
Pas de deux: Shape the Circuits,
and Shape the Apps too!

Hong Zhang
1
, Kai Chen

1
, Mosharaf Chowdhury

2

1
SING Lab, Hong Kong University of Science and Technology

2
University of Michigan

Abstract
Despite continued efforts toward building high bandwidth,

low cost datacenter networks with reconfigurable optical fab-

rics, the impact of optical networks on datacenter applications

has received little attention. Given the constraints of optical

networks and the semantics of datacenter applications, we

believe the network-application intersection to be the next

innovation hotspot. In this paper, we specifically focus on

data-parallel applications for two primary reasons: they are a

natural fit to exploit high bandwidth optical fabrics, and they

often form structured communication patterns or coflows.

We show that configuring circuits in reaction to changing

traffic patterns is not enough. Efficient scheduling of even a

single coflow in optical networks should be a “Pas de deux”1

– a joint shaping of not only the underlying circuit, but also
the application’s traffic demand. Our preliminary evaluation

with a production trace shows that joint shaping is on average

within 1.18× of the optimal and performs 30% better than solu-

tions that configure circuits in application-agnostic fashions.

We further extend our analysis to inter-coflow scheduling

and propose a layered solution that jointly considers circuit

reconfiguration, coflow prioritization, as well as flow rate and

route assignments.

CCS Concepts
•Networks→Traffic engineering algorithms;Network
architectures;

Keywords
Data-intensive applications; optical switching; data center

ACM Reference format:
Hong Zhang, Kai Chen, Mosharaf Chowdhury. 2018. Pas de deux:

Shape the Circuits, and Shape the Apps too!. In Proceedings of 2nd
1
A pas de deux is a dance duet in which two dancers perform ballet steps together.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

APNet ’18, August 2–3, 2018, Beijing, China
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6395-2/18/08. . . $15.00

https://doi.org/10.1145/3232565.3232568

Asia-Pacific Workshop on Networking, Beijing, China, August 2–3,
2018 (APNet ’18), 7 pages.
https://doi.org/10.1145/3232565.3232568

1 Introduction
In recent years, a growing body of datacenter architecture

designs [3, 4, 10, 11, 15] have proposed interconnecting Top-

of-Rack (ToR) switches with optical fabrics. Although these

designs provide high bisection bandwidth, low power con-

sumption, and reduced cabling complexity, they suffer from

high circuit reconfiguration delay of up to tens of millisec-

onds [4]. Yet, it is still unclear how they affect the end-to-end

performance of datacenter applications.

Scheduling applications on the state-of-the-art optical ar-

chitecture [4, 11] differs from previous circuit scheduling

problems [2, 12, 13] in the following three aspects:

• Application semantics: Most existing circuit scheduling

algorithms aim to maximize the throughput of an aggre-

gated traffic matrix. However, this may not directly benefit

application-level communication performance [7] because

each application can have its own traffic matrix and its own

performance objective. The coflow abstraction [5] captures

such semantics of communication between two groups of

machines in successive computation stages.

• Traffic pattern: Most existing circuit scheduling designs

assume that the traffic demandmatrix is sparse [2, 15]. How-
ever, many coflows involve wide-spread communication

among thousands of machines [7].

• Connectivity:Most previouswork adopt a networkmodel,

where one ToR can only establish one exclusive circuit con-

nection to another ToR. However, to support wide-spread

communication patterns, recent optical datacenter archi-

tecture designs [4, 11] allow increased connectivity among

ToRs. For example, one ToR can simultaneously establish

tens (ProjecToR [11]) to hundreds (MegaSwitch [4]) of cir-

cuit connections to other ToRs.

Overall, the presence of coflows in data-parallel applications

and the advances in optical designs greatly complicate the

circuit scheduling problem. Minimizing the average coflow

completion time (CCT) requires coordinated scheduling of

flows within each coflow as well as prioritized scheduling

https://doi.org/10.1145/3232565.3232568
https://doi.org/10.1145/3232565.3232568

APNet ’18, August 2–3, 2018, Beijing, China H. Zhang et al.

among multiple coflows. The rich connectivity among ToRs

further increases the solution space.

In this paper, we start by investigating an important special

case that involves serving a single coflow on optical fabrics.

