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ABSTRACT

The increasing number of Internet of things (IoT) and other connected devices has led to a surge
in the amount of data collected and analyzed. Data scientists collect useful insights from these
data through data analysis or machine learning, all of which are performed on distributed big data
infrastructures. Improving the performance and efficiency of such systems can, therefore, improve
user experience and reduce their operating cost.

These big data infrastructures abstract away low-level details such as resource allocation and task
placement decisions and expose simple APIs for the users. Despite simplifying the development
process, the decoupling between applications and infrastructures complicates the optimization
for end-to-end performance and efficiency metrics, as the contextual details and optimization
objectives of applications cannot be expressed using the APIs. We observe that system designers
often optimize only for common system-level metrics such as throughput and latency, inadvertently
ignoring application-level semantics. As a result, these best-effort local optimizations do not always
improve in application-level performance or efficiency. Moreover, the situation is exacerbated as
new emerging applications become more intricate and their interactions with the infrastructures
become more complex.

To alleviate the mismatch, we focus on bringing application-awareness into the infrastructures.
We explore the opportunities of co-optimizing applications and infrastructures for three popular big
data use cases: data analytics, transaction processing, and deep learning, and highlight two ways of
implementing application-awareness: white-box design and black-box design. For data analytics, we
present TERRA which explicitly passes application-level context into the infrastructures, adopting
the white-box design of application-awareness. For transaction processing, it is impossible to
maintain an accurate model of the performance curve capturing the relationship between request
rate and latency, rendering the white-box design infeasible. Therefore, we present KAYAK with a
black-box application-aware design to adaptively arbitrate incoming requests, improving overall
throughput and CPU utilization. For deep learning, the white-box solution is intractable due to
the increasing depth of the neural network. To this end, we also present ZEUS with a black-box
design, adopting a Multi-Armed Bandit algorithm to optimize for faster and more energy-efficient
DL training.

In this dissertation, we demonstrate the adoption of application-awareness as a means of opti-
mizing the end-to-end performance and efficiency of the underlying infrastructures with additional

xiii



information from the application. We discuss two design patterns for implementing application-
awareness, along with their tradeoffs, in the context of three popular big data use cases. The insights
from this dissertation promote the adoption of application-awareness and can help future system
researchers build more performant and efficient big data infrastructures.

xiv



CHAPTER 1

Introduction

In recent years, the growing number of Internet-of-Things (IoT) and other connected devices

has created a surge in the amount of data being generated each day [21, 41]. To cope with that, large

organizations leverage tens to hundreds of datacenters and edge sites [24, 2, 15, 67, 88, 105, 140]

to collect, store and process data such as end-user sessions, monitoring logs, and performance

counters.

Data Collection Data Processing Data Usage

Figure 1.1: Data processing has been the focus of the big data pipeline.

Data scientists gather useful insights from this data typically through a big data pipeline, as

shown in Figure 1.1. In this dissertation, we focus on the most resource-demanding and performance-

sensitive stage of data processing. Specifically, we focus on three popular use cases: data analytics,

transaction processing, and deep learning (DL). Improving the performance and efficiency of this

stage has been a central focus for both industry and academia, with many software systems built to

support the use cases of this stage efficiently [23, 34, 3, 218, 171].
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Figure 1.2: An example of the mismatch between infrastructure-level optimizations and the
application-level objective.

These big data infrastructures sit between the applications and the hardware. They handle and

abstract away low-level details such as resource allocation and task placements while providing

simple APIs for application developers. Although this decoupling between the infrastructures

and applications makes the software development process easier, it creates a gap between the

system and applications. Application developers using the provided API is unable to express their

application-specific performance requirements. Consequently, system designers can only optimize

these infrastructures for generic system-level performance and efficiency metric, which does not

always align with application-level objectives.

For example, for the gradient accumulation process in Distributed DL training (Figure 1.2a), an

application-agnostic fair bandwidth allocation results in longer time spent in this process because

Worker1 would become the straggler (Figure 1.2b). Instead, an application-aware allocation

scheme gives Worker2 more bandwidth to eliminate the straggler, achieving the application-

level objective of reduced completion time. This simple example illustrates that the mismatch

between the application and the infrastructure can hurt application performance. This mismatch is

worsened as the interactions between emerging applications and hardware become more and more

complicated [61, 146, 59, 162].

To build a bridge between applications and infrastructures, this dissertation explores the oppor-

tunities and proposes different means of co-optimizing applications and infrastructures, by bringing

application-awareness into the infrastructures and optimizing for the end-to-end performance and

efficiency metrics.
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Figure 1.3: Big data infrastructures in the scope of this dissertation.

1.1 Background

This section introduces the background knowledge for the three popular big data use cases of

our focus: data analytics, transaction processing, and deep learning.

1.1.1 Data Analytics

By far, analyzing large datasets in a timely and resource-efficient manner has been a primary

focus for more than a decade, with frameworks such as Map-Reduce [3, 69] and Spark [218]

leading the way. Recently, hybrid multi-cloud computing has emerged as a popular deployment

scheme for enterprise customers, with a two-fold increase in deployments over the last few years

[39, 36, 28, 33, 27, 22, 38] In this case, data resides in multiple local and remote sites among which

applications run across – a site can be an on-premise (on-prem) cluster or an off-premise (off-prem)

datacenter – connected by wide-area network (WAN) links. Analyzing the data scattered across

multiple sites brings new challenges such as expensive WAN bandwidth, and regulatory constraints

(e.g., European Union’s General Data Protection Regulation) [175, 130, 14].

1.1.2 Transaction Processing

To keep up with uprising capacity and throughput demand, transaction processing systems have

undergone drastic evolutions in both hardware and software. On the hardware side, it has evolved

from using spinning disks and flash disks to in-memory storage [34, 23], in order to meet the high

data throughput and low access latency requirements from applications such as serverless computing

and web applications. On the software side, non-relational (NoSQL) database system optimized
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for horizontal scaling onto a large cluster of nodes stands out [90] against traditional relational

database (RDBMS). Various types of NoSQL databases are now increasingly being employed for

large-scale data analytics applications, of which key-value stores become the most popular choice in

production environments for their performance and simplicity. Consequently, in-memory key-value

stores [23, 34] comes into the limelight in both academy and industry.

