning algorithms, we introduce an abstraction called
TrialGroup between the tuning algorithms and FLUID. Algorithms can use this simple-yet-rich
interface to express their training requests, and FLUID works with this consistent model to schedule
executions.

A TrialGroup is a group of training trials with a training budget associated to each trial in

the group. At any time, trials may be removed from the group due to completion or requested
termination from the algorithm. The optimization goal for such a TrialGroup is to minimize its
makespan, such that all the results are available as early as possible. TrialGroup is the basic unit of
scheduling in FLUID.

Although the definition of TrialGroup is simple, we find it quite expressive for modeling
hyperparameter tuning algorithms’ training trial execution requirements. In the most simple case
– grid/random search, where all training trials are created at the same time and have a fixed
amount of budget, all trials fit nicely in one TrialGroup. For more involved algorithms discussed in
Section 3.2.1.1, where new iterations of the algorithm may be added based on previous feedbacks, all
trials from a single iteration forms a TrialGroup. This essentially creates a sequence of TrialGroups,
each has its own makespan minimized individually.

3.3.3 FLUID Overview

Figure 3.4 illustrates FLUID’s position in the stack. FLUID coordinates between the cluster and
tuning algorithms, decoupling the execution logic from any single tuning algorithm. The tuning
algorithm 2a submits TrialGroup to FLUID over time. During the tuning process, intermediate
results are 3b reported back so that new trials may be created or existing ones removed.

The action of FLUID will only be triggered when new TrialGroups are added or some re-
sources are freed. Based on the 3a real-time resource usage reported by the cluster, FLUID uses
StaticFluid (Section 3.4.2) to schedule any new TrialGroups onto idle resources. It then reac-
tively waits for more events to handle. When some resources are freed up and there are not pending
jobs in the queue towards the end of the TrialGroup, FLUID adapts DynamicFluid (Section 3.4.3)
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Figure 3.4: With FLUID, the tuning algorithm 2a submits TrialGroup according to its evaluation strategy

and 3b gets feedbacks back anytime they are available. FLUID itself manages 2b the job execution and

handles 3a resource changing events.

to reallocate resources with the concern of any overhead.

3.3.4 Parallelism in Multiple Granularities

Minimizing the TrialGroup makespan ultimately translates to making better use of the underlying
hardware resources in parallel. However, as shown in Section 3.2.2, relying on creating massive
amount of trials as the single source of parallelism is neither enough to saturate individual workers
nor applicable to many model-based tuning algorithms.

In FLUID, in addition to the number of trials, parallelism is sourced from within the training trial
by using existing techniques like MPS [140] (or Multi-Instance GPU (MIG) [142] more recently)
and automatic distributed training. NVIDIA MPS allows multiple processes to run on a single
GPU at the same time with different CUDA streams, providing intra-GPU parallelism. Distributed
training is an established technique to use multiple parallel workers to reduce the training trial’s
job completion time, providing inter-GPU parallelism [104]. In addition, resource elasticity [13]
realizes resource reallocation on the fly providing more flexibility in scheduling.

FLUID uses both inter-GPU and intra-GPU parallelism to perform resource allocation in a water-
filling scheme. However, distributed training has communication overhead, while GPU sharing
inevitably creates interference; both degrade performance. Therefore, we incorporate dynamic
overhead measurement into FLUID’s design (Section 3.4.2.2) and assess the marginal benefit before
using both techniques to increase parallelism in intra- and inter-GPU granularities.

3.4 FLUID Algorithm

The scheduling problem of a hyperparameter tuning job, a sequence of TrialGroups, can be
broken down into solving several independent TrialGroup scheduling problems. In this section, we
begin with formulating this single TrialGroup scheduling as a strip packing problem (Section 3.4.1).
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Since the hyperparameter tuning can be simplified as two actions (Section 3.3.3), trial arrival
and departure, we then propose two heuristics to make full use of resources respectively under two
conditions: a) new TrialGroup is launched to be scheduled; b) resource is freed to be allocated.

We first introduce StaticFluid and how it uses GPU sharing to schedule incoming Trial-
Group with the concern of sharing overheads (Section 3.4.2). We provide theoretical analysis for
our StaticFluid in the appendix. Then, we introduce DynamicFluid which uses resource
elasticity to reallocate freed resources while being robust to overheads (Section 3.4.3).

3.4.1 Problem Definition

Let the TrialGroup scheduling be represented as a strip packing problem I = {A,M}. Each
rectangle ai in A = {a1, . . . , ak} with width and height corresponds to a trial with allocated
resources and remaining runtime. It is worth noting that in our problem setting, each rectangle’s

width wi determines its height hi,w. hi,w thus implies the relationship between different resource
allocation and its corresponding runtime for this trial. Strips in M = {m1, . . . ,mn} with identical
width 1 and infinite height represents n available identical resources for current hyperparameter
tuning jobs.

FLUID utilizes both intra- and inter-GPU sharing to achieve higher utilization of GPU resources
and minimize the TrialGroup makespan. Hence, a training trial can be assigned to a real number
amount of resources, where the fractional part of the resources represents a worker that will be
shared with other trials, and an overall > 1 resources means the trial must be placed across workers
using distributed training. The goal is to find a non-overlapping orthogonal packing of these k

rectangles (taking into account different size options) into n strips such that the maximum height of
strips is minimized.

3.4.2 StaticFluid

3.4.2.1 Algorithms

Since minimizing the height of strip packing is NP-hard [126], FLUID proposes an efficient
heuristic StaticFluid to find an approximate solution. At a high level, FLUID resource allocation
is performed using a water-filling scheme to balance the relationship between workloads and
resources by “evenly” allocating resources to current evaluation trials in order to minimize the
TrialGroup makespan.

Consider a grid search example with 5 GPUs and 4 trials {ai}i=4
i=1 arrived at the beginning with

training budget 4s, 4s, 12s and 30s respectively. As shown in Fig. 3.5a, the default FIFO scheduler
treats each training trial independently without considering the different impact on the TrialGroup
makespan; thus, it performs poorly because of stragglers and resource underutilization.
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Figure 3.5: Toy example: default, optimal and FLUID for 4 training trials scheduled on 5 workers.

Algorithm 3.1: STATICFLUID

Input: TrialGroup A, Idle Resources M ′

1 Sort ai by hi,1 in non-increasing order
2 foreach ai ∈ A do
3 wi ← min(max(⌊ hi,1∑

j hj,1
n⌋, 1

c
), d)

4 Allocate ai with wi resources

Intuitively, a good schedule would prioritize resources to long training trials to mitigate the
straggler and minimize the makespan. As shown in Fig. 3.5c, FLUID distributes the longest training
trial a4 onto three workers and packs shorter training trials a1 and a2 together on one worker. In this
way, straggler is mitigated and resources are fully utilized. FLUID’s static heuristic comes close to
the optimal schedule for this example (Fig. 3.5b).

As shown in Algorithm 3.1, FLUID allocates resources wi based on the ratio of each trial’s
runtime hi,1 to the sum of runtime

∑
hj,1 in the TrialGroup. FLUID then schedules the trials in

non-increasing order of resources onto the idle worker set. To avoid performance degradation from
GPU sharing, we limit the maximum intra-GPU sharing to c and maximum inter-GPU training to d,
which we discuss in more details in Section 3.4.2.2.

Formally, we give Theorem 1 without concerning any overhead, whose proof is included in
Appendix B.1.3.

Theorem 1. In the ideal situation, FluidStatic is a 2-approximation algorithm.

3.4.2.2 Accounting for Overheads

FLUID adapts MPS and distributed training to realize intra-GPU sharing and inter-GPU training.
These inevitably causes interference and overheads that hurt training performance. We account for
such possibilities by tracking marginal benefits.
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Intra-GPU Overhead Under the assumption that trials of the same hyperparameter tuning job are
similar to each other, FLUID regards similar trends for diminishing marginal benefit for packing one
more trial from the same TrialGroup. FLUID determines the optimal number of concurrent trials c
on a GPU by finding out the inflection point where marginal benefit degrades below a threshold Oth .

We define the marginal benefit Op for packing the pth trial on a worker as

Op = 1− p− 1

p

avg(T p)

avg(T p−1)
(p > 1) (3.1)

where T p = {ti}i=p
i=1 is the set of training time per iteration for p training trials. The marginal

benefit of reduced average trial completion time is usually diminishing with the increasing packing
overhead. FLUID ensures the packing benefit over packing overhead by limiting the number of
concurrent training trials under the optimal number c where c = argmaxpO

p > Oth .

Inter-GPU Overhead The speed-up brought by distributed training is not linear because of
communication overheads. Such communication overheads are often determined by the size of
model parameters and the number of workers [70].

FLUID determines the maximum degree of parallelism d for an evaluated configuration using
the Paleo framework [67] to estimate the cost of training neural networks in parallel. It ensures the
scaling benefit over scaling overhead by limiting the number of distributed worker to less than d.

Problem Setup To consider these realistic factors for our strip packing problem, we define the
relationship between runtime hi,w and resources w for trial ai as

hi,w =

hi,1α
1
w
−1

i w ∈ (0, 1)

hi,1

w
βw−1
i w ∈ [1, d]

(3.2)

where hi,1 is the trial runtime on one worker. αi ∈
[
1, c

c−1

)
is a measure of the packing overhead

for trial ai. βi ∈
[
1, 1 + 1

d

)
is a measure of the scaling overhead for trial ai. This definition of hi,w

ensures the following result.

Theorem 2. In the real situation,

StaticFluid(I) < max(2OPT(I) + max(h1)α
1

α−1 , 2OPT(I)β
1

β−1
−1) (3.3)

We prove that StaticFluid has theoretical guarantee even when practical resource sharing
overheads is considered (Appendix B.1.3).
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Algorithm 3.2: DynamicFluid
Input: TrialGroup A, Total Res. M

1 Sort ai by hi,1 in non-increasing order
2 foreach ai ∈ A do
3 w′

i ← min(max(⌊ hi,1∑
j hj,1

n⌋, 1
c
), d)

4 if w′
i > wi and hi,w′

i
+ ϵ < hi,wi

then
▷ Scale up

5 Update ai with wi resources

6 else if w′
i < wi and w′

i(hi,w′
i
+ ϵ) < wihi,wi

then
▷ Scale down

7 Update ai with wi resources

3.4.3 DynamicFluid

In addition to scheduling incoming TrialGroup, FLUID also need to handle the dynamic changing
resource usage caused by job departure and cluster resource changes.

As shown in Fig. 3.5c, there is still a resource gap before the TrialGroup completes, which
leaves space to further improve the utilization and minimize makespan. Therefore, we extend the
heuristic StaticFluid to DynamicFluid that reallocates the incoming idle resources on the
fly with the help of resource elasticity.

Ideally, DynamicFluid updates the resource allocation plan w′ using resource elasticity with
the same formula in Algorithm 3.1 when new resources are freed. However, using resource elasticity
to adjust parallelism will inevitably incur overhead. Hence, FLUID considers scaling overhead ϵ to
avoid performance degradation and frequent parallelism adjustment. As shown in Algorithm 3.2,
FLUID updates resources wi ← w′

i for trial ai at the end of current iteration only when it does not
lead to performance degradation.