We observe that although the rich connectivity brings new

opportunity to serve coflows without reconfiguration, obtain-

ing a circuit configuration that well matches a coflow’s traffic

pattern is not always possible. Such mismatch between the

coflow and circuit structure greatly increases the CCT (§3.1).

To alleviate this mismatch, we instead ask the following

question: can we reshape the coflow traffic demand matrix to
match the circuit configuration? In particular, we notice that

the demand matrix can be effectively reshaped by rerouting

traffic via other ToRs as relays. Multi-hop rerouting is not

new for optical networks. However, unlike previous work

[3] that employ multi-hop routing to provide overall connec-

tivity, we leverage a fine-grained, coflow-specific multi-hop

routing scheme to redistribute the original coflow traffic de-

mand among ToRs (§3.2). However, while reshaping coflows

can help in mitigating the mismatch and improving CCT, its

effectiveness depends on underlying circuit configurations.

Given that neither coflow nor circuit (re)shaping alone ef-

ficiently minimizes CCT, we reformulate the problem as a
joint shaping of both circuit configuration and coflow traffic de-
mand. We show through examples that such joint scheduling

brings extra flexility to find a good matching, and effectively

minimizes the CCT (§3.3). Moreover, we design a heuristic

that effectively calculates the joint scheduling by iteratively:

(i) releasing under-utilized circuits by reshaping the coflow

demand; (ii) configuring the released circuits to serve the

bottleneck source-destination ToR pair. Preliminary evalua-

tion with a production trace shows that joint shaping is on

average within 1.18× of the optimal and performs 30% better

in comparison to algorithms that only configure circuits (§4).

We conclude by extending our analysis to the general case

of inter-coflow scheduling (§5). Specifically, we find each of

the following factors: circuit configuration, routing, rate al-

location, and coflow prioritization to play important roles,

leading to a joint scheduling problem with exponential com-

plexity. To perform efficient scheduling with reasonable com-

plexity, we design a framework that effectively decouples the

scheduling into three successive steps – circuit configuration,

coflow permutation, and rate/routing. Each step is further

transformed into the single coflow scheduling problem we

have already formulated. We leave the in-depth evaluation

under the general case as future work.

2 Background

2.1 The Network Model

We consider a network model where the entire datacenter fab-

ric is abstracted out as one non-blocking core interconnecting

all the n ToRs. Each ToR has k sending and receiving ports.

ToRs can send and receive through these k different ports si-

multaneously by establishing a directed inter-port connection

to any other ToRs, with each inter-port connection carries

a fixed capacity of B. A feasible circuit configuration can be

presented as a n×n matrix M , where Mi j ∈ {0, 1, ...k} is the
number of inter-port connections from ToR i to ToR j. Note
that the configuration is also constrained by the sending and

receiving port number k per ToR, where we have

∑n
j=1Mi j≤k

and

∑n
i=1Mi j≤k for all i and j . We denote the set of all feasible

configurations as {M}. Moreover, the inter-port connection

can be reconfigured with a reconfiguration delay δ during

which the switch cannot carry any traffic. Such δ can range

from tens of microseconds to few milliseconds depending on

the technology [2].

One major difference with previous models lies in the

choice of k . Most prior work assumes k = 1, which means that

one ToR can only establish one exclusive circuit connection

to another ToR. However, to support wide-spread commu-

nication patterns, optical architecture designs are evolving

with richer connectivity among ToRs. For example, Projec-

ToR [11] supports at least tens of lasers and photodetectors

(corresponds to sending and receiving ports respectively) un-

der each rack to handle fan-in/fan-out traffic. MegaSwitch

[4] supports all-to-all communications among more than 30

ToRs (due to WSS port number limitation) simultaneously

with k as large as 192. Consequently, in our model k can be a

large number comparable to n.

2.2 The Traffic Model

In this paper, we focus on the coflow traffic model. Unlike

the traditional flow abstraction, a coflow captures a collec-

tion of flows between two groups of machines in successive

computation stages, where the communication stage finishes

only after all the flows have completed [7]. A typical exam-

ple of coflow is the shuffle between mappers and reducers in

MapReduce [9]. More specifically, a coflow can be represented

as an n×n traffic demand matrix C , where each element Ci j
indicates the demand from ToR i to ToR j.