When deployed in a distributed setting, the network latency becomes the performance bottleneck

for these in-memory key-value stores. A recent line of research has been focusing on utilizing

kernel bypass techniques such as RDMA and DPDK to avoid the notoriously slow Linux kernel

networking stack [155, 119].

1.1.3 Deep Learning

Complementary to traditional data analytics, deep learning (DL) has emerged as a new way for

data scientists to comprehend and make sense of the data, with applications in speech processing,

computer vision, natural language processing, recommendation systems, medical applications and

so on [91, 70, 143, 188]. It uses artificial neural networks to mimic the neurons in a brain through

a set of algorithms, in the same way as the traditional statistical linear regression. Running DL

applications involve a large amount of complex matrix algebra operations, which is suitable for

specialized hardware such as Graphics Processing Unit (GPU), Tensor Processing Unit (TPU) and

Field-Programmable Gate Array (FPGA). Of all the specialized hardware, GPU is the most widely

used one for deep learning [99], hence is what we focus on in this dissertation.

Deep learning tasks can be divided by its purpose into two stages: model training where a model

consisting of neural networks is tuned to minimize its prediction error on training data, and model

serving where the model is used to perform predictions. Model training works in an iterative fashion.

In each iteration, the training process operates on a few samples of training data called mini-batch.

It first performs a forward pass with one mini-batch of input data. The error between the outputs of

the forward pass and the desired outputs will be propagated over the model through a backward pass,

where the gradient for each model parameter is computed. Before the end of iteration, the model

parameters will be adjusted using their gradients by the model updating function. This process

repeats for many iterations, until the model reaches a target accuracy.
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1.2 Thesis Statement

Although the decoupling between the infrastructures and applications makes developing appli-

cations easier, it also creates a gap between them. This gap manifests itself in misaligned objectives

between application developers and system optimizers, as application-level semantics and objective

is abstracted away and not expressed at the infrastructure level.

Thesis Statement – This dissertation studies the gap between system-level optimizations and

application-level improvement for big data systems, and introduces application-awareness into the

infrastructure with the purpose of enhancing both performance and efficiency.

In this dissertation, we investigate the potential of improving end-to-end performance by

adopting application-awareness for three popular use cases in big data systems: data analytics,

transaction processing and deep learning. Figure 1.4 illustrates the use cases and the corresponding

chapters.

Projects

Hardware

Chapter 2: Terra
White-box

application-aware

Chapter 4: Zeus
Black-box 

application-aware

Chapter 3: Kayak
Black-box 

application-aware

Data Analytics Transaction Processing Deep LearningApplications

Figure 1.4: Application-awareness in different use cases of big data systems.

We highlight two means of implementing application-awareness:

• White-box design. We first modify both the application and the infrastructure so that the

application-level context is encoded into the API and passed to the infrastructure. Then we

build a precise model of how the infrastructure-level knobs such as routing and rate control

decisions can affect our end-to-end application-level objective such as Job Completion Time

(JCT). Finally, we apply optimization method to this model, which results in choices of

infrastructure-level knobs improving application-level objectives.
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The effectiveness of this approach is heavily dependent on the accuracy of the model as well

as the availability of detailed application-level context, both of which varies among the use

cases. In addition, it can be ad-hoc and hard to implement, as it essentially redefines the

abstraction boundary between the application and the infrastructure.

• Black-box design. We only modify the infrastructure to optimize for application-level objec-

tive, without detailed application-level context. The infrastructure infers application-level

context from real-time signals such as performance counters, and optimizes itself accordingly.

This approach has the benefit of being transparent, i.e., the applications do not need to be

modified. This is important for adoption of the design and its adaptation to new applications.

Moreover, application-level contextual details are not always helpful when it is difficult to

accurately model the performance, especially for complex and intricate applications such as

DL training. For instance, knowing the structure and hyperparameters of a neural network

does not help in predicting the training time until convergence [86].

Next, we discuss the tradeoffs between the two design patterns in the context of the characteristics

and contraints of the use cases. In TERRA, we choose to apply the white-box application-awareness

because the objective - Job Completion Time - can be accurately modeled with application-level

information such as the query execution plan. However, in KAYAK, we choose to apply the black-

box design of application-awareness, because we cannot capture the throughput-latency curve using

an analytical model with a closed-form formula. For ZEUS, it is even more difficult to capture the

relationship between the optimization target and application-level context, because the depth of the

neural network and the stochastic nature of the training process makes modeling performance of

DL applications accurately very challenging. Hence, we also apply application-awareness with the

black-box design in ZEUS.

We highlight our contributions and summarize the results in the next section.

1.3 Summary of Contributions and Results

TERRA We present TERRA, a data transfer framework for hybrid multi-cloud analytics (HMCA)

jobs that simultaneously performs scheduling, path selection, and bandwidth allocation for inter-site
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shuffles in a scalable manner. We formulate it as an optimization problem that minimizes the time

of transferring a WAN traffic matrix, and formally prove its optimality in the offline case. Using

this optimization formulation as a building block, we provide support for online scheduling of

multiple HMCA jobs. We implement our algorithms in a scalable system (TERRA) that integrates

with and complements existing frameworks so that unmodified user-written jobs can transparently

run in hybrid multi-cloud environments. TERRA enforces our algorithm-determined data transfer

plan, i.e. routes, schedules, and rates, efficiently and can quickly detect and react to runtime

dynamics. Evaluations of TERRA with WAN topologies from three major companies and three

industry-standard benchmarks (TPCx-BB, TPC-DS, and TPC-H) show that it outperforms the

state-of-the-art by up to 3.43× for the smallest and up to 32.04× for the largest deployment.

KAYAK Our project KAYAK shows that transaction processing systems can achieve higher through-

put and lower latency with the help of application-level information. In this project, we show that by

proactively and adaptively combining RPC and KV together, overall throughput and CPU utilization

can be improved. We propose an algorithm that dynamically adjusts the rate of requests and the

RPC fraction to improve overall request throughput while meeting latency SLO requirements. We

then design and implement a system called KAYAK. Our system implementation ensures work

conservation and fairness across multiple tenants. Our evaluations show that KAYAK achieves

sub-second convergence and improves overall throughput by 32.5%-63.4% for compute-intensive

workloads and up to 12.2% for non-compute-intensive and transactional workloads.

ZEUS Training deep neural networks (DNNs) is becoming increasingly more resource- and

energy-intensive every year. Unfortunately, existing works primarily focus on optimizing DNN

training for faster completion, without considering the impact on energy efficiency.