In addition to resource usage change caused by job departure, some cluster schedulers [30] may
dynamically change resource allocation for fairness or efficiency. FLUID can handle such change by
triggering DynamicFluid when resources are updated.

3.5 FLUID Implementation

We implemented FLUID as an executor for Ray Tune [48]. In addition to the implementing
our execution algorithm, tuning algorithms in Tune were adapted to make use of the TrialGroup
interface, which translates to one extra function call per algorithm class when applicable, to signify
the creation of new TrialGroups.

In order to adjust training trials’ number of worker at runtime with lower overhead, we also
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Table 3.3: List of workloads for FLUID.

Task Base Model # of Arch. Params. # of Training Param. Target

CIFAR-10 AlexNet 3 4 Acc. ≥ 90%

WLM RNN 4 6 PPL ≤ 140

DCGAN CNN 0 2 Inception ≥ 5.2

implemented training elasticity technique similar to the one proposed by recent work [13].
One important input of the FLUID algorithm is the packing overhead measurement αi ∈

[
1, c

c−1

)
and distributed overhead measurement βi ∈

[
1, 1 + 1

d

)
. These numbers depend on many factors of

the training process and are affected by the hardware in use. It is an active field of research to predict
them given a particular configuration. In FLUID, instead of predicting, we use a trial-and-error
approach by measuring these numbers on real hardware. Leveraging the iterative nature of deep
learning training process, only a few iterations is enough to have reasonable measurements. FLUID

thus uses a small fraction of resources to profile current trials and reuse the result throughout the
whole tuning session.

3.6 Evaluation

We evaluate FLUID with a range of hyperparameter optimization algorithms, including
Grid/Random Search, PBT, Successive Halving, Hyperband, BOHB and ASHA [44, 47, 60, 78, 98,
103, 122]. Our evaluation shows the following key highlights:

• FLUID can speed up diverse hyperparameter tuning workloads around 10%–70%, while improve
cluster efficiency up to 10%–100%.

• FLUID can improve the trade-off between resource efficiency and hyperparameter searching
speed, and optimize both simultaneously.

• FLUID’s benefits are robust under different kinds of environment setup and training workloads.

3.6.1 Experiment Setup

Testbed We built our testbed on Chameleon Cloud [9]. Each node has an Intel Xeon Gold 6126
CPU with NVIDIA Quadro RTX 6000 GPU. The interconnection is 10G Ethernet.

Workloads We create our set of workloads (Table 3.3) using different deep learning tasks including
computer vision, natural language processing and adversarial learning. The CIFAR-10 task includes
the tuning of a variation of AlexNet on an image classification task maximizing accuracy; The
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Figure 3.6: GPU utilization of 4 algorithms on the CIFAR-10 task using FLUID, running to completion. Each
algorithm has 8 workers and each data point is averaged over a 30 seconds window.

WLM task tunes the training of a multi-layer Recurrent Neural Network (RNN) on the word-level
language modeling task minimizing perplexity (PPL); The DCGAN task tunes two multiple-layer
CNN network, creating a generative model on the MNIST dataset. The tuning target is maximizing
the inception score.

In all tasks, the tuned hyperparameters include training parameters like learning rate, batch size,
etc., as well as architectural parameters like number of CNN layers, size of layers, type of models,
etc.

Tuning algorithms We compare the performance of 5 hyperparameter tuning algorithms with
and without FLUID: PBT, Hyperband, ASHA, synchronous BOHB (SyncBOHB) and BOHB. These
algorithms include both synchronous stage-based strategies and asynchronous strategies, covering
most of the situation that may appear during hyperparameter tuning process, including stopping,
promotion and so on.

Metrics The improvement in hyperparameter tuning job makespan is our key metric. The
makespan is defined as the end-to-end time needed for a given problem to reach a certain metric
target. For example, the time needed to reach 90% accuracy for the CIFAR-10 task and the time
needed to reach 140 ppl for language models. We also measure resource utilization improvement to
indicate FLUID’s effort on improving resource usage.
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Figure 3.7: Time to reach target. Data averaged over 5 runs. Error bar represents standard deviation. PBT
on DCGAN did not finish in reasonable time and thus excluded from the report.
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Figure 3.8: Average utilization.

3.6.2 Macrobenchmarks

We first report the performance improvement of FLUID over 5 tuning algorithms on all three
tasks in Fig. 3.7. The average GPU utilization of those runs are reported in Fig. 3.8. In addition, we
report the utilization heatmap similarly as in Section 3.2.2 on the CIFAR-10 task in Fig. 3.6.

The benefit of FLUID varies over algorithms. We see a pattern that synchronous stage-based
strategies (SyncBOHB, Hyperband) can gain more benefit 30%–100% on job makespan and resource
usage with the help of FLUID due to underutilization of resources, while asynchronous strategies
(ASHA, BOHB), in spite of their original high resource utilization, see 10%–30% improvements.
PBT always has a constant number of trials running, so the benefit of FLUID is limited. But FLUID

can still help PBT to scale out to more concurrent trials, which improves the overall time to reach
target.

FLUID’s benefit comes from the following: a) Resource under-utilization due to mismatch be-
tween training trials and available resources over time. b) Stragglers due to algorithm’s synchronous
nature. c) Insufficient concurrency when the number of running trials is tied to the number of
workers.

The rest of this section gives detailed insights into the improvement of synchronous stage-based
tuning algorithms and fully asynchronous algorithms. We then move on to microbenchmarks in
which we break down the improvement of individual techniques.
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Figure 3.9: Validation accuracy over time for SyncBOHB w/ and w/o FLUID on the CIFAR-10 task. Data
averaged over 5 runs.

3.6.2.1 Benefit on Synchronous Stage-based Strategy

In Fig. 3.9, we measure the best accuracy over time for synchronous stage-based strategy BOHB
using a different number of workers. Our results show that the tuning speed up is not in proportion
to the increase of available workers. However, with the help of FLUID, we are able to achieve better
scalability. The experiment was done on the CIFAR-10 task using SyncBOHB on 4, 8, 16 GPUs
respectively.

3.6.2.2 Benefit on Fully Asynchronous Strategy

In Fig. 3.10, we measure the max accuracy over time for fully asynchronous strategy ASHA using
4, 8, 16 GPU workers respectively. Our results show that the performance of fully asynchronous
strategy largely depends on the number of workers. And in this particular case, 8 workers works
the best. With the help of FLUID, we can easily set the concurrency for ASHA regardless of the
number of physical workers, because FLUID is able to adjust the number of concurrent running
trials. ASHA can therefore achieve the optimal balance. As a result, with FLUID, we are able to
achieve similar performance as 8 GPUs using only 4 or better performance with more GPUs.

3.6.3 Microbenchmarks

3.6.3.1 Benefit of Intra-GPU Sharing

In Fig. 3.11a, we compared the performance of hyperparameter optimization algorithms with and
without MPS packing. We show the speed-up of FLUID with MPS as the only enabled mechanism,
compared to the original algorithm. For the sake of discussion, we choose Grid Search in this
experiment to avoid influences from other factors.
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Figure 3.11: Speed-up break down of intra- and inter-GPU training.

Our results show that MPS Packing provides a significant performance increase especially on
tuning relatively large TrialGroup with small model size. We experiment with Grid Search on three
training workloads from small to large, and for each training workloads, we evaluate 9, 27, 81
configurations on 8 GPUs.

3.6.3.2 Benefit of Inter-GPU Training

Similarly, we enable only inter-GPU mechanism in FLUID, and compare the performance gain
using the Grid Search. With 8 GPU workers, we limit the trial number to smaller than that to
explicitly trigger the inter-GPU distributed training. Our results show that inter-GPU distributed
training provides a significant performance increase especially on tuning relatively small TrialGroup
with large model size. The results are shown in Fig. 3.11b. FLUID effectively utilizes the idle
distributed resources and achieve tuning speed up especially when the gap between number of trials
and number of workers is large.

46



Small Medium Large
Number of Trials

0
1
2
3

Sp
ee

d 
U

p CIFAR-10 WLM

Figure 3.12: Relative speed-up given trial runtime variance.

3.6.4 Sensitivity Analysis

3.6.4.1 Effect of Runtime Variance

In Fig. 3.12, we show how FLUID performs with different trial runtime variance. Our results show
that FLUID can achieve better speed up or resource utilization improvement especially when trials’
runtime variance is large, which can be attributed to DynamicFluid which adjusts resources
at runtime. We experiment with Grid Search on tuning different training workloads, and for each
training workloads, we evaluate 9 configurations with different degree of job runtime variance on 8
GPUs.

3.6.4.2 Effect of Packing Overhead

By manually modify tasks to include controllable artificial packing overhead, we are able to
assess FLUID’s reaction under different packing conditions.

The results reported in Fig. 3.13a shows the speed-up ratio of completion time of Grid Search
with FLUID, with 1.5, 2, 10 times packing overhead, relative to those without using FLUID. The
experiment is given 27 hyperparameter configurations and has 8 workers in total.

When the overhead is relatively small, FLUID still sees positive marginal benefit to packing. With
10x overhead, the intra-GPU packing is effectively disabled and FLUID’s performance becomes the
same as the original algorithm.

3.6.4.3 Effect of Scaling Overhead

In Fig. 3.13b, we show how FLUID reacts across various scaling overhead. Our results show
that FLUID can achieve different degrees of speed-up under different scaling overhead by detecting
model’s scalability. We experiment with Grid Search on scaling different training workloads, and
for each training workloads, we evaluate 3 configurations on 4, 8, 16 GPUs. In this experiment we
disable the intra-GPU packing mechanism. Going from 4 GPUs to 8 gains sizable performance
benefit across all 3 tasks. But CIFAR-10 and DCGAN does not benefit from adding more GPUs. In
fact, the added GPUs are not used at all, because FLUID detects there will be high scaling overhead
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Figure 3.13: The speed-up of FLUID with Grid Search with varying packing and scaling overhead.

associated if these workloads scaling beyond enough. In real settings, those idle GPUs will be used
by other trials.

3.7 Conclusion

FLUID is a generic hyperparameter tuning execution engine that decouples execution logic from
tuning algorithms, with the high-level TrialGroup interface for tuning algorithms to express their
execution needs. FLUID can boost the performance of diverse hyperparameter tuning solutions.
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CHAPTER 4

ORLOJ: Predictably Serving Unpredictable DNNs

4.1 Introduction

The underlying serving systems [7, 15, 38, 58, 66] that handle DL inference requests aim to
maximize throughput while reducing SLO misses. Due to the high throughput and low latency
requirements of DNN-dependent applications and the large computation needs of DNN inference
requests, modern serving systems often rely on expensive GPUs to serve many requests in parallel
by batching them together [7]. All the requests in the same batch experience the same request
execution time. This works well because the state-of-the-art DNN serving systems [7, 38, 58] have
so far assumed data-independence of incoming requests; i.e., the amount of computation required
for each request is the same regardless of the input data. For example, for an image classification
model, whether the input image contains a dog or a cat, the model performs exactly the same
computation to derive the answer. Consequently, the request execution time of a model can be
accurately profiled and used to precisely schedule inference requests [7].