3 The Single Coflow Case

This section investigates the single coflow case. We simplify

our discussion by restricting to only one circuit configuration

for each coflow. Such assumption is reasonable in many cases

because (1). optical fabric with rich connectivity usually have

very large reconfiguration delays (i.e., ∼20ms in [4]); (2). the

rich connectivity allows serving a coflowwith no reconfigura-

tion. We extend our analysis to multiple coflows and remove

the no-reconfiguration assumption in Section 5.

Pas de deux: Shape the Circuits, and Shape the Apps too! APNet ’18, August 2–3, 2018, Beijing, China

Figure 1: [Example 1] Circuit configuration M∗ calcu-
lated via circuit shaping (Problem 1) cannotwellmatch
the coflow demand matrixC. We can see that ToR pair
(D,E) has 150MB demand while it is only assigned 1
circuit. Such bottleneck pair leads to a CCT of 150ms
(calculated by Eq (1)), which is 3× the optimal CCT in
packet switched networks (calculated by Eq (2)).
3.1 Shaping the Circuit

Similar to most existing circuit scheduling algorithms, we

first try to efficiently configure the circuit to match the coflow

traffic pattern. This directly translates to the following circuit

shaping problem:

Problem 1. (The circuit shaping problem) Given a coflow
demand C and a set of feasible circuit configurations {M}, find
a configurationM∗ ∈ {M} that minimizes the CCT.

Note that the CCT can be calculated as

CCT = max

i, j
(

Ci j

Mi j · B
) (1)

The optimal solution to Problem 1 can be obtained by first

connecting all pairs (i, j) with Ci j > 0, and then iteratively

adding connections to the pair (i∗, j∗) with the longest com-

pletion time.

However, we find that even with a rich port count, the

optimal CCT achieved via circuit shaping can be far from

the optimal CCT achievable in packet switched networks. To

illustrate this, consider the example in Figure 1. The opti-

cal network contains 5 ToRs, each with 4 sending/receiving

ports. Each inter-port connection carries a fixed capacity of

1GBps.The coflow demand C follows a many-to-one pattern.

We first calculate the optimal CCT achievable in packet

switched networks with the same ingress/egress capacity per

ToR. Note that this serves as the lower bound of the CCT

achievable in the optical network. In such case, the CCT is

constrained only by the ToR with the largest ingress/egress

data volume, more specifically we have

CCTOPT = max

(
max

i

∑
j Ci j

B · k
,max

j

∑
i Ci j

B · k

)
(2)

Reshape

Good Match

Figure 2: [Example 2] Given a full-mesh circuit config-
urationM , we can reshape the coflowdemandC toC∗ to
well match the configuration via coflow shaping (Prob-
lem 2). We achieve a CCT of 50ms following this sched-
ule (calculated by Eq (1)), which is identical to the opti-
mal CCT in packet switched networks.
where B · k is the total egress/ingress capacity per ToR. For

coflow C in Figure 1, a CCT of 50ms can be achieved by

allocating the 4GBps ingress capacity of ToR E among senders

A to D proportionally to their demand.

Compared to the rate allocation that can take any fractional

value, the circuit configuration Mi j can only be integers. For

example, a sender can arbitrarily share its egress capacity

among different receivers in packet switched networks; in op-

tical networks, however, there is no way to split one sending

port into two halves and connecting them to two receiving

port simultaneously. Such integrality constraints result in

mismatches between coflow demands and circuit configura-

tions. On the one hand, ToR pairs with small traffic demand

are over-provisioned and can hardly utilize the capacity as-

signed to them. In Figure 1, although ToR pair (A,E) only
has a 20MB traffic demand, we still have to establish a circuit

connection for it. As a result, the traffic demand of (A,E) is
satisfied after 20ms , and the circuit then becomes idle for the

rest of the time.
2
On the other hand, ToR pairs with high

traffic demand suffer from under-provisioning, which greatly

increases the CCT. For example, ToR pair (D,E) has a 150MB

demand, but it is only assigned with one connection and takes

150ms to complete. Because a coflow finishes only after all the
traffic demand is served, (D,E) becomes the bottleneck and

increases the CCT to 150ms .