In this project, we observe that common practices to improve training performance can often lead

to inefficient energy usage. More importantly, we demonstrate that there is a tradeoff between energy

consumption and performance optimization. To this end, we propose an optimization framework,

ZEUS, to navigate this tradeoff by automatically configuring job- and GPU-level configurations of

recurring DNN training jobs. ZEUS uses an online exploration-exploitation approach in conjunction

with just-in-time energy profiling, averting the need for expensive offline measurements, while
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adapting to workload changes and data drifts over time. Our evaluation shows that ZEUS can

improve the energy efficiency of DNN training by 15.3%–75.8% for diverse workloads.

1.4 Thesis Structure

The remainder of this dissertation is organized as follows. Chapter 2 presents TERRA, an

application-aware data transfer optimizer for hybrid multi-cloud analytics (HMCA) jobs that simul-

taneously performs scheduling, path selection, and bandwidth allocation for inter-site shuffles in a

scalable manner. Chapter 3 presents KAYAK, an application-aware optimizer which proactively and

adaptively combines RPC and KV together to improve throughput and CPU utilization. Chapter 4

presents ZEUS, an application-aware framework for improving performance and efficiency of deep

learning training jobs running on GPU. We conclude the dissertation and discuss future directions

in chapter 5.
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CHAPTER 2

TERRA: Application-Aware Hybrid Multi-Cloud Analytics

2.1 Introduction

The emergence of hybrid multi-cloud computing – with a two-fold increase in deployments over

last few years [39, 36, 28, 33, 27, 22, 38] – can potentially democratize the same for enterprise

customers [8, 16, 10, 1, 19]. In this case, data resides in multiple local and remote sites among which

applications run across – a site can be an on-premise (on-prem) cluster or an off-premise (off-prem)

datacenter – connected by wide-area network (WAN) links to serve a globally distributed audience

(Figure 2.1). Collecting data related to end-user sessions, monitoring logs, and performance

counters, and thereafter analyzing and personalizing this data can significantly improve overall user

experience.

Single-Site Big Data Analytics Analyzing large datasets in a timely and resource-efficient

manner has been a primary focus for more than a decade now, with frameworks such as MapReduce

[3, 69] and Spark [218] leading the way. They have contributed to democratizing big data analytics

by hiding most of the complexity related to machine coordination and scheduling, data transfer,

scalability, and fault tolerance. However, they all assume single-site deployments (i.e., machines are

always in the same on-prem cluster or the same off-prem datacenter), where the bandwidth between

machine pairs is high and often uniformly distributed.

Wide-Area Data Analytics When data is distributed across many sites, applying traditional

big data analytics solutions require organizations to copy remote data to a central location and

analyze it locally [202, 203, 204]. This consumes expensive WAN bandwidth proportional to

the size of the input data, and sometimes may not even be possible due to regulatory constraints

(e.g., European Union’s General Data Protection Regulation) [175, 130, 14]. Recent works have
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focused on developing specialized wide-area/geo-distributed data analytics solutions that take WAN

bandwidth into consideration during query planning, job scheduling, and job execution across

many datacenters [138, 202, 203, 204, 130, 175, 201, 105, 107]. While existing solutions lay the

foundation for analytics over the WAN, they all assume simple network topologies where datacenters

are directly connected and focus primarily on reducing the amount of data going in and out of each

datacenter.

Challenges In case of hybrid multi-cloud analytics (HMCA), not all sites have the same con-

nectivity, nor are they all directly connected. Instead, they use a patchwork of inter-site links with

diverse network characteristics (§2.2).

The heterogeneity in how remote sites are inter-connected raises several challenges (§2.3). First,

for a single job, existing solutions attempt to minimize the total amount of data transfers from

inter-site data shuffles, but they only use a single path out of multiple available ones. This leads

to network underutilization, which, in turn, increases job completion times. Furthermore, existing

solutions cannot effectively schedule inter-site shuffles from multiple concurrent jobs either. Finally,

runtime dynamics such as bandwidth fluctuations and link failures require dynamic readjustments,

but existing solutions optimize jobs only at the beginning of execution.

Our Approach In this project, we make the case for a principled approach toward hybrid

multi-cloud analytics by presenting TERRA, which provides the same familiar interface of existing

big data analytics and wide-area data analytics solutions. Unlike existing solutions, however, TERRA

judiciously manages network bandwidth in a topology-aware manner by leveraging multiple paths

between any two sites, improving the performance of data-parallel jobs corresponding to individual

HMCA queries. As such, it complements and builds on top of existing wide-area data analytics

solutions. TERRA also schedules large data transfers across multiple queries. In both cases, it

dynamically adapts to runtime dynamics.

Implementing and enforcing these, especially for complex SQL analytics queries and large

HMCA deployments, pose scalability challenges in two fronts:

1. Efficient algorithm design: Existing data analytics solutions only leverage a single path between

two remote sites, leading to bandwidth underutilization. Recent multipath approaches from

the networking community (e.g., MPTCP [178]) can utilize multiple paths, but they cannot

efficiently schedule data transfers of HMCA jobs. Simultaneously determining which paths to
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Figure 2.1: Data-parallel jobs in hybrid multi-cloud analytics run over data stored in on-prem and
off-prem sites connected by heterogeneous network links.

take (routing), which job’s data to send (scheduling), and what rate to send data at (rate limiting)

in an efficient and timely manner is an NP-hard problem.

2. Dynamic system design and implementation: Even with an efficient algorithmic solution,

designing and implementing it in a system requires global knowledge and the ability to quickly

enforce updates across many inter-site links to dynamically adjust according to online job

arrivals/departures and runtime dynamics.

TERRA overcomes these challenges by taking an algorithm-system co-design approach that can

scale to large HMCA jobs and WAN topologies.

Contributions We make the following contributions:

1. We propose a scalable algorithm that optimizes inter-site shuffles from complex HMCA jobs

on large WAN topologies connecting many on-prem and off-prem sites. We formulate it as an

optimization problem that minimizes the time of transferring a WAN traffic matrix, and formally

prove its optimality in the offline case. Using it as a building block, we provide support for

online scheduling of multiple HMCA jobs (§2.4).