We observe that the recent rise of a new class of dynamic DNNs [2, 72] challenges this
assumption (Section 4.2.2). Unlike static DNNs, dynamic DNNs can adapt their structures or
parameters to the input during inference and are thus inherently data-dependent. For example,
SkipNet [54] dynamically skips layers depending on the input sample; RDI-Nets [8] allows for
each input to adaptively choose one of the multiple output layers to output its prediction; and
various NLP models exhibit recurrent structures or loops [14, 17, 29, 32, 35, 42]. The result is
unpredictable execution times for individual requests. Because request execution times come from
a distribution instead of being a single constant, existing systems that use a single mean or tail
execution time from historical data to plan ahead perform poorly [7, 38]. They fail to capture
the high variance in incoming requests’ execution times, and when they batch multiple requests
together, one long request in the batch slows down many short ones, leading to large number of
SLO misses (Section 4.2.3). Serving systems that do not assume data independence [5, 15, 58] and
instead perform reactive adjustment to dynamically provision workers at runtime perform even
worse, because they treat SLOs as long-term reactive targets and cannot effectively curtail tail
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latency, especially under stringent SLO constraints [7].
In this paper, we present ORLOJ1, a distribution-aware dynamic DNN serving system, to provide

high throughput and low SLO misses. ORLOJ also takes a plan-ahead approach, but unlike recent
solutions, it uses a random variable to capture the variance in request execution times of dynamic
DNNs, rather than assuming a constant mean or tail latency for all requests. This gives ORLOJ more
flexibility to account for uncertainty in execution times when batching them together to achieve
high throughput.

Going beyond prior distribution-based solutions for cluster scheduling and query processing [25,
50, 97], ORLOJ addresses two challenges unique to model serving. First, batching is vital to achieve
high throughput, but it also affects execution times, as all requests in the same batch start and finish
at the same time, regardless of their individual execution times. ORLOJ proposes a batch-aware
priority score that derives batch execution time distributions given those of individual requests, and
uses the score to guide its batching decisions. Second, because a model can receive requests from
different applications, the joint distribution can be multimodal with even higher variance. To this
end, ORLOJ tags each request with its originating application and relies on probability theory to
accurately estimate batch execution times even when execution times of requests in the same batch
follow different distributions.

We have implemented and evaluated ORLOJ using production traces and a large range of possible
input execution time distributions (Section 4.5). In comparison to Clockwork [7], Nexus [38], and
Clipper [58], ORLOJ can improve the finish rate when serving dynamic DNNs by 51–80% under
tight SLO constraints, and over 100% under more relaxed SLO settings. For well-studied static
DNN workloads, ORLOJ keeps comparable performance with the state-of-the-art.

Overall, we make the following contributions in this paper:

• To the best of our knowledge, ORLOJ is the first system to systematically analyze the inference
performance of dynamic DNNs and associated challenges.

• We present a batch-aware distribution-based scheduling algorithm to handle batching and
multimodal distributions in dynamic DNN serving systems.

• ORLOJ can handle both static and dynamic workloads with high throughput and tight SLO
guarantees.

4.2 Background and Motivation

In this section, we overview model serving systems and the recent rise of dynamic DNNs, and
then move on to the limitations of existing state-of-the-art solutions when serving such dynamic
networks.

1Orloj (pronounced /OrlOj/) means astronomical clock.
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4.2.1 Model Serving

Increasingly more models are deployed on the critical paths of online interactive services [39].
They may even comprise dependent computations across multiple models, forming pipelines [5]. For
example, video analytics pipelines first detect certain objects from each image and then recognize
individual objects [38, 74]. A serving system in the backend handles inference requests for individ-
ual models by running a model replica on the input, usually providing APIs for specific tasks such
as detection, translation, or prediction [133, 134]. Similar to other datacenter services [77], it multi-
plexes workloads of different applications and load balances requests across multiple workers [15,
58].

Lifecycle of Serving Inference Requests Figure 4.1 illustrates the lifecycle of (a batch of)
inference requests in a worker of such serving systems. 1 Incoming requests first go through a
priority queue, usually ordered by deadline, but it may vary depending on a system’s optimization
goal. 2 The dynamic batcher will extract requests from the queue to create batches, while respecting
the deadline requirement of the requests at the top of the queue. 3 The size of the formed batch
will be queried against historical profiling data to decide an estimated batch latency. 4 This single
latency value will be used in the scheduler to derive an execution plan on the worker. Of course,
there is not exactly one way to divide work between the stages shown here, and there may be
additional interactions between various components. For example, Nexus [38] uses a pre-computed
plan ahead of time, while Clockwork [7] employs multiple “Batch Queues” to select the best batch
size at runtime. Nevertheless, the active state in these systems depends on a single, point estimation

of the batch latency, oblivious to individual request-specific data at runtime.
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Figure 4.2: Inference request execution time varies widely in dynamic CV and NLP models. (Inception V3
and ResNet are shown for comparison.)

Batching and the Throughput-Latency Tradeoff To achieve high throughput, model serving
systems [5, 7, 15, 38, 58] rely on batching multiple requests. Requests arriving within a specific
time window are batched together to ensure that worker resources do not idle [38, 58]. There is,
however, a tradeoff in picking a batch size. While a larger batch size may increase throughput,
it also means longer time window; the latter can lead to higher (tail) latency and missed SLOs.
In contrast, a smaller batch size can result in underutilized hardware. Existing solutions focus on
finding the sweet spot to reduce SLO misses, typically for each model individually [7, 15, 38, 58],
while pipeline-aware solutions break down the end-to-end SLO into smaller pieces [5]. The overall
objective of a model serving system can, therefore, be described as maximize throughput while

reducing SLO misses.

4.2.2 Dynamic DNNs

Point estimations in existing solutions is sufficient only because they focus on static DNNs (e.g.,
CNNs), where each request roughly takes the same amount of time and is highly predictable [7].
However, we observe that dynamic DNNs are becoming increasingly more popular in recent years [1,
2]. Dynamic DNNs adapt their structures or parameters to different inputs, leading to notable
advantages in terms of accuracy, computational efficiency, adaptiveness, etc., compared to static
DNNs that have fixed computational graphs and parameters at the inference stage [2]. Examples of
dynamic DNNs include various language models [21, 72] as well as early-exit techniques used in
emerging CNN models [54].

Observation: Dynamic DNN Inference is Unpredictable As the name suggests, the computation
requirement of inference requests to a dynamic DNN model can be dynamic. It naturally follows that
the request execution time is no longer constant for different inputs anymore. We report inference
execution time histograms for four common dynamic networks (SkipNet [54], RDI-Nets [8] for
image recognition, GPT [42], BART [29] for NLP) in Fig. 4.2. For comparison, we also include the
execution time for two common static CV models: Inception V3 [88] and ResNet [85]. Note that
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Figure 4.3: Performance of existing model serving solutions for dynamic DNNs. Similar results hold for
more diverse distributions as well (Section 4.5).

the absolute number of requests in these histograms is less important, as it merely represents the
testing dataset we used. However, the existence of a large range of values in the x-axis reflects the
possibility of different execution times.

For the image recognition models, there are a few distinct clustered ranges, which represent
multiple code paths with different execution times, created by skipping/choosing parts of the model.
Similar observations hold for NLP models too. However, instead of having distinct code paths,
execution time for NLP models falls in a continuous range, reflecting the impact of the input
sequence length on execution time. Nevertheless, it can be seen that the difference in inference
latency can be as large as 10×, with some requests finishing in 10ms while many others taking
more than 100ms.

Challenges in Serving Dynamic DNNs The presence of a large variance in execution times of
dynamic DNNs as well as the shared nature of model-serving-as-a-service systems lead to two key
challenges when serving dynamic DNNs.

1. Effective batching: Batching is a must for high throughput and worker utilization. However,
all requests in the same batch start and finish at the same time, regardless of their individual
execution times. When requests in the same batch vary widely in their execution times, the
longest one becomes the straggler and slows down the entire batch.

2. Handling multimodal distribution: A model built for a specific task (e.g., classification,
translation, etc.), is often used by multiple applications, especially when it is exposed as
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a service. As a result, input requests and their corresponding execution times often follow
different application-specific distributions. The combined multimodal distribution has even
higher variance, which can introduce even more stragglers during batching.

4.2.3 Limitations of Existing Solutions

Indeed, state-of-the-art model serving solutions [7, 38, 58], which have been optimized for
static DNNs, suffer from high SLO violation rates when applied to dynamic DNNs. Fig. 4.3 shows
the finish rates of three recent model serving systems when the input execution time follows
various distributions, under different SLO settings. For each case, the Probability Distribution
Function (PDF) of the input execution times is shown to the left. For all cases, the incoming rate
trace is derived from the Microsoft Azure Functions workload trace [16] similar to Clockwork [7].
Section 4.5 provides more details on the methodology.

The high-level takeaway is that all these systems have undesirable performance. As most batches
contain both long requests and short ones, the execution time for the whole batch is almost always
longer than the average. This causes Clockwork [7] to often mispredict a batch’s latency, which
in turn leads to frequent time-out error in its scheduler, causing the subsequent batch to fail. This
explains its close-to-half finish rate. Nexus [38] pre-computes an execution plan ahead of time
using the average execution time, but due to the variance in input execution, it cannot reach a stable
state. Clipper [58] monitors request execution time reactively, but it cannot keep up under tight
SLO settings. Fundamentally, we observe the effect of existing solutions failing to batch requests
effectively.

Distribution-Based Schedulers Existing distribution-based schedulers such as 3Sigma [50] or
Shepherd score [97], proposed for cluster scheduling and query processing respectively, do not fare
well either. They do not consider sub-second level latency constraints or inference serving-specific
challenges like batching and lack of preemption.

4.3 ORLOJ Overview

ORLOJ is an inference serving system that serves inference requests to a dynamic DNN model
while maximizing the number of requests that can be served within the SLO. In this section, we
provide an overview of how ORLOJ fits in the inference life cycle of dynamic DNNs to help the
reader follow the subsequent sections.
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Figure 4.4: ORLOJ architecture.

4.3.1 Problem Statement

Each inference request in ORLOJ is defined by its release time and deadline (release time plus
SLO), and has a minimum execution time that is measured when the request is executed alone.
Multiple applications with diverse use cases and corresponding input distributions send requests to
the same dynamic DNN model served by ORLOJ. Each GPU worker processes these requests one
batch at a time. Note that, to scale out to a pool of workers in a cluster setting, different models and
their replicas can use ORLOJ in parallel.

Given a set of pending inference requests, the ORLOJ scheduler must decide which subset of

them should be included in the next batch submitted to the GPU to maximize throughput while
reducing SLO misses, under the following constraints:

• Partial information: the execution time of a request, and thus a batch, is unknown to the
scheduler. However, its probabilistic distribution can be learned from historical data.

• Non-preemption: inference execution of a batch cannot be preempted after it is submitted to
the GPU.

4.3.2 ORLOJ Architecture

Unlike existing model serving systems, ORLOJ represents the request execution time of a
dynamic DNN model as a random variable, which is described using an empirical distribution over
a time window. Thereafter, instead of using simply the mean or the max of the population, it makes
scheduling decisions using the knowledge of the entire distribution.