3.2 Shaping the Coflow

To address such mismatch, we explore in the reverse direction

and try to reshape the traffic demand matrix to match the cir-

cuit configuration. Following this idea, we leverage multi-hop

2
The connection can be reconfigured after the demand is satisfied if we relax the no-

reconfiguration model. However, such reconfiguration still leads to low circuit utiliza-

tion by introducing large reconfiguration delay (i.e., ∼20ms in [4]).

APNet ’18, August 2–3, 2018, Beijing, China H. Zhang et al.

routing to reshape the traffic demand. Unlike previous work

[3] that employs multi-hop routing to provide overall connec-

tivity among ToRs, we leverage multi-hop routing to reshape

the traffic demands to better match the circuit configuration.

Also, note that the multi-hop routing is done in a cut-through

way via source routing, rather than in a store-and-forward

manner [2]. Doing so avoids circuit reconfiguration and extra

buffer demand. Specifically, the reshaping is composed of a

set of deliberate routing schemes to redistribute the original

coflow traffic demand among ToRs.

Figure 2 illustrates the effectiveness of such reshaping.

Given a circuit configuration M which forms a full-mesh

connection, we can reshape the coflow C to match the con-

figurationM . More specifically, consider the bottleneck ToR

pair (D,E) with 150MB demand. We can effectively resolve

it by rerouting these traffic through relaying nodes A, B and

C . By doing so, we are actually reshaping the traffic demand

fromC toC∗
. We can see that the schedule in Figure 2 results

in a CCT of 50ms , which is identical to the best solution in

packet switched networks.

Formally, we define coflow shaping as follows:

Problem 2. (The coflow shaping problem) Given a coflow
demand C and a fixed circuit configurationM , determine the
C∗ which can be reshaped from C by multihop routing, so that
the CCT (by Eq (1)) is minimized.

We further translate this problem into themulti-commodity

flow problem [8], where each ToR pair (i, j) corresponds to
a commodity in the multi-commodity flow problem with de-

mandCi j . The goal is to maximize z, so that at least z percent
of each demand is transferred within a unit time. Note that

CCT equals 1/z, and the problem can be solved in polynomial

time using LP or fast approximation algorithms.

However, coflow reshaping also suffer from major draw-

backs. First, it is not always possible to approach the optimal

CCT via coflow reshaping given an arbitrary configuration.

For example, if the circuit connection forms two closed cycles:

(A → B,B → C,C → A) and (D → E,E → D), then there is

no way to satisfy the coflow demand via coflow reshaping.

As a result, the effectiveness highly depends on the under-

lying circuit configuration. Moreover, notice that multi-hop

connection may also result in an inefficient use of the circuit.

As we see in Figure 2, 100MB traffic goes through two-hop

paths. As a result, these traffic takes network resource which

can potentially serve 200MB traffic demand via direct con-

nection. Such low efficiency may result in reduced goodput

and enlarged CCT in the multi-coflow case.

Implementation Feasibility Enabling fine-grained traffic

reshaping requires flow-level routing enforcement. We find

source routing a good candidate, which pre-installs all the

routing rules needed on the ToR switches and does not require

the costly dynamic routing table configuration. Specially, we

Reshape

Configure

Good Match

Figure 3: [Example 3] In joint shaping (Problem 3) we
shape both the circuit M∗ and the coflow C∗ to match
each other. We achieve a CCT of 50ms following this
schedule (calculated by Eq (1)), which is identical to the
optimal CCT in packet switched networks. And it in-
troduces much less multi-hop traffic compared to Ex-
ample 2.
restrict the pre-installed paths to have a hop count less than a

threshold p.3 These paths are desirable because of their short
lengths, and such restriction greatly reduces the number of

routing entries needed. Note that the coflow demand between

a ToR pair often consists of many TCP connections; thus we

can distribute these flows over the desirable paths to match

the coflow reshaping plan accordingly.

3.3 Shaping the Circuit and Coflow Together

Given that neither coflow nor circuit shaping alone can effi-

ciently solve the problem, we focus on jointly shaping both

circuit configuration and coflow traffic demand. More for-

mally, we redefine the coflow scheduling problem as the fol-

lowing joint shaping problem:

Problem 3. (The joint shaping problem) Given a coflow
demand C and a set of feasible circuit configurations {M}, de-
termine the C∗ which can be reshaped from C by multi-hop
routing and the configurationM∗ ∈ {M}, so that the CCT (by
Eq (1)) is minimized.