2. We implement our algorithms in a scalable system (TERRA) that integrates with and com-

plements existing frameworks (anything that can run on Apache YARN) so that unmodified

user-written jobs can transparently run on hybrid multi-cloud environments. TERRA enforces

our algorithm-determined data transfer plan, i.e. routes, schedules, and rates, in an efficient
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Figure 2.2: Overview of the HMCA stack with the proposed addition of TERRA.

manner and can quickly detect and react to runtime dynamics. It does not require any changes

to the network either (§2.5).

3. We evaluate TERRA with WAN topologies from three major companies and three industry-

standard benchmarks (TPCx-BB, TPC-DS, and TPC-H) and show that it outperforms the

state-of-the-art by up to 3.43× for the smallest and up to 32.04× for the largest deployment. We

further break down the performance benefits of its components. We also show that TERRA reacts

quickly to WAN events; it scales well, and its benefits hold across a wide range of parameter

and environment settings (§2.6).

We compare TERRA with related work in Section 2.7.

2.2 Background

2.2.1 Hybrid Multi-Cloud Environment

Local, Cloud, and Edge Sites The core idea of hybrid multi-cloud computing is to pool together

resources across different premises. This is required for addressing a variety of challenges:

1. enabling a global footprint and avoiding vendor lock-in [40];

2. moving data across sites is prohibitive because network bandwidth is limited (e.g., cannot

support large-scale HD video streaming for video analytics [122, 104]) and expensive (up to

$0.13/GB [13]); and

3. policy constraints such as General Data Protection Regulation (GDPR) [14] limiting the transfer

of raw data across regions.

Each site consists of a number of compute machines that are often connected by a high bandwidth
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intra-site local-area network (LAN). The amount of compute resources and their capability can

vary between sites; e.g., edge sites are likely to be smaller whereas a cloud site will likely be larger.

Different sites are connected by WAN links to form a hybrid multi-cloud computing environment.

Inter-Site Network Characteristics On-prem and off-prem sites in a hybrid multi-cloud

environment are connected by a variety of inter-site links:

1. on-prem and off-prem sites are connected by off-prem provider solutions (e.g., AWS Direct

Connect [7] for Amazon EC2 and Azure ExpressRoute [9] for Azure);

2. off-prem and off-prem sites often use the cloud provider’s private software-defined WAN (SD-

WAN) [101, 113] when they belong to the same cloud provider and over the public Internet for

different providers; and

3. on-prem to on-prem connections go through the public Internet or privately leased WAN tunnels.

Bandwidth and latency of individual links vary according to the link type, geographical locations

of sites, and the number of cores in individual (virtual) machines, with bandwidth varying from

468Mbps to 4.9Gbps and latency from 1ms to 400ms [138, 139]. For a given link, WAN bandwidth

typically varies every few minutes [101, 113]. The bandwidth, latency, and availability may also

change due to failures and re-configurations. In short, the inter-site network is heterogeneous and

dynamic.

2.2.2 Hybrid Multi-Cloud Analytics

Executing applications across multiple on-prem and off-prem sites naturally produces data that

are globally distributed, making sense of which can provide great value. We refer to analytics

running in such an environment as hybrid multi-cloud analytics (HMCA).

Life Cycle of an HMCA Job Figure 2.2 provides a quick overview of a simple SQL query’s

life cycle in HMCA. Users submit analytics queries written in familiar higher-level interfaces (e.g.,

SparkSQL [49] and Hive-QL [199]) typically to one central job master that resides in one of the

many distributed sites [203, 204, 202, 175, 130] – this example has three sites. A WAN-aware query

optimizer – Clarinet [201] in this example – picks an ideal query plan to minimize the amount of

WAN transfer – for example, rows from table SS are to be transferred to site B, while rows from CS

will be shuffled over site B’s LAN. Typically, shuffles and joins lead to expensive inter-site transfers,
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while tasks with one-to-one communication between them are executed on the same site to avoid

costly WAN transfers [130]. This WAN-aware query plan is then converted into a physical execution

plan and represented by a directed acyclic graph (DAG). Nodes of this DAG represent computation

stages with many parallel tasks and edges represent stage dependencies and data transfers between

tasks in different sites. The master then launches the corresponding data-parallel job and its tasks in

machines across different sites based on data locality, resource availability, and their dependencies

[108, 203, 204, 202, 201].

WAN Transfers of an HMCA Job As stages complete, the join must take place in site B as

decided by the query optimizer, and an inter-site shuffle is performed by the data transfer layer of

the framework. Indeed, a large amount of data must be transferred across sites even after significant

reductions in the total data volumes by high-quality query planning. This is because the total amount

of data we collect and analyze is increasing rapidly – for example, Alibaba reports processing

exabytes of data in 2019 [105]. Even a 10× reduction as claimed by WANalytics [203, 204], Pixida

[130], or Clarinet [201] would leave tens to hundreds of terabytes of data to be transferred across

many analytics queries.

Existing wide-area data analytics stacks still rely on communication layers of traditional big

data analytics stacks with the high-bandwidth assumption. Because of the high bandwidth, the

inefficiencies of decentralized communication is not a big issue inside a datacenter. However, it

leads to significant inefficiency in an HMCA setting (Section 2.3 has illustrative examples). These

solutions do not provide any scheduling mechanisms either. Finally, data reductions in wide-area

data analytics query optimizers is a one-shot operation, which cannot react to runtime dynamics.

2.2.3 TERRA in the HMCA Stack

We propose TERRA to be a drop-in component of existing wide-area data analytics stacks to

optimize hybrid multi-cloud SQL analytics. It is topology-aware, and it can determine schedules,

routes, and rates of inter-site shuffles of many jobs simultaneously. It is transparent to the users

too – unmodified jobs from Hive- and Spark-based wide-area data analytics frameworks such as

WANalytics and Pixida can take advantage of TERRA by using TERRA’s ShuffleHandler integration

with Apache Hadoop YARN (Figure 2.2(b)). In short, TERRA is an application-aware WAN

optimizer/adapter for wide-area data analytics applications.
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Figure 2.3: Opportunities for HMCA optimization for two jobs running on the scenario shown in
Figure 2.2(a). (a) Job-1 (dark/blue) has one transfer and Job-2 (light/orange) has two (dark/red and
light/orange). (b)–(d) Bandwidth allocations of the two bottleneck links (A→ B and C → B) w.r.t.
time for three policies. Average completion times for (b) default settings in existing frameworks is
14 seconds; (c) using MPTCP instead of TCP is 10.6 seconds; and (d) TERRA finds the optimal
solution in this case, which is 7.15 seconds.
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Figure 2.4: Need for re-optimization in HMCA. (a) On Figure 2.2(a)’s topology, Job-3 (dark/blue)
has 1 transfer and Job-4 (light/orange) has 2 (dark/red and light/orange). Average completion times
(b) for the optimal solution is 8 seconds; (c) after rerouting d42 due to the failure of the A–C link is
18 seconds; (d) for the new optimal solution after the failure is 14 seconds.