ORLOJ addresses the challenges arising from multimodal distribution and effective batching by
proposing a time-varying priority score (detailed in Section 4.4) by considering a batch’s combined

55



distribution. It determines this priority score for all requests that potentially can be put together to
form a batch, and then it performs priority-based scheduling.

Inference Lifecycle As shown in Fig. 4.4, ORLOJ follows the same overall process as other model
serving systems, but with updated scheduling steps 2 and 3 in Fig. 4.1:

2a incoming requests are tagged per application, and the application-specific execution time
distribution is associated with each request using the information collected by ORLOJ’s online
profiler;

2b execution time distributions from requests are combined to derive estimated batch execution
time (latency);

2c next, the priority score for all requests are calculated using the estimated request latency,
deadlines and the current time as input;

3a ORLOJ calculates estimated batch latency for all potential batch sizes;

3b the scheduler loop selects a feasible batch size to actually create the batch.

After obtaining a batch, ORLOJ submits it to the worker for execution, following the same step 4
as existing model serving systems.

Next, we elaborate on ORLOJ’s scheduling loop and its batch handling.

Batch Size Selection It is not always possible to execute requests using the maximum possible
batch size, because some requests may have tighter deadlines than others and waiting for the
maximum batch size can take too long.

ORLOJ tracks the set of feasible batch sizes for each request. These sets of feasible batch sizes
are updated over time. When the deadline is approaching, batch sizes that are too large to meet the
deadline will be dropped, so the corresponding request will only be considered for small batches. In
addition, for each batch size, ORLOJ keeps note of the earliest deadline for requests suitable for the
batch size. The batch size with the overall earliest deadline will be chosen by the scheduler to lazily
create a batch and send to the worker for execution.

Algorithm 4.1 shows ORLOJ’s scheduling loop, which implements the above batch size selection
scheme (Line 10 to Line 22). It is worth noting that ORLOJ uses a separate priority queue Qbs for
each batch size bs . The earliest deadline for requests in Qbs is tracked by an additional Fibonacci
heap to allow online deletion.

Batch Priority The highest priority batch is the one to be scheduled next, and it depends on
the priorities of individual requests. ORLOJ uses a time-varying score for request priority, i.e., the
priority of a request changes over time. Naively sorting the pending requests’ queue in O(n log n)

time for each scheduling iteration in the hot path is inefficient. Instead, we use an O(log2 n) priority
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Algorithm 4.1: ORLOJ Scheduler Iteration
Input:
R ← set of pending requests,
t← current time,
S ← set of batch sizes suported by the model,
Qbs ← set of requests viable for batch size bs ,
Dr ← deadline of request r,
DQbs

← min{Dr|r ∈ Qbs},
Output: Batch B ⊆ R
▷ Update priority scores (Section 4.4.4)

1 U ← ∅ ▷ requests needs to be updated
2 if need reset base time then
3 reset base time
4 U ← R
5 for r ∈ R do
6 if t ≥ Milestone(r) then
7 U ← U ∪ {r}

8 for r ∈ U , bs ∈ S do
9 update priority score of r in Qbs

▷ Drop requests from queue if too late
10 for bs ∈ S, r ∈ Qbs ordered by Dr do
11 if t+ EstimateBatchLatency(r, bs) > Dr then
12 Qbs ← Qbs \ {r}
13 if bs is the last feasible batch size for r then
14 Mark r as timed out

▷ Determine candidate batch size
15 candidate ← nil
16 for bs ordered by (DQbs

, bs) in descending order do
17 if |Qbs | ≥ bs then
18 candidate ← bs
19 break

20 if candidate is nil then
21 return

▷ Select top ones ordered by ORLOJ score
22 return B ← PopBatch(Qcandidate)

queue [97, 108]. We also address issues related to floating-point overflow when using such queue in
practice (Section 4.4.4).

Before proceeding to the details of ORLOJ’s algorithm in the next section, we highlight a few
other components in ORLOJ.
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Per-Application Tracking As shown in 2a , ORLOJ associates each request an execution time
distribution using application-specific historical data. First, it is possible to distinguish requests
from application as there are usually certain application IDs involved when the model is exposed
as a service. Second, such tracking is also necessary, because applications may solve problems in
different domains despite using the model for the same task. As a result, input requests execution
times often follow different distributions. While ORLOJ does not assume any pre-defined distribution
for its input and only tracks empirical distributions, the combined multimodal distribution has
higher variance. This hurts scheduling abilities even if the scheduler has perfect information of its
distribution, because the scheduler has to account for different possibilities when scheduling.

Long-Term Feedback Loop Incoming requests can change their arrival pattern and volume over
time, either due to the diurnal nature of the service or due to shifts in general interests. ORLOJ

therefore needs to track per application execution time data for requests over time. However,
our calculation needs the execution time for requests when they execute alone, which cannot be
guaranteed if simply measuring the time online. Instead, the profiler in ORLOJ takes an asynchronous
approach. Finished requests are sampled and send to the profiler to evaluate individually. The
execution time data will then be asynchronously picked up and accumulated by the scheduler
periodically, completely off the critical path. In order to adapt to drifts in the input, ORLOJ resets
its profiling memory every once a while. The exact window is configurable and is determined by
domain knowledge.

4.4 Batch-Aware Distribution-Based Scheduling

At its core, ORLOJ is a priority-based scheduler where the priorities of individual requests are
determined using a cost function that captures the distribution of request execution times. Highest
priority requests are then put in a batch to achieve the maximum level of parallelism, which is then
submitted to the worker. To achieve this, ORLOJ relies on probability theory to accurately estimate
request execution times even when requests in the same batch affect each other and their executions
are no longer independent.

In this section, after a brief introduction of cost function and the definition of priority on a single
request (Section 4.4.1), we dive into the derivation of a vital term in the batch-aware priority score –
batch execution time, given request execution time following the same distribution (Section 4.4.2.1)
and different distributions (Section 4.4.2.2). Finally, we discuss how to break the cyclic dependency
between batch formation and priority score computation (Section 4.4.3), as well as floating-point
overflow handling when applying the algorithm in practice (Section 4.4.4).
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4.4.1 Preliminaries

Cost Function Instead of directly optimizing for metrics such as average/tail latency and through-
put, we model SLO deadlines using a cost function that captures the opportunity cost differences
between two important scheduling decisions. On the one hand, executing a request involves costs for
resource usage (e.g., server utilization) and opportunity cost (e.g., it may postpone other requests).
On the other hand, missing deadline may have a monetary penalty according to the SLO. Throughout
the rest of the paper, we use SLO cost functions similar to that in Fig. 4.5. Meaning, for requests
arriving at time T with deadline D, there is a penalty c for missing that deadline.

Scheduler Objective The objective of our scheduler is to minimize the overall cost, or as we set
out to do, maximize the number of requests that finish within corresponding deadlines. Selecting a
request to put into the next batch reduces the expected cost that would have been incurred if it were
delayed. Therefore, our goal is to find requests for which the ratio of expected cost reductions are
the greatest.

Background: Priority of a Single Request Consider a request whose execution time L is a
random variable and its cost function is C(t). Cost reduction for this request boils down to the
difference between the costs of two scheduler decisions: Cnow(t), including the request in the next
batch and executing it right away, or Cdelay(t), selecting another one and thus delaying this request.

Its priority p(t) can thus be defined as:

p(t) =
1

E[L]
(E[Cdelay(t)]− E[Cnow(t)]) (4.1)

Note that Cnow(t) = C(t+ L) is a random variable, as well as Cdelay(t) = C(t+ τ + L) (τ is
the anticipated delay).

Given that C(t) has the same shape as in Fig. 4.5, and assuming τ follow an exponential
distribution with parameter b,1 prior work [97] has shown that, when L can be described using a
histogram, p(t) can be derived by computing on each histogram bin separately and combining the
results:

1The probability that a request will be selected for execution, given that it is already queued, does not change with
time unless there is a change in the state of the queue. Therefore, the anticipated delay is an exponential [125].
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where pi(t) is the score for the i-th bin in the histogram with range [l
(i)
1 , l

(i)
2 ) and frequency h. We

represent the deadline for the request in consideration using D, with c being the cost when missing
the deadline.

4.4.2 Batch Latency Estimation

We still need to find out the distribution of L, as well as E[L]. As we discussed in Section 4.2.1,
the scheduler must schedule batches of requests to ensure high throughput. This is an important
detail, because up until now, we assumed the execution time L as an intrinsic property of the request,
depending solely on the request itself. However, under the batch execution model, it is no longer the
case: requests do not execute alone, and they affect each other’s execution time in the same batch.

The purpose of the term 1
E[L] in Eq. (4.1) is to account for the worker time usage of the request. As

such, to accurately represent a request’s potential worker time usage during batching, L must now
be the execution time of the whole batch the request is in.

When the request execution time itself is a constant (i.e., in static DNN scenarios), this is
trivial: requests are homogeneous; so is the batch. It is thus possible to profile the batch execution
time for all possible batch sizes ahead of time [7]. In our case, however, not only are requests’
execution times random variables, but a batch may also contain requests from different duration

distributions. Next, we describe how ORLOJ handles batches of requests following the same or
different distribution separately.

4.4.2.1 Requests in Batch Follow the Same Distribution

For a batch B of k requests, if requests are of the same duration l, the batch execution time lB

could be fairly assumed (within reasonable range) as
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lB = c0 + c1kl (4.3)

where c0 and c1 are constant parameters specific to a model and hardware.
In the case of dynamic models, requests in a batch are padded to the largest one and therefore, it

can be viewed as if the whole batch’s requests have the same length:

l = max
r∈B

lr (4.4)

Then the execution time of B becomes a new random variable LB. With Lr as the random
variable of request r’s execution time, we have

E[LB] = c0 + c1k E[max
r∈B

lr]

= c0 + c1k

∫ ∞

0

Lr(k)fLr(k)
(l) dl

(4.5)

where Lr(k) is Lr’s max order statistics over k samples, and fLr(k)
(l) is its PDF. While it is possible

to directly find out fLr(k)
(l), it is easier to go through the Cumulative Distribution Function (CDF)

of Lr(k) first, denoted as FLr(k)
(l), which is related to the CDF of Lr via a simple equation:

FLr(k)
(l) = [FLr(l)]

k (4.6)

And we can obtain FLr(l) from Lr’s histogram. Note that while it is possible to directly use
FLr(k)

(l) to calculate E[maxr∈B lr], the result would be far too inaccurate, as we only have a discrete
histogram to start with.

4.4.2.2 Requests in Batch Follow Different Distributions

Taking one step further, if requests ri(i = 1, 2, . . . , k) in B come from different distributions,
the problem becomes finding the max order statistics Lr(k) for k random variables Lri that are
independent, but not necessarily identically distributed.

Let Fi and fi be the CDF and PDF for Lri , respectively, and define F s, f s as

F s =
1

ns

∑
i∈s

Fi

f s =
1

ns

∑
i∈s

fi

(4.7)

where s is a subset of requests (s ⊆ B) with ns ≥ 1 elements. The PDF of the maximum (i.e. k-th
order statistics) of these k variables f(k) is given by Özbey et al. [33]:
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Figure 4.6: Toy example of batch execution time estimation and priority score computation.

fLr(k)
=

k∑
κ=1

(−1)k−κκ
k

k!