As the example in Figure 3 shows, joint scheduling brings

extra flexility to find a good match. Compared to circuit shap-

ing, joint shaping is not constrained by the integrality con-

straint. Compared to coflow shaping, the effectiveness of

joint shaping is not constrained by the given circuit configu-

ration. Moreover, such flexibility also enables more efficient

utilization of network resources. As we see in Figure 3, we

achieve the optimal CCT of 50ms while introducing much

less multi-hop traffic compare to coflow shaping (Figure 2).

However, solving the joint shaping problem is non-trivial

because the reshaping of demand matrixC and circuit config-

uration M should be tightly coupled. We design a heuristic

3
This constraint is also considered when calculating the coflow shaping.

Pas de deux: Shape the Circuits, and Shape the Apps too! APNet ’18, August 2–3, 2018, Beijing, China

Algorithm 1 Heuristic for the Joint Shaping Problem

Input:M : the initial circuit configuration calculated by the circuit

shaping; C: the initial coflow demand matrix;

Output: C∗
: the reshaped coflow demand matrix (with the corresp-

onding routing scheme);M∗
the updated circuit configuration;

1: procedure Main

2: M∗
=M , C∗

= C; ◃ Initialization;

3: while true do ◃ Iteratively resolving the bottleneck;

4: Calculate the CCT and Identify the bottleneck pair (s,d).
5: Release_from_S(C∗,M∗,CCT): Release a sending port of

s;
6: Release_towards_D(C∗,M∗,CCT): Release a receiving

port of d ;
7: if both the above subroutines return true then
8: M∗

sd = M∗
sd + 1; ◃ Add one link for pair (s,d) by

connecting the released two ports;

9: Reshape coflow demand matrix C∗
accordingly;

10: else
11: ReturnM∗

and C∗
;

12: procedure Release_from_S(C∗,M∗,CCT)
13: Select the currently least loaded link (s,u) from ToR s;
14: From all the destination ToRs from s:
15: Select a relay node r which minimizes T = max

(
(Csr +

Csu)/(Msr · k), (Cru +Csu)/(Mru · k)
)
◃ Shift the load of (s,u)

to

(
(s, r), (r ,u)

)
via the least loaded relay node r ;

16: if T < CCT then ◃ Determine if reshaping reduces CCT

17: Return true;

18: procedure Release_towards_D(C∗,M∗,CCT)
19: Done in a similarly way as Release_from_S().

that effectively calculates the joint scheduling by iteratively:

(i) releasing under-utilized circuits by reshaping the coflow

demand; and (ii) configuring the released circuits to serve the

bottleneck source-destination ToR pair. We now describe the

main idea by using Example 3. We start from the configura-

tion resulted from the circuit shaping problem (M in Figure 1)

and identify the bottleneck ToR pair that determines the CCT

((D,E) in Figure 1). We then try to release the under-utilized

connections which share the same sender/receiver with the

bottleneck ToR pair (connection A → E in Figure 1). This

can be done by rerouting the traffic on these under-utilized

connections via multi-hop paths composed of other under-

utilized links (reshape the demand (A,E) to (A,B) and (B,E)
as shown in Figure 3). After that, we assign the released ports

to the bottleneck ToR pair (add an extra connection from D
to E) so that the CCT is reduced. We run the above proce-

dure iteratively until the CCT cannot be reduced anymore.

Algorithm 1 describes this in more detail.

4 Preliminary Evaluation

Evaluation Settings We use a realistic workload based on

a one-hour Hive/MapReduce trace collected from a Facebook

production cluster [1]. The trace contains more than 500

0 50 100 1500

20

40

60

80

100

Coflow Demand among Destination ToRs (GB)

C
D

F(
%

)

(a) Traffic distribution within
one coflow

0 200

1

5 10 15

C
D
F(
%
)

(b) CDF of γ

Figure 4: [Evaluation] Traffic pattern within a coflow
can be very biased.

Coflows observed in a datacenter with 150 ToRs. For the

network model, we assume that each ToR has 192 available

ports (i.e., k = 192), which is the case for MegaSwitch [4]. We

set each inter-port connection to carry 1Gbps capacity.