Scope and Assumptions TERRA is applicable to any SQL analytics query that existing Hive-

and Spark-based wide-area data analytics frameworks can execute. It is invoked only when there is

an inter-site WAN transfer – primarily due to shuffle/join; existing wide-area data analytics query

optimizers will mitigate the rest – in an HMCA query; otherwise, it remains transparent. As such,

TERRA complements existing frameworks and assumes their presence for query optimization and

job execution.

2.3 Design Challenges

Despite reducing the amount of WAN transfers, existing wide-area data analytics frameworks

face three key challenges when applied to hybrid multi-cloud environments:

1. Bandwidth underutilization from not leveraging multiple paths;
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2. Performance loss due to lack of global knowledge and scheduling; and

3. Suboptimal decisions under runtime dynamics.

We highlight them using simple illustrative examples below. Note that the benefits are much larger

for complex SQL queries in TPC-DS, TPC-H, and TPCx-BB benchmarks (§2.6).

Example Scenario Consider the hybrid multi-cloud environment spanning three sites {A,B,C}

shown in Figure 2.2(a) with the three tables: SS and CS are located in sites A and B, respectively,

and WS is partitioned across two sites A and C. Now consider two queries: Query-1 involves

a join between SS and CS (as shown in Figure 2.2(b)), while Query-2 involves a join between

WS and CS. After applying query optimization techniques such as predicate push down, partition

pruning, and minimizing silos [130, 201], two data-parallel HMCA jobs (Job-1 and Job-2) are

produced corresponding to the two queries. For Job-1, the selected rows of SS are transferred to

site B (|σ(SS)| ≪ |σ(CS)|), where the reducers are located and the join will take place; similarly,

for Job-2, both shards of WS are transferred to B (|σ(WSi)| ≪ |σ(CS)|; i = {A,C}). Sizes of

corresponding intermediate outputs that must be transferred between sites are shown in Figure 2.3a.

Existing Solutions Let us now consider what would happen in frameworks that use the default

single-path TCP for inter-site shuffles. First, because TCP can use only a single path – likely the

shortest one given typical routing protocols – the link between A and C will remain unused. Second,

because it equally divides a link, the bandwidth of the A→ B link will be evenly divided between

transfers for d11 and d21 (Figure 2.3b). Thus, both transfers complete by 8 seconds, whereas d22

completes by 20 seconds with no contention on C → B. Hence, the joins for Job-1 and Job-2 can

start after 8 and 20 seconds, respectively.

A reasonable improvement would be using multiple paths (e.g., MPTCP [76]) to increase

network utilization (Figure 2.3c). In this case, all data transfers are split across the available

paths. Assuming equal split and fair sharing in each link, even though Job-2’s data transfer finishes

faster (12.6 seconds), Job-1’s becomes slightly slower (8.6 seconds). While this provides small

improvement for this example, we observe that not all links are in use all the time; moreover,

giving equal priority to all transfers can hurt performance. Worse, we found existing MPTCP

implementations to perform even poorer than TCP for inter-site shuffles in experiments (§2.6.2).

Finally, because both the alternatives make local decisions, they cannot optimize global, job-level

objectives.

16



Co-Optimization Improves Performance So far we have shown two sub-optimal solutions,

where they optimize only the networking aspect of HMCA. However, by using global knowledge, if

we judiciously decide scheduling of jobs, routing of transfers, and their rates, we can achieve the

optimal average completion time of only 7.15 seconds (Figure 2.3d) and both jobs improve.

Re-Optimization is Necessary Under Dynamics Now consider the same topology as in

Figure 2.2(a) but with two different jobs (Figure 2.4a). Existing frameworks (e.g., Clarinet) will

schedule Job-3 and Job-4 together to finish each in 8 seconds. However, if the link between A and

C fails (or experiences low bandwidth) right after the decision, the network will reroute d42 and the

completion times of Job-3 and Job-4 would become 16 and 20 seconds, respectively.

The optimal solution is dynamically rescheduling Job-3 before Job-4 so that they complete in 8

and 20 seconds.

Note that changes in the data transfer requirements of the jobs themselves can also lead to

runtime dynamics and need subsequent re-optimization.

2.4 TERRA Algorithm Design

TERRA schedules, routes, and rate limits data transfers for HMCA jobs over the WAN topology

connecting on- and off-prem sites. This requires designing both a scalable algorithmic solution that

can quickly make joint scheduling and multipath routing decisions, and a scalable system that can

quickly enforce those decisions across the WAN and dynamically react to runtime variations. In

this section, we focus on the former. Section 2.5 discusses the latter.

2.4.1 Preliminaries

The key building block of TERRA is an optimal algorithm for inter-site shuffle, which is similar

to a traditional data shuffle in data analytics frameworks [69, 218] except that the source and

destination machines are located in far-apart sites.

The WAN itself is a directed graph G = (S, L), where S is the set of remote sites and L is

the set of WAN links connecting those sites – e.g., Figure 2.1 has five sites and seven links. We

represent multiple physical links between sites u and v (u, v ∈ S) with one logical link, which

corresponds to edges (u, v), (v, u) ∈ L with the cumulative bandwidth for each direction. At time
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instant T , the available bandwidth for (u, v) is cT (u, v).

For each inter-site shuffle i, TERRA algorithm takes a data matrix Di = [di(u, v)]|M |×|M |

corresponding to an inter-site shuffle from the job framework, where M is the set of all machines

across all sites. Each entry di(u, v) refers to the amount of data of inter-site shuffle i to be transferred

from machines u to v in two sites. Because each site can involve tens to thousands of tasks/machines

[105], |M | is large and Di can have huge cardinality. Given the input, TERRA determines which

WAN paths to use to transfer each piece of data in Di and at what rate. Note that a data-parallel job

can submit multiple traffic matrices.