∑
ns=κ

k[F s]k−1f s (4.8)

Here
∑

ns=κ means summation over all possible s ⊆ B where ns = κ.
With fLr(k)

, we can describe the PDF of LB using Eq. (4.3)

fLB
(l) = fLr(k)

(
l − c0
c1k

) (4.9)

Similarly, by plugging Eq. (4.8) into Eq. (4.5), we can also find out E[LB]. We now have
complete ingredients to compute the priority score p(t).

A Toy Example Let us use an example to illustrate how p(t) changes over time t, to put the above
discussed equations into perspective.

Consider two types of requests in total, whose execution time follow two different distributions,
as shown in Fig. 4.6a. While they all have the same mean execution time l, the first distribution has
higher probability of finishing exactly at l, and the second one may either finish very early, or very
late. Further, assuming that the batch size in consideration is 2 and there is no overhead for batching
(i.e. c0 = 0, c1k = 1).

Figure 4.6b shows the histogram of LB that is derived using Eq. (4.9). As expected, the execution
time for the whole batch is skewed to the right, because it is not possible for the shorter execution
time in the first distribution to ever become the whole batch’s execution time.

62



Figure 4.6c illustrates the priority score changing over time for three requests r1, r2, r3 entering
the system one after another. At time T , r1 and r2 are the most urgent and should be executed. As
the deadline is approaching, r1 and r3 become the top ones at time T ′. Finally, r2 and r3 would have
been selected as the score for r1 drops to 0.

4.4.3 Batch Formation

The last step is forming the batch, which must address a key challenge: the circular dependency
between priority calculation and batch formation. E[L] is used in the priority calculation, so the
list of possible distributions must be known. However, the batch is determined after priority is
computed, and thus it is impossible to know what other requests are in the batch. Assuming that the
queue most likely contain requests from all types of applications the model is serving, we therefore
always use all execution time distributions associated with the model to compute E[L]. As this list
of distributions is available ahead of time, and only depends on the batch size, this approach has the
additional benefit that the relatively heavy computation can be moved away from the critical path.

4.4.4 Efficient Computation

As shown before, the priority score for a request varies depending on the remaining time before
its deadline. It thus has to be re-computed continuously. Combined with the effort to re-sort all
pending requests, the naive implementation is not scalable to large number of requests.

It is possible to convert the problem to dynamic convex hull querying, which can achieve
O(log2 n) complexity for each reschedule, where n is the number of pending requests [108]. The
dynamic convex hull problem is defined by rewrite each request’s priority Eq. (4.2) in the form of
pi(t) = αebt + β, and consider each request to be on a 2D plane with the coordinate (α, β). Then,
the first point on the convex hull hit by affine lines of slope −ebt corresponds to the request with the
highest score at time t.

This way, the problem is divided into one time-invariant part where the relative positions of re-
quests only change a few times (when the relationship between t,D, l

(i)
1 , l

(i)
2 changes, corresponding

to the Milestone function in Algorithm 4.1), and one time-varying part – querying the convex
hull with a line. Therefore, the priority queue can be implemented by maintaining a convex hull
containing all pending requests.

However, while querying a static convex hull is trivial, our convex hull changes over time as
requests come and go. In ORLOJ, we use the convex hull algorithm proposed by Overmars and
von Leeuwen [127], which supports dynamically adding/removing points on the convex hull in
O(log2 n) complexity and can be queried with a line in O(1) time.
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Overflow Handling of Exponential Values While the theory works out, there is still a non-trivial
challenge that we faced when implementing the priority score in practice.

In the original Eq. (4.2), the score only depends on D − t which is the remaining time before
the deadline, and is bounded assuming requests too far in the future should not enter the system.
However, the clever 2D plane mapping breaks the component into e−bD and ebt individually. Because
D and t can be large timestamps (usually represented as elapsed seconds/milliseconds since UNIX
epoch), this leads to floating-point overflow when the system tries to compute and store these very
large exponential values.

We compensate this by using relative timestamps for D and t, and then choose b wisely. If the
time resolution is in milliseconds, and b = 10−4, we can sustain about 1000 s of scheduling before
overflows of 64-bit floating-point numbers and having to reset the relative timestamps’ reference
point and thus re-calculate everything. Note that the exact value of b does not matter because it does
not change the relative ordering of requests as long as it is kept constant.

4.5 Evaluation

We evaluate ORLOJ against three existing serving systems (Clipper [58], Nexus [38], and
Clockwork [7]). Our primary findings are as follows:

• Compared to the state-of-the-art, ORLOJ can improve the finish rate when serving dynamic
DNNs by 51–80% under extremely tight SLO constraints, or over 100% under more relaxed
SLO settings (Section 4.5.3). At the same time, ORLOJ keeps comparable performance when
serving traditional static models (Section 4.5.4).

• ORLOJ can sustain thousands of pending requests in its priority queue with less than 0.5 ms
per-request insertion time (Section 4.5.5).

• Our choice of b, the anticipated delay distribution parameter (Section 4.4.1) in the priority score
is safe, as ORLOJ is not sensitive to the value of b (Section 4.5.6).

• ORLOJ has minimal overheads and can manage requests with execution time varying in ranges
as low as 2 ms–20 ms (Section 4.5.7).

4.5.1 ORLOJ Implementation

We implemented ORLOJ on top of Clockwork [7], a state-of-the-art serving system with fewer
than 4000 lines of C++ code. One-fourth of the new code is for implementing the dynamic convex
hull data structure, as there is no established library available for solving the dynamic convex hull
problem. Specifically, we implemented the inner concatenate queue as a 2–3 tree extending from
the left-leaning-red-black-tree [115, 128].

64



4.5.2 Experimental Methodology

Testbed We built our testbed on Chameleon Cloud [9]. The host has 2 Intel Xeon Gold 6230
CPUs with NVIDIA V100 GPU. In order to have stable results, we fix the GPU clock speed to its
maximum 1380 MHz and memory clock speed to 877 MHz.

We use Ubuntu 20.04 as the base OS environment with the latest NVIDIA GPU driver. We use
CUDA versions matching the published original source code, which means CUDA 11.1.1 with
CuDNN 8 for Clockwork and ORLOJ, CUDA 10.0 with CuDNN 7 for Nexus. For Clipper, its latest
commit 9f25e3f is used.

During experiments, each evaluated system’s server is deployed on the host. Clockwork and
ORLOJ additionally have their serving threads set to high-priority and pinned to physical cores as
per Clockwork’s host setup instructions. In addition, the model is modified to allow us to explicitly
control its execution time via input for the purpose of evaluation.

An open loop (no wait for requests completion before issuing the next one) client is used to
drive all experiments on the same host to minimize the impact of networking.

Input Trace Similar to workload traces for static models, the request incoming rate trace deter-
mines how fast requests coming in and needs to match the system’s load. Same as Clockwork’s
evaluation, we adapt the Azure trace [16], which is published by Microsoft for lambda functions.
The trace was scaled down such that the incoming rate matches the system load. The incoming rate
trace is kept the same across all experiments.

Request Execution Time Distribution Unlike a single number for one model/dataset combination
in evaluations in static serving systems, we need a full distribution. We group the model’s associated
dataset into short-running and relatively long-running requests (or more groups in case of higher
modality), then randomly choose from them to get a mixture of both. To get a fair comparison, the
generation is done once among different runs, we then record the arrival time and the input, which
will be replayed for subsequent runs.

Real World Dataset We evaluate ORLOJ on a set of real world learning tasks covering both CV
ones like image classification, and NLP ones including chatbot, summarization and translation
(Table 4.1). For each workload, the input execution time distribution is determined according to the
above-mentioned method, and the P99 of real execution time used to determine SLO is reported in
the table.

Metrics We focus on the finish rate, which is defined as the ratio of the number of requests
finished in time to the total number of requests. We assume that the SLO is set to a reasonable
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Table 4.1: List of workloads for ORLOJ.

Task Model Dataset Mean Exec. (ms) P99 Exec. (ms)

Image classification RDI-Nets [8] CIFAR [113] 683.15 2667.54
Image classification SkipNet [54] ImageNet [94] 3.24 5.56

Chatbot Blenderbot [14] convAI [22] 200.39 242.27
Chatbot Blenderbot Cornell [109] 203.22 247.04
Chatbot GPT [42] convAI 79.47 143.40
Chatbot GPT Cornell 94.84 161.69

Summarization BART [29] CNN [69] 774.66 1101.99
Summarization T5 [35] CNN 552.91 797.28

Translation FSMT [32] WMT [43] 189.30 319.31
Translation mBART [17] WMT 432.38 729.87

value manually given historical data, similar to serving static models. Using the P99 tail of all input
requests’ real execution time as a measurement, we vary the SLO to be multiples of P99 for most
our experiments.

4.5.3 Improvements for Dynamic Workloads

Real World Dataset We report representative cases in Fig. 4.7, while the complete results can
be found in Appendix C.1. In most workloads, existing systems can barely make it due to the
mixture of long and short requests which rarely match the mean execution time those systems use
for scheduling. For RDI-Nets/CIFAR, BART/CNN and GPT/Cornell, ORLOJ can reach near 100%
finish rate with sufficient SLO settings. When requests become extremely short (e.g., Fig. 4.7c),
none of the system can finish many requests due to the too tight latency requirement. However,
ORLOJ still manages to finish more requests than others.

Different Distributions We then evaluate ORLOJ’s performance under more diverse distributions
using the same BART model and with a synthesized dataset to control execution times.

In Fig. 4.8, we increase the number of modalities of the distribution to simulate the effect of
multiple applications. With the number of modalities increases, the variation in execution time
increases. ORLOJ keeps relatively good finish rate and see performance gain as high as 2×. The
result is consistent with even higher modalities, and we report additional results for up to 8 modals
in Appendix C.1.

The distributions in Fig. 4.9 are the same except for mirrored inequal peak locations. However,
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(a) Image classification/RDI-Nets/CIFAR
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(b) Summarization/BART/CNN
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(c) Image classification/SkipNet/ImageNet
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(d) Chatbot/GPT/Cornell

Figure 4.7: ORLOJ performance on real world tasks. Error bars represent standard deviation across 5 runs.

Clipper and Nexus suffer more in Fig. 4.9a because exceptional longer than expected requests are
definitely timed out while exceptional shorter than expected requests can still meet the deadline.

Figure 4.10 extends on Fig. 4.8b, whose input request execution time distribution is generated
with σ = 1, and explores the effect of smaller (σ = 0.5) and larger (σ = 1) values. Larger σ means
the peaks are less distinguishable and the degrees of longer requests blocking shorter ones is less
severe. ORLOJ’s performance remains stable while others see slightly higher finish rate when the
separation between requests become less extreme and vice versa.

Clockwork’s performance is not affected by changes in distributions. As long as the execution
time is not constant, it suffers from the same fail-every-other-batch pattern as we discussed in
Section 4.2.3.

4.5.4 Improvements for Traditional Workloads

We next verify ORLOJ’s performance under traditional workloads using static models where
there is no variance in request execution time.