Understanding the Coflow Structure We first study how

the traffic is distributed within a coflow in the Facebook trace.

Note that such coflow structure is directly related to the per-

formance of the scheduling algorithm. For example, in Ex-

ample 1 if all the flows of coflow C have the same size, then

circuit shaping also achieves the optimal CCT. In particular,

the mismatch in circuit shaping tends to be more severe when

the flow size within a coflow follows a biased distribution.

Observation from the Facebook trace validates that the

traffic pattern within a coflow can be very biased. To show

this, we first select a large coflow with widespread communi-

cation among more than 120 ToRs and inspect its structure.

Figure 4a demonstrates how the traffic is distributed among

destination ToRs — 25% of the ToRs receive less than 2GB

data, while another 25% receives more than 6GB.

To show that such a coflow is no corner case, we define

γ as the ratio between the maximum and minimum traffic

demandwithin a coflow among all destination ToRs. Figure 4b

shows the distribution of γ for all coflows with wide-spread

communication pattern
4
. We see that for 40% of the coflows,

some ToR receives 3× data compared to some others. And

20% of the coflows experience a larger bias of 8×.

Effectiveness of Joint Shaping We implement a flow-level

simulator to evaluate the effectiveness of the joint shaping

heuristic in the simplified single coflow case. We evaluate

three algorithms: the optimal solution (calculated by Equation

2), the circuit shaping and the joint shaping. For easy com-

parison, we normalize the achieved CCT of circuit shaping

and joint shaping over the optimal solution, i.e.,

Normalized Comp. Time =
Compared CCT

Optimal CCT

4
Coflows which contain more than 100 subflows with different source and destination.

APNet ’18, August 2–3, 2018, Beijing, China H. Zhang et al.

1 1.2 1.4 1.6 1.8 2 2.2 2.40

20

40

60

80

100

Normalized

C
D

F(
%

)

Circuit Shaping
Joint Shaping

Figure 5: [Evaluation] CDF of the normalized CCT. We
see that joint shaping significantly outperforms the cir-
cuit shaping algorithm.
Smaller values indicate better performance, and a normalized

completion time close to 1 indicates comparable performance

to the optimal solution.

Figure 5 presents comparative CDFs of CCTs for all coflows

with wide-spread communication patterns. We first notice

that circuit shaping performs poorly compared to the opti-

mal solution. In particular, 40% of the coflows finish 1.6×

slower than the optimal. This is because under the biased

coflow structure, the mismatch between the circuit configura-

tion and the coflow structure becomes severe. Note that the

performance of circuit shaping is also the best achievable per-

formance for all algorithms with direct routing (e.g., Sunflow

[12], Solstice [13]) under our evaluation settings.

Moreover, we observe that the simple heuristic (Algorithm

1) for joint shaping approaches the optimal solution, and

significantly outperforms the circuit shaping algorithm. Spe-

cially, 40% of the coflows finish within 1.1× of the optimal,

and 80% are within 1.3×. We also calculate the average nor-

malized CCT. The result shows that joint shaping is within

1.18× to optimal, and outperforms circuit shaping by 30%.

5 The General Case with Multiple Coflows
Coflow scheduling under the general case introduces new

challenges. Specially, since different coflows may favor differ-

ent circuit configurations, the optimal solution (which mini-

mizes the average CCT) should be a sequence of schedules,

where each schedule is characterized by a different circuit con-

figuration, routing, rate allocation and duration. Compared

to the case of coflow scheduling in packet switched networks

(which is strongly NP-hard already [7]), the complexity of

colfow scheduling in optical networks grows exponentially as

we need to perform a joint scheduling of circuit configuration,

routing/rate allocation, and coflow prioritization.

The key to perform efficient scheduling with reasonable

complexity is to find a good way to decouple the problem.

To this end, we break the scheduling problem into three suc-

cessive steps – each determines the circuit configuration,

permutation and rate/routing respectively. And each step is

further transformed into the single coflow scheduling prob-

lems (i.e., Problem 1-3) formulated in Section 3. Similar to

Find a circuit configuration that
effectively minimizes the average CCT

Is it better than
the current one ?