2.4.2 Single-Query Optimization

We start by focusing on a single inter-site shuffle and decide which path(s) to take for each of its

transfers and at what rate to send the traffic. To this end, we propose the DataBundle abstraction

to scale down the problem (§2.4.2.1) and use it to design an optimal algorithm (§2.4.2.2). Using

this as a building block, we design a single-query optimization mechanism (§2.4.2.3) as well as a

multi-query scheduling algorithm that schedules traffic matrices from concurrently running HMCA

jobs, considering both offline and online scenarios (§2.4.3).

Scalability Limitation Theoretical works, e.g., a recent 2-appro-ximation algorithm [64],

calculate the rate and determine the paths for every single machine pairs involved in an inter-site

shuffle. This can be impractical due to the huge cardinality of the traffic matrix. In fact, these

works spend tens of seconds on calculation, even in a relatively small HMCA deployment with only

five sites (Figure 2.1). This overhead, which further increases for larger topologies, renders the

approach infeasible for an online system, as scheduling will be triggered frequently by events such

as submission of new jobs and the fluctuation of link capacities.

Collective Optimization Our primary insight is that individual rate allocation of data transfers

between machine pairs is unnecessary. This is because we do not care about when individual

transfer of a shuffle finishes, but when the very last one does.

Consider a simple shuffle on the same topology shown in Figure 2.2(a). Assume there are 5n

map tasks placed in B, 3n map tasks placed in C and 2 reduce tasks placed in A (Figure 2.5a). So

there are a total of 16n machine-to-machine data transfers (also known as network flows). Suppose

for each flow we need to send 1 GB data. Enforcing all flows to finish together – as prescribed
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Figure 2.5: Scaling down the inter-site shuffle problem instance using the DataBundle abstraction.

in datacenter shuffle transfer optimization works [65] – gives all flows 1
n

Gbps bandwidth. This

allocation gives a minimal shuffle completion time of 8n seconds, and both link B → A and C → A

are fully utilized all the time. Instead, if we take all the flows traversing through link B → A and,

for example, schedule them one-by-one in any FIFO order without any gap in between, we can still

achieve the same completion time of 8n seconds.

2.4.2.1 The DataBundle Abstraction

Given the observation, we introduce the DataBundle abstraction that groups individual machine-

to-machine transfers between the same pair of sites as a single, collective site-to-site transfer. The

rates of individual flows within such a group do not directly affect the shuffle completion time,

because the difference comes from when the last one finishes. All these flows have the same source

and destination, and we only need to care about the total rate of the group. This grouping is

complementary to the Silo abstraction for grouping tasks introduced in Pixida [130] and similar to

that of FlowGroup [134].1

Introducing DataBundles brings performance improvements in both calculating and enforcing

bandwidth allocation. Because we only need per-DataBundle allocation, the scale of our problem

formulation is reduced by orders-of-magnitude from O(|M | × |M |) to O(|S| × |S|). For example,

in Figure 2.5b, 16n inter-site transfers are replaced by only two inter-site transfers and 8n+ 2 local

1A Silo is a collection of computation tasks in a site, and a FlowGroup is a collection of flows between two sites;
DataBundle bridges the gap in that a Silo can produce a DataBundle that can lead to a FlowGroup.
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transfers. This significantly lowers our scheduling overhead (§2.6.5).

2.4.2.2 Optimal Inter-Site Shuffle Algorithm

We can now formulate an optimization problem to minimize the completion time of a single

inter-site shuffle on a general network topology. We assume that a DataBundle can be split across

many paths, which (i) enables multipath routing and (ii) leads to a linear program (LP) formulation

instead of a more computationally intensive integer linear program (ILP) formulation.

The algorithm comes in two steps:

1. Scale down traffic matrices using DataBundle; and

2. Solve a linear program that minimizes overall completion time to obtain a set of paths with

fractional rates for each DataBundle.

Step 1: Scaling Down Using DataBundles In this step, we collapse all individual transfers

from the same shuffle with the same (src site, dst site) pair to one DataBundle. We can now

represent an inter-site shuffle i as a collection of DataBundles Bi = [bi(u, v)]|S|×|S|, where |bi(u, v)|

represents the total amount of WAN transfers of this shuffle from machines in site u to machines in

site v.

Step 2: Finding Paths and Rates We now determine the paths and rates of individual inter-site

DataBundles of the i-th inter-site shuffle to minimize its completion time (Γi) in the offline case.

Recall that we are dealing with a single query. Here Γi, the completion time of query i, is defined

as:

Γi = max
k

T (bki ), bki ∈ Bi,

where bki is the k-th DataBundle, and T (·) is the completion time of a DataBundle (0 when the

DataBundle is empty). Hence, the slowest DataBundle bki ∈ Bi determines Γi. Our objective is

given as:

Minimize Γi. (2.1)

Let fk
i (u, v) be the load on edge (u, v) for DataBundle bki . To minimize Γi, we enforce equal rate

of progress for all DataBundles. In other words, for each DataBundle, we ensure that it makes 1
Γi

progress every time unit. Flow conservation and capacity constraints are enforced with the following

linear constraints.
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∑
u∈S

fk
i (u, v)−

∑
w∈S

fk
i (v, w) =


|bki |, v = dst(bki )

−|bki |, v = src(bki )

0, otherwise

∀v ∈ V (2.2)

∑
k

fk
i (u, v) ≤ Γi · cT (u, v) ∀u, v ∈ S (2.3)

fk
i (u, v) ≥ 0 ∀u, v ∈ S,∀k

Constraint (2.2) ensures flow conservation, while Constraint (2.3) captures the total bandwidth

available for the total time horizon of Γi from time instant T .

For a certain LP solution, we schedule DataBundle k at a rate of fk
i (u,v)

Γ
on link (u, v) – this

ensures that the rate of a DataBundle from its source and to its destination is proportional to its

volume. More importantly, this reserves the maximum amount of bandwidth possible for other

shuffles that are considered later without sacrificing its own completion time, which is beneficial

when dealing with multiple inter-site shuffles (§2.4.3).

If Optimization (2.1) has a feasible solution (it will always have a solution unless certain

DataBundle cannot be routed at all), it creates a matrix fki = [fk
i (u, v)]|S|×|S| for each DataBundle

corresponding to its allocations on individual links of the WAN. Because fk
i (u, v) can be fractional,

a DataBundle can be subdivided across many paths from u to v. We enforce this in our system

design (§2.5).