Using the ImageNet [94] dataset, we measure the finish rate for four systems when serving the
ResNet [85] model and Inception V3 [88] model (Fig. 4.11). ORLOJ sees significant improvement
over Nexus and Clipper under tight SLOs (1.5× and 2×), thanks to its plan-ahead scheduling.
When compared to Clockwork, upon which ORLOJ is built, due to differences in request handling
mechanisms, ORLOJ performs slightly better when SLO is higher while Clockwork has higher
finish rate under tight SLOs, albeit with higher variances.
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(a) Simple normal distribution
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(b) Bimodal distribution
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(c) Three-modal distribution

Figure 4.8: Finish rate under different modality distri-
butions.
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(a) Bimodal distribution with inequal peaks (more short
requests)
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(b) Bimodal distribution with inequal peaks (more long
requests)

Figure 4.9: ORLOJ’s performance under inequal-peak
distributions.

4.5.5 Efficiency of the Priority Queue

To study the efficiency of our priority queue implementation, we evaluate two of the most
common operation of the priority queue in isolation: insertion and query. To measure the time it
takes to insert a request into the queue, we run micro-benchmarks that fill the queue to certain
number of requests, and compute the average insertion time per-request. For query, we first fill
the queue and measure the time it takes to query the queue against a line of random slope – the
equivalent of finding the request with the highest priority, as discussed in Section 4.4.4. We vary the
number of requests in queue from 10 to 10000, and each data point is averaged over 100 samples.
As reported in Fig. 4.12, the insertion operation takes longer as the queue becomes larger, and the
overall complexity trend fits the theory O(log2 n) line pretty well. Query time sees large variation
when the number of requests is small, but stabilizes and remains constant as the queue size increases.
Overall, we can see that thanks to the efficient implementation, thousands of requests can be handled
in negligible time, and thus ORLOJ is able to schedule large number of pending requests.
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(a) Bimodal distribution with σ = 0.5
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(b) Bimodal distribution with σ = 2

Figure 4.10: Finish rate under different distribution
parameters.
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(a) Inception model on ImageNet
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(b) ResNet model on ImageNet

Figure 4.11: ORLOJ keeps comparable performance
under workloads where there is no variance in request
execution time.
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Figure 4.12: The insertion time of ORLOJ priority queue under different numbers of requests in queue.

4.5.6 Sensitivity to the Anticipated Delay Distribution

In the priority score calculation in Section 4.4.1, we introduce a parameter b when describing
the distribution of the anticipated delay. And we discussed that in order to avoid floating-point
overflow during calculation, we choose b = 10−4 in Eq. (4.2). To verify that our choice of b is
reasonable and ORLOJ’s scheduling is not sensitive to the value of b, we do a parameter sweep
with b = 10−6, 10−5, . . . , 10−1, and measure the performance of ORLOJ using the three-modal
distribution as shown in Fig. 4.8c.

Each line in Fig. 4.13 represents the trend of finish rate under a given SLO setting (as a multiple
of P99 execution time). And it can be seen that under all SLO settings, ORLOJ indeed keeps stable
finish rate regardless of the choice of b. It is therefore safe to choose b to account for floating-point
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Figure 4.14: Finish rate as we vary incoming requests’ minimum execution time.

overflow, as we do in ORLOJ’s implementation.

4.5.7 Overheads

To understand ORLOJ’s scheduling overhead, we evaluate the lower limit on SLOs that ORLOJ

can achieve by measuring the finish rate while varying incoming requests’ minimum execution time
(time to execute one request alone). In this experiment, we use the same workload with three-modal
distribution as shown in Fig. 4.8c, and scale the whole execution time distribution down until
ORLOJ’s finish rate drops significantly.

Fig. 4.14 reports the trends of finish rates under different SLO settings. Similar to other exper-
iments, we set SLOs according to the P99 of minimum execution time and report results under
different SLO to P99 ratios from 1.5× to 5×. ORLOJ keeps consistent and stable finish rate. Its
performance only starts to degrade when the minimum P99 execution time is approaching 20 ms.
At that time, due to variance in request execution time, the mean approaches 10 ms and requests
can go as low as less than 2 ms.

4.6 Related Work

Model Serving We directly compare ORLOJ to Clockwork [7], Nexus [38] and Clipper [58].
While Clockwork’s assumption about static DNNs no longer holds for the dynamic DNNs, its idea
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of proactively planning ahead and consolidating choices across layers to reduce disturbance still
applies in ORLOJ. In addition, existing systems propose several orthogonal concepts that can be
seen as complementary to ORLOJ. Clipper’s idea of model selection and INFaaS’s [15] model
variant concept could be applied in front of ORLOJ. Nexus’ model prefix-sharing and InferLine’s [5]
inference pipelines are also compatible with ORLOJ’s idea of tracking request execution time as
random variables.

In cloud or serverless platforms there are projects focusing on serving models at scale [20, 28,
41]. TensorFlow Serving [66] provides one of the first production environments for models trained
using the TensorFlow framework. SageMaker [130], Vertex AI [135] and Azure ML [139] are public
cloud DNN serving systems that offer developers inference services that auto-scale based on load.

Cost-Aware Scheduling One family of the well-studied scheduling algorithms are cost-aware
or utility-based algorithms. The decisions in these algorithms are made to optimize certain costs,
which could be defined in many ways: they could be fixed or time-varying values [118, 123], costs
of rolling back transactions [124], or derived from SLOs [117, 119, 120]. It is however common in
these algorithms to assume the exact execution time to be available during scheduling, which is not
the case in serving dynamic DNNs.

Unknown-Sized Job Scheduling in Cluster Scheduling jobs with unknown duration has been
studied in cluster computing. 3Sigma [50] uses the job length distribution in the scheduling and
enumerates all possible choices to find the optimal scheduling decision. Age-based mechanisms [25,
53] gradually update jobs’ priorities based on sustained service time. There are also various
techniques used to mitigate mis-prediction in case the job’s length exceeds expectation [51].

However, inference request serving differs from the above in its timescale and properties.
Inference requests usually complete in less than a second, whereas cluster jobs can last hours or
even days. So our scheduler has to make decision very quickly, unlike cluster schedulers that can
use extensive searching before settling on a schedule. Furthermore, while cluster jobs are usually
preemptable, inference requests are not, which rules out age-based algorithms.

4.7 Conclusion

Dynamic DNNs adapt their structures or parameters to the input, and thus experiencing rapid de-
velopment thanks to notable advantages in terms of accuracy, computational efficiency, adaptiveness,
etc. This challenges existing DNN serving solutions that assume data-independence of incoming
requests, and they suffer from poor performance due to the large variance in request execution
times. We propose ORLOJ, a dynamic DNN serving system, to meet these challenges. ORLOJ
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captures the variance in dynamic DNNs by modeling request execution time as random variables,
and then efficiently batches and schedules them without knowing a request’s precise execution
time. We demonstrated that ORLOJ significantly outperforms states-of-the-art serving solutions for
high variance dynamic DNN workloads while maintaining nearly identical performance for static
workloads.

While we take a first step in this paper, we hope that ORLOJ will inspire further research not
only on dynamic DNN inference serving systems but other aspects of dynamic DNN lifecycle as
well.
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CHAPTER 5

Conclusions

Given newly emerging hardware and applications in the era of the advent of DL, this dissertation
demonstrates that there are mismatches between the DL infrastructure and the hardware below
it, as well as the applications above it. By leveraging application/system specific information in
system design, we first tackle the problem of cooperative sharing on GPUs during model training.
Moving up in the software stack, we then systematically design an execution engine for efficient

hyperparameter tuning in the cluster with adaptive execution plans, and finally, we break one of the
fundamental assumptions in existing works on model serving and use distribution information and

probability theory to serve inference requests for dynamic DNNs with tight SLO constraints.

GPU Sharing Primitives for DL Applications SALUS observes that the coarse-grained, one-
at-a-time GPU allocation model in DL model training is prohibitive for high GPU utilization and
insufficient for flexible scheduler design in the cluster. By providing a consolidated execution
service, SALUS implements two missing primitives for GPU execution: fast job switching and
memory sharing. Such primitives enable fine-grained GPU sharing among complex, unmodified DL
jobs. In addition to allowing the packing of multiple jobs on the same GPU, they can be used to
implement unforeseen new policies as well.

Unified Hyperparameter Tuning Interface and Elastic Trial Execution As a flexible and uni-
fied high-level interface for hyperparameter tuning algorithms, the proposed TrialGroup abstraction
decouples execution logic from tuning algorithm designers and users, enabling us – the systems
researchers – to focus on efficient execution engine design. The resulting execution engine, FLUID,
avoids common pitfalls in parallelizing tuning algorithms and implements complex execution plans
like elastically scaling evaluation trials up and down during runtime, in reaction to cluster resource
changes. Thanks to TrialGroup, the rich dependency information among trials are kept, and all
improvements brought by FLUID in efficient execution can thus be applied to a broad range of
algorithms to boost their performance.
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Breaking the Data-Independency Assumption in Model Serving Existing model serving
solutions can provide tight latency SLOs while maintaining high throughput by carefully scheduling
of incoming requests, whose execution times are assumed to be highly predictable and data-
independent. In ORLOJ, we break such assumptions and propose to model request execution time as
random variables. The scheduler then efficiently batches and schedules requests without knowing
their precise execution times. By using distribution information and the probability theory, ORLOJ

is able to handle inference requests for emerging dynamic DNNs, whose inference requests are data-
dependent due to their runtime changing model structure or parameters. ORLOJ can significantly
outperform states-of-the-art serving solutions for high variance dynamic DNN workloads while
maintaining nearly identical performance for static ones.

In the rest of this chapter, we discuss the limitations in Section 5.1, propose several directions
for future work in Section 5.2, and finally, conclude.

5.1 Limitations

SALUS SALUS sidesteps the GPU hardware black box by performing all scheduling in software,
before entering the GPU. However, due to performance reasons, SALUS focuses on memory
allocations and does not handle computation scheduling decision enforcement. In addition, SALUS

assumes a cooperative environment due to the lack of true isolation of execution of jobs from
different users.

FLUID The TrialGroup concept proposed by FLUID is powerful enough to express a large body
of hyperparameter tuning algorithms. However, it still requires the algorithms to opt in to such
interface to maximize its benefits in scheduling. Also, FLUID currently only considers workers as
homogenous resources, and is agnostic to location information. In practice, clusters may contain
heterogeneous hardware and communication topologies. Placing jobs arbitrarily therefore is prone to
suboptimal performance due to unnecessary data transfers or unbalanced worker execution speeds.

ORLOJ ORLOJ tracks per-application execution time distribution, only to later combine them all
together when estimating batch execution times and calculating its priority score. This is limited
by the circular dependency between the priority score and the actual batch creation. The current
implementation in ORLOJ assumes that each application served by the model contributes roughly
equally to pending requests. However, when it is no longer the case, for example, when the proportion
of applications are highly skewed, the inaccurate estimations used in priority score can lead to
over-conservative or over-optimistic scheduling decisions, resulting in suboptimal performance.
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5.2 Future Work

In this section, we identify several avenues for future work to further bring closer the gap among
the hardware, the application, and most importantly, the DL infrastructure stack in between.