Change
configuration

Determine the permutation
among coflows

Determine the rate and routing
schedule for each coflow

For each time slot

yes

No

S1: Circuit
Configuration

S2: Permutation

S3: Rate/routing

Figure 6: Flow Chart of the Inter-Coflow Scheduling
Framework.

prior work on coflow scheduling [6, 7, 16], we coordinate

coflow information to the central controller at ∼100ms inter-
vals, and run the inter-coflow scheduling framework (Figure

6) at the beginning of every scheduling interval. We briefly

go through each step as follows.

Step 1: Circuit Configuration: Determine an appropriate

circuit configuration for the current time slot is non-trivial.

One intuitive idea is to calculate a circuit that best serves the

aggregated demand of all current coflows. However, this is
not necessarily a good idea, because the circuit can be recon-

figured in the following timeslots. Since different coflows may

favor different configurations, it is probably more efficient if

we first configure the circuit to best serve the small coflows,

and then reconfigure for the large coflows after the small

coflows finish. As a result, there is no need to consider coflows

which will be scheduled after a long time in the current circuit
configuration. Another extreme is to always greedily opti-

mize for the coflow with the highest priority. However doing

so introduces too many reconfigurations, which also greatly

enlarges the average CCT.

Considering the drawbacks of both extremes, we try to

reach a sweet point in the middle – to optimize for the coflows

that are likely to be scheduled in the next T timeslots. The

choice ofT serves as a flexible knob between the two extremes,

and can be effectively tuned via evaluation. By doing so, we

effectively excludes the impact of those far-away coflows,

and at the same time reduces the reconfiguration frequency

by jointly optimize for high priority coflows. To achieve this,

we first find them coflows that are likely to be scheduled in

the next T timeslots. We then consider thesem coflows as an

aggregated coflow Caдд , and try to find a fixed configuration

that well serves their aggregated demand. The problem is

then transformed to the joint shaping problem (Problem 3),

and can be solved using Algorithm 1.

Given the new configuration, we must decide whether to

reconfigure or not regarding the reconfiguration cost. To do

so, we estimate the CCT for each of the m coflows under

Pas de deux: Shape the Circuits, and Shape the Apps too! APNet ’18, August 2–3, 2018, Beijing, China

the new/old configuration respectively
5
. Note that the CCT

estimation can be described by the coflow shaping problem

(Problem 2). We then make the decision based on the aggre-

gated CCT of them coflows.

Step 2: Permutation Given the optimality of the shortest-

first policy in minimizing the average CCT, a natural choice

would be directly adopt the Smallest-Effective-Bottleneck-

First (SEBF) heuristic in Varys [7]. However, SEBF does not

take into account the underlying circuit configuration when

calculating the bottleneck. Note that this is no longer the case

in optical networks, where the bottleneck always depends

on the circuit configuration. Consequently, we extend the

SEBF to CS (configuration-specific)-SEBF by further taking

the circuit configuration and routing into consideration. More

specifically, given the coflow demandC and the configuration

M from Step 1, we calculate theminimumpossible CCT Γwith
coflow reshaping allowed. Note that this is again transformed

to the coflow shaping problem (Problem 2). Coflows are then

scheduled in the smallest-Γ-first order.

Step 3: Routing andRateAllocation Given the circuit con-

figuration (Step 1) and coflow order (Step 2), we can iteratively

calculate the routing and rate allocation. More specifically,

for each coflow in the smallest-Γ-first order, we calculate the
allocation by solving the coflow shaping problem (Problem

2) with the current circuit configuration and residual band-

width. We then update the residual bandwidth according to

the allocation, and calculate for the next coflow.

6 Related Work
Coflow Scheduling in Packet Switched Networks Most

existing coflow schedulers are designed for packet switched

networks [6, 7, 16], while the optical fabric brings two major

challenges. First, the circuit configuration introduces the in-

tegrality constraint, which serves as the major cause of the

mismatch between coflow demand and circuit configuration

as we show in Section 3.1. Moreover, since reconfiguration in-

troduces non-negligible delay in optical networks, the sched-

uler has to decide whether to reconfigure the circuit after

coflow arrival/departure. As shown in Section 5, this greatly

enlarges the solution space and complicates the problem.