Optimality Formally, we prove the following.

Theorem 1. Optimization 2.1 optimizes the minimum Γi.

Proof. First, we prove that Optimization 2.1 can give a valid solution that finishes every DataBundle

by time Γi. Constraint (2.3) ensures that the total bandwidth usage on link (u, v) is
∑

k
fk
i (u,v)

Γi
≤

cT (u, v). Flow conservation is achieved similarly. The total transmission for DataBundle k is the

following:

Γi ·

(∑
u∈S

fk
i (u, src(bki ))

Γi

−
∑
w∈S

fk
i (src(bki ), w)

Γi

)
= |bki |.

Now, consider any schedule Ŝ (even if we do not use DataBundles); we prove that it needs Γi
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Input: Inter-Site Shuffles S, WAN G
Output: Bandwidth Allocation

1 Procedure allocBandwidth()
2 Scale down G by (1− α) ▷ Scale down network bandwidth to leave headroom.
3 SFailed = ∅ ▷ Shuffles that cannot be scheduled.

4 forall Bi ∈ S do
5 Γi, f

k
i = Solve Optimization (2.1) for Bi on G

6 if Γi = −1 then ▷ Ci cannot be scheduled completely
7 SFailed = SFailed

⋃
Bi

8 continue
9 Pk

i = {End-to-end paths from fki allocations}
10 G = Updated G by subtracting fki allocations

11 B∗ =
⋃

B for all B ∈ SFailed
12 Allocate B∗ on G using MCF ▷ Work conservation
13 Allocate S \B∗ on G using MCF

14 Procedure minimizeCCTOffline(Inter-Site Shuffles S)
15 S′ = Sort S by increasing Γi

16 allocBandwidth(S′, G)

Algorithm 1: Offline Multi-Query Optimization

amount of time to transfer all data in that shuffle. In fact, let f̂k
i (u, v) denote the total amount of

transmission through link (u, v) for demands that originate from src(bki ) and go to dst(bki ); then

clearly f̂k
i (u, v) satisfies Constraint (2.2). Suppose this schedule finishes in time Γ̂i, then the

total data transmission on link (u, v) is bounded by Γ̂i · cT (u, v), which satisfies Constraint (2.3).

Therefore, Ŝ corresponds to a solution to the LP above. According to the optimality of the LP

solution, Γi is as good as Γ̂i.

2.4.2.3 Support of Pipelined Workloads and Dynamic Traffix Matrices

Many data analytics jobs form DAGs of computation stages with communication stages in

between [5, 110, 218, 4, 49]. Job masters can submit requests for each shuffle in a DAG to TERRA

as dependencies are met.

Job masters can also submit a partial traffic matrix and update it over time as more data becomes

available. This is useful when the preceding computation tasks do not finish at the same time. In
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this case, TERRA tries to finish all the submitted transfers together, eventually finishing the entire

traffic matrix. Our evaluation shows that this simple strategy performs well (§2.6).

2.4.3 Multi-Query Optimization

In this section, we focus on scheduling inter-site shuffles (S = {Bi} after converting to

DataBundles) from multiple concurrent queries. Unlike a single shuffle, scheduling multiple

shuffles in an optimal manner is NP-hard even when all of them start together, their traffic matrices

are known a priori, and the WAN has |S|2 links directly connecting all S sites [64]. A naive

approach that treats all shuffles as one would not work, as it gives the same completion time for all

shuffles, though some of them could be finished earlier. Given the intractability of the problem, we

focus on designing an efficient offline heuristic; we then extend it to online scenarios.

2.4.3.1 Offline Scheduling

Given multiple ongoing inter-site shuffles over the same shared WAN topology, scheduling one

can impact the completion times of all others that are scheduled afterwards. Consequently, a natural

extension of the shortest-remaining-time-first (SRTF) policy is sorting them by their Γ values and

scheduling them in that order (MINIMIZECCTOFFLINE in Pseudocode 1). This requires solving

O(N) instances of Optimization (2.1) during each scheduling round, which is activated by a job

arrival, completion, and runtime WAN events. We schedule a shuffle if all of its DataBundles can

be scheduled simultaneously.

Ensuring High Utilization In some cases, the WAN may still have under-utilized links after

scheduling all shuffles that can be scheduled in their entirety. We then try to allocate the remaining

bandwidth to SFailed by running a max-min multi-commodity flow (MCF) formulation (line 12,13

in Pseudocode 1). This ensures work conservation (i.e., all available bandwidth has been allocated)

and maximizes WAN utilization.

2.4.3.2 From Offline to Online

So far, we have assumed that all the shuffles arrive together and are known a priori. However,

in practice, they arrive over time as DAG dependencies are met in each of the HMCA DAGs.

Additionally, WAN links can fail and its bandwidth can fluctuate. Scheduling them in the FIFO
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order is a simple solution, but it can result in head-of-line blocking – i.e., a large transfer can slow

down many smaller ones behind it.

Preemption is a well-known technique to minimize head-of-line blocking. However, it can lead

to starvation – a steady stream of small shuffles can keep preempting a larger inter-site shuffle and

hurt a large job’s completion time.

Starvation-Free Preemption We allow inter-site shuffles with smaller expected remaining

completion times to preempt larger ones to avoid head-of-line blocking. Whenever a new shuffle

arrives, we sort all unfinished shuffles by their expected remaining completion time, and prioritize

scheduling the smaller ones. To avoid starvation, we guarantee each one to receive some share of

the network. Specifically, α fraction of the WAN capacity is left as headroom and shared between

preempted shuffles (line 2 in Pseudocode 1). By default, α = 0.1.

Scalable Online Scheduling We use the offline algorithm as a building block for our online

algorithm. For each round of online scheduling, we run the offline optimization based on the most

up-to-date information assuming no knowledge of the future. Therefore, re-optimization is needed

whenever this information is outdated due to the events such as the following:

1. New shuffles being submitted as dependencies are met;

2. DataBundle finishes;

3. Shuffle finishes because all its DataBundles finish;

4. Runtime WAN topology changes due to bandwidth fluctuations/failures.

Running the offline algorithm upon every event has high complexity. TERRA avoids this by

aggregating multiple events and then rerunning for all of them together. For WAN bandwidth

fluctuations, we consider a change of 25% of the initial bandwidth to be the threshold for significant

bandwidth change that causes a rescheduling, filtering out short-term perturbations [101].