Improving OS Abstraction for Accelerators SALUS takes a step toward bringing back the
traditional OS-level abstraction for GPUs, but it is only a first attempt, and it opens many interesting
new research challenges. First, SALUS provides a mechanism for sharing but the question of policy
– what is the best scheduling algorithm for DL jobs running on a shared GPU? – remains open.
Second, we only discussed SALUS on a single GPU, it naturally follows that what is the best strategy
to integrate SALUS’s idea with multiple GPUs on the same host, or GPUs across multiple hosts.

Abstracting DL Execution FLUID helps with the execution strategy selection in hyperparameter
tuning jobs. The problem of automated execution strategy selection for general DL training jobs is
still open. ML practitioners are forced to implement strategies like data/model/pipeline parallelism,
select batch sizes, select the degree of parallelism when launching a job. Ideally, the cluster job
manager should be able to figure out the execution plan on itself, only given an input of whether to
optimize for job completion time, energy usage, target accuracy, etc.

Serving Dynamic Model in Pipeline Instead of a single SLO for the model, the pipeline may
have an entire end-to-end SLO, which needs to be divided between multiple models. Existing
pipeline-aware DL serving systems still rely on reactive provisioning or single-point estimations to
perform scheduling. Applying the idea of using distribution information for each single dynamic
model to the pipeline represents new challenges, such as how to combine and divide the end-to-end
SLO when each stage’s latency is a random variable.

Efficient Dynamic Model Execution Currently, padding is the de facto way of executing dynamic
models while enabling batching. That however is neither necessarily the only nor the best way,
due to the wasted computation on all padded areas. Further research are needed to discover more
efficient means to execute a dynamic model, which will inevitably exhibit very different runtime
characteristics when serving the model, and necessitate another round of re-designing of the serving
system.

5.3 Final Remarks

It is impossible to address all challenges in the DL infrastructure in one dissertation. Indeed, this
work only focuses on a small fraction of systems in the ecosystem while leaving many other areas
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untouched. Nevertheless, with the ever accelerating growth in both DL applications and DL-specific
hardware, the pursuit of higher efficiency never ends. This dissertation takes a step towards deeper
application/hardware-awareness in the infrastructure with the hope that our crude work may be a
basis for further research to better scheduling algorithms and overall to better integrations among
DL applications, hardware and the infrastructure in between.
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APPENDIX A

SALUS

A.1 Workloads

Table A.1 is the full list of workloads and their batch sizes we used in our evaluation.
Figure A.1 is the same peak and average GPU memory usage measurement done in PyTorch,

except overfeat, which we could not find a working implementation.

Table A.1: DL models, their types, and the batch sizes we used. Note that the entire model must reside in
GPU memory when it is running. This restricts the maximum batch size we can use.

Model Type Batch Sizes

alexnet Classification 25, 50, 100
googlenet Classification 25, 50, 100
inception3 Classification 25, 50, 100
inception4 Classification 25, 50, 75
overfeat Classification 25, 50, 100
resnet50 Classification 25, 50, 75
resnet101 Classification 25, 50, 75
resnet152 Classification 25, 50, 75
vgg11 Classification 25, 50, 100
vgg16 Classification 25, 50, 100
vgg19 Classification 25, 50, 100
vae Auto Encoder 64, 128, 256
superres Super Resolution 32, 64, 128
speech NLP 25, 50, 75
seq2seq NLP Small, Medium, Large
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Figure A.1: Average and peak GPU memory usage per workload, measured in PyTorch and running on
NVIDIA P100 with 16 GB memory. The average and peak usage for vae is 156 MB, 185 MB, which are too
small to show in the figure.
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APPENDIX B

FLUID

B.1 Analysis of Algorithms

B.1.1 Problem Formulation

Let the TrialGroup scheduling be represented as a strip packing problem I = {A,M}. Each
rectangle ai in A = {a1, . . . , ak} with width and height corresponds to a trial with allocated
resources and remaining runtime. It is worth noting that in our problem setting, each rectangle’s
width wi determines its height hi,w. hi,w thus implies the relationship between different resource
allocation and its corresponding runtime for this trial. Strips in M = {m1, . . . ,mn} with identical
width 1 and infinite height represents n available identical resources for current hyperparameter
tuning jobs.

B.1.2 StaticFluid Algorithm

As shown in Algorithm 3.1, FLUID allocates resources wi based on each trial’s runtime hi,1 ratio
among trials in the TrialGroup. FLUID then schedules the trials in non-increasing order of resources
onto the idle worker set.

w∗
i =

hi,1∑
j hj,1

n

wi =

{
⌊w∗

i ⌋ w∗
i ≥ 1

1
c

w∗
i < 1

(B.1)

B.1.3 Theoretical Results

Theorem 1 In the ideal situation, FluidStatic is a 2-approximation algorithm.
Proof of Theorem 1.
Given an instance I = {A,M} of the strip packing problem and let the optimal solution be

OPT(I). In the ideal case, no overheads will occur, which means the job size (rectangular area)
remains the same for one job.

We break down this proof into proofs of two disjoint sub-problems. First we show how this
problem can be divided into two sub-problems, and then we prove the approximation factor for each
sub-problem separately.
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After calculating the resources wi for each trial ai by Eq. (B.1), we divide trials into a small set
and a large set: one with resources wx < 1 and the other with resources wy ≥ 1. The sub-problems
are defined as scheduling small set of trials ax on n−

∑
wy denoted as Is and scheduling large set

of trials ay on
∑

wy denoted as Il. We simplify StaticFluid(·) as Fluid(·) for convenience in the
following proof.

Lemma 1. By applying our heuristic method, the result makespan of original problem is no worse
than the maximum of the result makespan of two sub-problems:

Fluid(I) ≤ max{Fluidsmall(Is),Fluidlarge(Il)}

Proof of Lemma 1.
Since the trials in large trial set are ensured with wy resources, all of them can be scheduled at

the beginning. However, small trial set only has n−
∑

wy resources in total, where n−
∑

wy ≤
n −

∑
ty∑
t
n =

∑
tx∑
t
n ≤

∑
w∗

x < X. (X is the size of small trial set). Thus, trials in small trial
set may be scheduled when any resource becomes idle. Such idle resources can belong to either
small set or large set. If the queued small trial is scheduled on resources belong to the large set, the
makespan would be shorter than waiting on small set resources becoming idle. As a result, proving
two sub-problems separately is sufficient to bound our original heuristic method.

Lemma 2. In the ideal situation,

Fluidsmall(Is) < 2Hsmall +max(h1)

Proof of Lemma 2.
For small trial set ax with n−

∑
wy resources, this sub-problem can be completely modeled

as strip packing. According to our heuristic method, each small trial will be allocated with 1
c

and
longest trials are prioritized to be scheduled onto most idle worker. We simplify our method to
next-fit decreasing height shelf-based algorithm, which means we schedule trials in non-increasing
runtime to an available shelf and add a new shelf if previous shelves are full. Let’s denote Aj as the
area of jth shelf, A =

∑
Ajas the sum of shelves’ area and Hj as the height of jth shelf. Since the

area of rectangle is decreasing with the increase of packing trials if the number of packing trials
doesn’t exceed the optimal number c, we have A ≤

∑
hx,1 < Hsmall(n−

∑
wy), where Hsmall is

defined as the largest average height of small trial set. We have

Aj + Aj+1 > Hj+1 × 1 +Hj+1
1

c
> Hj+1 (B.2)

∑
Hj ≤ H1 + 2A = max(h 1

c
) + 2A

≤ max(h 1
c
) + 2(n−

∑
wy)Hsmall

(B.3)

Also, by taking one shelf as a whole trial with one unit resources, this sub-problem can be
reduced to shelf-based job scheduling, which is to assign shelves to machines at particular times in
order to minimize the makespan. And our heuristic becomes scheduling the shelf in non-increasing
runtime order onto the strip with the smallest height. Denote mk as the strip with the largest height
and Hl as the height of the last shelf assigned to mk. If mk only has one trial, then this shelf has the
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longest runtime which means it must be the optimal solution. If mk have more than one shelf, we
have

Fluidsmall(Is) = h(mk) ≤
1

n−
∑

wy

(
∑

Hj −Hl) +Hl

=
1

n−
∑

wy

∑
Hj + (1− 1

n−
∑

wy

)Hl

≤
2Hsmall(n−

∑
wy) + max(h 1

c
)

n−
∑

wy

+ (1− 1

n−
∑

wy

)max(h 1
c
)

= 2Hsmall +max(h 1
c
)

< 2Hsmall +max(h1)

(B.4)

Lemma 3. In the ideal situation, Fluidlarge(Il) < 2H

Proof of Lemma 3.
For large trial set ay with

∑
wy resources, this sub-problem can be completely modeled as strip

packing. Based on our heuristic method, each trial ay will be scheduled on wy machines.

hj,w =
hj,1

w

=

∑
ty,1
n

w∗

w

=
w∗

⌊w∗⌋

∑
hi,1

n︸ ︷︷ ︸
H

< 2H

(B.5)

Since
∑

wy < n, every trial can get its own resources at the beginning, which result in one-level
packing.

Fluidlarge(Il) = max(hj,w) < 2H (B.6)

Combine the result of two sub-problems and Lemma 1, we have

Fluid(I) ≤ max(Fluidsmall(Is),Fluidlarge(Il))

< max(2Hsmall +max(h1), 2H)

≤ max(2OPT(I) + max(h1), 2OPT(I))

= 2OPT(I)

(B.7)

Theorem 2 In the real situation,

StaticFluid(I) < max(2OPT(I) + max(h1)α
1

α−1 , 2OPT(I)β
1

β−1
−1)

Proof of Theorem 2. In the real situation, we consider the impact of GPU sharing overheads
on the problem set up: a) for rectangular with fractional width (trial using intra-GPU sharing),
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the relationship between height and width is hi(w) = hi,1α
1
w
−1

i , w ∈ (0, 1); b) for rectangular
with integral width (trial using inter-GPU training), the relationship between height and width is
hi(w) =

hi,1

w
βw−1
i , w ∈ [1, d].

Lemma 4. α ∈
[
1, c

c−1

)
Proof of Lemma 4.
Since FLUID ensures the performance of intra-GPU sharing increases by packing with more

trials by limiting the number of packing trials under the maximum packing number c, we have
h 1

a

a
<

h 1
b

b
≤ h1 if 1 ≤ b < a ≤ c, where a and b are the number of packing trials.

a

b
>

h 1
a

h 1
b

= αa−b (B.8)

1 ≤ α <
c

c− 1
(B.9)

In addition, we have c < α
α−1

.

Lemma 5. In the real situation,

Fluidsmall(Is) < 2Hsmall +max(h1)α
1

α−1

Proof of Lemma 5.
Combine the result of Eq. (B.4) and Lemma 4, we have

Fluidsmall(Is) = 2Hsmall +max(h 1
c
)

< 2Hsmall +max(h1)α
1

α−1

(B.10)

Lemma 6. β ∈
[
1, d+1

d

)
Proof of Lemma 6.
Since FLUID ensures the performance of inter-GPU sharing increases with distributing on more

workers by limiting w < d, we have h1 ≤ h 1
a
< h 1

b
if 1 ≤ b < a ≤ d.

h1β
a−1

a
<

h1β
b−1

b
(B.11)

1 ≤ β <
a

b
≤ d+ 1

d
(B.12)

In addition, we have w < 1
β−1

.