Circuit Scheduling We discuss several most related work

in circuit scheduling. Sunflow [12] first studies the coflow

scheduling problem in optical networks. However, it adopts

the assumption that one ToR can only establish one connec-

tion simultaneously, which no longer holds in many current

optical architecture designs [4, 11]. Moreover, Sunflow only

leverages circuit shaping, which is not sufficient with rich

connection among ToRs. Third, preemption is not allowed in

5
The CCTs for the new configuration include an extra reconfiguration delay δ

Sunflow once the circuit is established. However we notice

that it plays an important role in minimizing CCT for multiple

coflows (§5). Eclipse [2] also leverages multi-hop routing for

circuit scheduling, however it does not consider application

semantics such as coflow. Moreover, Eclipse requires the re-

laying ToR to buffer the traffic and transmit in a subsequent

configuration for multi-hop routing. Doing so requires huge

extra buffer and adds at least one extra reconfiguration delay.

In one word, neither Eclipse nor Sunflow answers our moti-

vating question, that how we can best serve the application

traffic demand in start-of-the-art optical datacenter fabrics.

RotorNet [14] proposes a scalable and low-complexity op-

tical datacenter network design with a fully decentralized

control plane. Unfortunately, the decentralized design cannot

be easily extended to perform efficient coflow scheduling.

The spatial structure of coflow naturally requires coordinated

scheduling, and decentralized coflow scheduling remains an

open problem even in packet switched networks [6].

References

[1] Coflow Benchmark Based on Facebook Traces. https://github.com/coflow/

coflow-benchmark.

[2] Shaileshh Bojja, Mohammad Alizadeh, and Pramod Viswanath. 2015. Costly cir-

cuits, submodular schedules and approximate Carathéodory theorems. In SIG-
METRICS.

[3] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping

Zhang, Xitao Wen, and Yan Chen. 2012. OSA: An Optical Switching Architec-

ture for Data Center Networks with Unprecedented Flexibility. In NSDI.
[4] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao,

and Shan Zhong. 2016. EnablingWide-Spread Communications on Optical Fabric

with MegaSwitch. In NSDI.
[5] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: An application layer abstrac-

tion for cluster networking. In Hotnets.
[6] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Scheduling Without

Prior Knowledge. In SIGCOMM.

[7] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-

uling with Varys. In SIGCOMM.

[8] Thomas H Cormen. 2009. Introduction to algorithms. MIT press.

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Process-

ing on Large Clusters. In OSDI.
[10] Nathan Farrington, Alex Forencich, George Porter, Pang-Chen Sun, Joseph Ford,

Yeshaiahu Fainman, George Papen, and Amin Vahdat. 2013. A Multiport Mi-

crosecond Optical Circuit Switch for Data Center Networking. In IEEE Photonics
Technology Letters.

[11] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-

han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconfigurable Data

Center Interconnect. In SIGCOMM.

[12] Xin SunnyHuang, Xiaoye Steven Sun, and TS Eugene Ng. 2016. Sunflow: Efficient

Optical Circuit Scheduling for Coflows. In CoNEXT.
[13] He Liu, Matthew K Mukerjee, Conglong Li, Nicolas Feltman, George Papen, Ste-

fan Savage, Srinivasan Seshan, Geoffrey M Voelker, David G Andersen, Michael

Kaminsky, et al. 2015. Scheduling techniques for hybrid circuit/packet networks.

In CoNEXT.
[14] William MMellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,

Alex C Snoeren, and George Porter. 2017. RotorNet: A scalable, low-complexity,

optical datacenter network. In SIGCOMM.

[15] Guohui Wang, David Andersen, Michael Kaminsky, Konstantina Papagiannaki,

T. Ng, Michael Kozuch, and Michael Ryan. 2010. c-Through: Part-time Optics in

Data Centers. In SIGCOMM.

[16] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, and Yanhui

Geng. 2016. CODA: Toward automatically identifying and scheduling coflows in

the dark. In SIGCOMM.

https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark

	Abstract
	1 Introduction
	2 Background
	2.1 The Network Model
	2.2 The Traffic Model

	3 The Single Coflow Case
	3.1 Shaping the Circuit
	3.2 Shaping the Coflow
	3.3 Shaping the Circuit and Coflow Together

	4 Preliminary Evaluation
	5 The General Case with Multiple Coflows
	6 Related Work
	References