Lemma 7. In the real situation,

Fluidlarge(Il) < 2Hβ
1

β−1
−1

Proof of Lemma 7.
Similar to Eq. (B.5), we consider extra term β on the height of rectangular:
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hj,w =
hj,1β

w−1
j

w

=

∑
ty,1
n

w∗

w
βw−1
j

=
w∗

⌊w∗⌋
βw−1
j

∑
hi,1

n︸ ︷︷ ︸
H

< 2Hβw−1
j

(B.13)

Since
∑

wy < n, every trial can get its own resources at the beginning, which result in one-level
packing.

Fluidlarge(Il) = max(hj,w) < 2Hmax(βw−1
j )

< 2Hβ
1

β−1
−1

(B.14)

Combine the result of two sub-problems and Lemma 1, we have

Fluid(I) ≤ max(Fluidsmall(Is),Fluidlarge(Il))

< max(2Hsmall +max(h 1
c
), 2Hβ

1
β−1

−1)
(B.15)

Based on Eq. (B.1), we can derive the relationship between the average height of the large trial
set Hlarge and the average height of the whole trial set H .

Slarge

Ssmall

=

∑
w∗

y

n− w∗
y

≥
∑

wy

n− wy

(B.16)

Hlarge =
Slarge∑

wy

≥ Ssmall

n−
∑

wy

= Hsmall (B.17)

Hlarge > H > Hsmall (B.18)

where S denotes the total trial size w × h of a trial set. Since OPT(I) ≥ H , we conclude

Fluid(I) < max(2OPT(I) + max(h1)α
1

α−1 , 2OPT(I)β
1

β−1
−1) (B.19)
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APPENDIX C

ORLOJ

C.1 Additional Experiment Results

We report more results here. Table C.1 contains results for experiments where the input request
execution time distribution is bimodal. Case ID shows the standard deviation of each modal’s normal
distribution. In Table C.2, we vary the modality of request execution time distribution from 1 to
8. Table C.3 gives results on static models. Finally, for image classification (Table C.4), chatbot
(Table C.5), summarization (Table C.6), and translation (Table C.7) tasks, the first part of the case
ID is the model name and second part the dataset name.

C.2 Generalization to Piece-wise Step Cost Functions

We can extend our calculation for Eq. (4.2) from single-step SLO cost function to multiple-step
cost functions. For example, consider a multiple-step cost function with three deadlines d1, d2 and
d3, and corresponding costs c1, c2, c3. Such a cost function is actually decomposable into the sum of
three single-step cost functions: deadline d1 with cost c1, deadline d2 with cost c2− c1, and deadline
d3 with cost c3 − c2. Therefore, we can compute the priority score for each of the single-step cost
function and sum up the results to get the priority score for the multiple-step cost function.
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Table C.1: Evaluation results for cases where request execution time distribution is bimodal.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

std-0.5 1.5 0.01 0.01 0.44 0.57
std-0.5 2 0.01 0.02 0.53 0.76
std-0.5 3 0.04 0.05 0.62 0.96
std-0.5 4 0.11 0.13 0.61 0.99
std-0.5 5 0.20 0.25 0.57 1.00
std-1 1.5 0.02 0.02 0.46 0.60
std-1 2 0.03 0.03 0.53 0.76
std-1 3 0.10 0.10 0.55 0.97
std-1 4 0.21 0.19 0.53 0.99
std-1 5 0.33 0.34 0.56 1.00
std-2 1.5 0.04 0.03 0.43 0.59
std-2 2 0.07 0.05 0.51 0.73
std-2 3 0.19 0.13 0.55 0.97
std-2 4 0.34 0.30 0.50 1.00
std-2 5 0.49 0.54 0.59 1.00

std-2/0.5 1.5 0.16 0.18 0.52 0.75
std-2/0.5 2 0.28 0.32 0.59 0.83
std-2/0.5 3 0.61 0.68 0.60 0.98
std-2/0.5 4 0.89 0.93 0.59 0.96
std-2/0.5 5 0.97 1.00 0.63 1.00
std-0.5/2 1.5 0.01 0.01 0.38 0.40
std-0.5/2 2 0.01 0.02 0.50 0.61
std-0.5/2 3 0.04 0.04 0.57 0.90
std-0.5/2 4 0.08 0.09 0.66 0.97
std-0.5/2 5 0.15 0.17 0.52 0.99
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Table C.2: Evaluation results for cases where we vary the modality of request execution time distribution.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

one-modal 1.5 0.03 0.04 0.48 0.46
one-modal 2 0.10 0.13 0.55 0.74
one-modal 3 0.45 0.54 0.61 0.98
one-modal 4 0.73 0.80 0.58 1.00
one-modal 5 0.82 0.91 0.60 1.00
two-modal 1.5 0.01 0.03 0.45 0.60
two-modal 2 0.04 0.03 0.58 0.75
two-modal 3 0.13 0.14 0.51 0.97
two-modal 4 0.27 0.30 0.56 1.00
two-modal 5 0.37 0.44 0.55 1.00

three-modal 1.5 0.03 0.04 0.45 0.59
three-modal 2 0.05 0.05 0.55 0.68
three-modal 3 0.10 0.09 0.61 0.97
three-modal 4 0.18 0.23 0.60 0.99
three-modal 5 0.35 0.42 0.61 0.99
four-modal 1.5 0.03 0.05 0.46 0.59
four-modal 2 0.05 0.07 0.56 0.73
four-modal 3 0.08 0.12 0.59 0.94
four-modal 4 0.10 0.16 0.60 0.98
four-modal 5 0.14 0.19 0.60 1.00
five-modal 1.5 0.02 0.03 0.47 0.60
five-modal 2 0.02 0.03 0.55 0.73
five-modal 3 0.03 0.07 0.59 0.94
five-modal 4 0.04 0.08 0.57 0.97
five-modal 5 0.07 0.08 0.56 0.99
six-modal 1.5 0.04 0.04 0.46 0.58
six-modal 2 0.03 0.05 0.53 0.71
six-modal 3 0.06 0.08 0.53 0.92
six-modal 4 0.07 0.09 0.51 0.97
six-modal 5 0.08 0.11 0.54 0.99

seven-modal 1.5 0.03 0.05 0.43 0.59
seven-modal 2 0.04 0.05 0.51 0.73
seven-modal 3 0.08 0.09 0.54 0.93
seven-modal 4 0.10 0.12 0.52 0.98
seven-modal 5 0.12 0.15 0.54 0.99
eight-modal 1.5 0.03 0.04 0.33 0.60
eight-modal 2 0.05 0.06 0.49 0.74
eight-modal 3 0.08 0.09 0.43 0.93
eight-modal 4 0.09 0.13 0.52 0.97
eight-modal 5 0.11 0.14 0.50 0.99
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Table C.3: Evaluation results for static models.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

inception-imagenet 1.5 0.01 0.01 0.16 0.41
inception-imagenet 2 0.31 0.30 0.58 0.48
inception-imagenet 3 0.86 0.88 0.84 0.84
inception-imagenet 4 0.96 0.97 0.82 0.99
inception-imagenet 5 0.98 0.98 0.83 0.99
resnet-imagenet 1.5 0.01 0.00 0.30 0.42
resnet-imagenet 2 0.15 0.15 0.59 0.48
resnet-imagenet 3 0.62 0.64 0.77 0.85
resnet-imagenet 4 0.89 0.91 0.88 0.98
resnet-imagenet 5 0.95 0.96 0.87 0.99

Table C.4: Evaluation results for image classification tasks.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

rdinet-cifar 1.5 0.61 0.61 0.48 0.49
rdinet-cifar 2 0.98 0.99 0.47 0.84
rdinet-cifar 3 0.99 1.00 0.48 1.00
rdinet-cifar 4 0.99 1.00 0.48 1.00
rdinet-cifar 5 0.99 1.00 0.48 1.00

skipnet-imagenet 1.5 0.00 0.00 0.05 0.24
skipnet-imagenet 2 0.00 0.03 0.14 0.62
skipnet-imagenet 3 0.00 0.12 0.21 0.92
skipnet-imagenet 4 0.00 0.31 0.12 0.95
skipnet-imagenet 5 0.00 0.48 0.16 0.89
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Table C.5: Evaluation results for chatbot tasks.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

blenderbot-convAI 1.5 0.05 0.06 0.43 0.45
blenderbot-convAI 2 0.18 0.21 0.61 0.65
blenderbot-convAI 3 0.56 0.63 0.64 0.74
blenderbot-convAI 4 0.71 0.81 0.65 0.81
blenderbot-convAI 5 0.75 0.87 0.65 0.81
blenderbot-cornell 1.5 0.06 0.06 0.43 0.44
blenderbot-cornell 2 0.20 0.20 0.60 0.68
blenderbot-cornell 3 0.54 0.57 0.62 0.75
blenderbot-cornell 4 0.71 0.74 0.64 0.81
blenderbot-cornell 5 0.74 0.77 0.64 0.82

gpt-convAI 1.5 0.39 0.38 0.39 0.36
gpt-convAI 2 0.79 0.83 0.57 0.64
gpt-convAI 3 0.91 0.99 0.61 0.86
gpt-convAI 4 0.92 1.00 0.63 0.97
gpt-convAI 5 0.92 1.00 0.61 0.98
gpt-cornell 1.5 0.45 0.44 0.46 0.44
gpt-cornell 2 0.84 0.86 0.65 0.68
gpt-cornell 3 0.94 1.00 0.73 0.97
gpt-cornell 4 0.94 1.00 0.73 0.99
gpt-cornell 5 0.95 1.00 0.74 1.00

Table C.6: Evaluation results for summarization tasks.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

bart-cnn 1.5 0.12 0.11 0.44 0.46
bart-cnn 2 0.36 0.36 0.46 0.71
bart-cnn 3 0.73 0.73 0.46 0.97
bart-cnn 4 0.78 0.79 0.44 0.99
bart-cnn 5 0.80 0.81 0.44 1.00
t5-cnn 1.5 0.48 0.46 0.47 0.49
t5-cnn 2 0.86 0.84 0.50 0.74
t5-cnn 3 0.99 1.00 0.50 1.00
t5-cnn 4 0.99 1.00 0.52 1.00
t5-cnn 5 0.99 1.00 0.51 1.00
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Table C.7: Evaluation results for translation tasks.

Case ID SLO Finish Rate
(× P99) Clipper Nexus Clockwork ORLOJ

fsmt-wmt 1.5 0.04 0.04 0.45 0.45
fsmt-wmt 2 0.21 0.23 0.50 0.59
fsmt-wmt 3 0.63 0.65 0.51 0.88
fsmt-wmt 4 0.73 0.76 0.53 0.93
fsmt-wmt 5 0.75 0.79 0.54 0.95
mbart-wmt 1.5 0.07 0.10 0.38 0.47
mbart-wmt 2 0.28 0.30 0.36 0.59
mbart-wmt 3 0.71 0.73 0.35 0.91
mbart-wmt 4 0.76 0.78 0.36 0.96
mbart-wmt 5 0.78 0.80 0.35 0.98
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