2.5 TERRA System Design

So far we have focused on designing a scalable algorithm for optimizing data transfers from

inter-site shuffles of HMCA jobs (§2.4). In this section, we discuss how to implement the solution in

a scalable manner at the individual machine level. Furthermore, we consider how to make it robust
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Figure 2.6: TERRA architecture. HMCA jobs interact with TERRA using a client library. TERRA

controller performs joint scheduling, path selection, and rate determination. Its decisions are
enforces by TERRA agents that also decouple inter-site data transfers from intra-site transfers.

to runtime WAN variabilities. We start with an architectural overview of the whole system and

then provide insights into designing individual components. We conclude with details on TERRA’s

implementation and integration with Apache YARN.

2.5.1 Architectural Overview

TERRA has two primary components (Figure 2.6). A logically centralized TERRA controller

orchestrates all data transfers. In each site, a set of TERRA agents coordinate with the controller

and transfer data on behalf of the jobs. Interactions between them can be summarized as follows:

1. Job masters submit traffic matrices corresponding to inter-site shuffles to the TERRA controller

using the TERRA API. An HMCA job can submit multiple traffic matrices as their dependencies

are met.
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2. The controller maintains an up-to-date, global view of the WAN2and ongoing transfers. Given

these, it computes which traffic matrices to schedule, which paths to use, and at what rates data

should be sent via specific paths.

3. Finally, the controller sends path and rate information to corresponding TERRA agents, which

enforce rate limiting across multiple paths between sites. Inside each site, the agent acts as a

relay to the reducer machines and transfer data while taking into machine-specific bandwidth

into account. As such, the agent decouples inter-site transfers from intra-site ones.

The entire process takes place in an online manner.

2.5.2 Need for Global Knowledge

In TERRA, all scheduling and routing decisions are made by its centralized master. This is

because making such decisions without global knowledge can lead to arbitrarily worse perfor-

mance [163, Theorem 5.1 on page 3].

Naturally, TERRA’s centralized design brings scalability concerns to its design forefront both

during its normal operations, where every arrival or departure of a job can cause rescheduling,

and in the presence of dynamics such as WAN bandwidth fluctuations and failures that also

require rescheduling. Each rescheduling round requires a central computation, followed by the

dissemination and enforcement of decisions. We discussed the scalability improvements at the

algorithmic level using DataBundles in Section 2.4, and we discuss the latter below.

2.5.3 Scalability

Minimizing Scheduling Overhead The total number of entries in each traffic matrix adds

significant time complexity to an integer linear program-based solution. Consequently, TERRA

compresses the problem and removes the integral constraints, leading to a practical solution (§2.4).

Each scheduling round takes few 100s of milliseconds for smaller topologies with less than 10

sites, and a second or so for larger topologies with 10s of sites (§2.6.5). Given that many HMCA

jobs will deal with massive datasets [105], TERRA is not time-constrained in decision-making and

dissemination. We expect seconds-duration jobs to not use it at all because the overhead of managed

2The Network Manager interacts with the underlying network substrate, which is either an SD-WAN, when available,
or an application-layer overlay.
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transfers will not be worthwhile.3 This is similar to how modern WANs do not throttle interactive

services [101, 113].

Restricting the Number of Paths (k) Running an unconstrained MCF instance may result in

path/route assignments that require many updates throughout the network. As such, TERRA provides

operators the opportunity to constrain the maximum number of paths to consider between any pair

of sites. Operators can set any (sets of) fk(u, v) = 0 to enforce such constraints in TERRA (§2.6.6).

The value of k also dictates how many network connections TERRA must maintain between agent

pairs.

Minimizing Rule Updates in the WAN In the context of TERRA, an additional challenge

is minimizing expensive rule updates throughout the entire WAN caused by route changes [101].

Instead of setting up new rules for each flow, TERRA maintains a set of single-path persistent flows

between each pair of sites and sets up only one set of rules for each persistent flow. The controller

sets up forwarding rules in the SD-WAN to enforce their paths. Directing a data transfer through

a specific path is then simply reusing corresponding pre-established flows. To completely avoid

expensive rule updates, TERRA reuses persistent connections for each of the k paths between two

remote sites and performs communication on behalf of the applications (§2.5.5.2). WAN states

change only when these flows are initialized or reestablished after failures. A collateral benefit of

this approach is that TERRA uses only a small number of rules in each switch – e.g., up to 168 in a

switch for the SWAN [101] topology in our evaluation.

2.5.4 Robustness to Dynamics

Failures of TERRA agents do not permanently affect job executions because frameworks can fall

back to default transfer mechanisms. States in TERRA agents can be rebuilt upon restart when they

contact the controller. Failure of the TERRA controller is tied to that of the framework controller. Its

states can be rebuilt after all the TERRA agents and job masters reconnect.

TERRA is robust to WAN events such as link or switch failures and large bandwidth fluctuations

from background traffic, because it monitors and reschedules according to the latest WAN state.

Upon such events, TERRA updates its internal topology representation, recomputes the set of viable

3Big data jobs typically follow heavy-tailed distributions [201]; there are many small jobs, but footprint is not large
enough to affect the rest.
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Figure 2.7: Microsoft, Google and AT&T topologies used in evaluation.

paths between pairs of sites, and updates corresponding schedules. The entire process takes a small

fraction of a typical HMCA job’s duration (§2.6.4).

Because data transfers are decoupled from the jobs, we do not have to consider sender (e.g.,

Map) task failures. If a receiver is restarted in another machine of the same site upon failure, TERRA

API supports updating destination(s) of a submitted traffic matrix.

2.5.5 Implementation Details

2.5.5.1 Framework Integration

We have implemented TERRA in about 10,000 lines of Java code including integrations with

Apache Hadoop YARN [200]. It is open-source.

Essentially, TERRA substitutes the ShuffleHandler of Apache Hadoop. TERRA master runs in

the same site as the Application Master of HMCA jobs. When Map tasks finish, instead of a shuffle

request, the Application Master submits a traffic matrix request to the TERRA controller. TERRA

informs the Application Master after the traffic matrix has completely been transferred.

2.5.5.2 Network Integration

WAN topologies have many redundant paths, and TERRA adopts multipath routing to minimize

transfer times and maximize WAN utilization. Enforcing multipath rate allocations of TERRA’s

optimizer poses several practical challenges.

1. Multipath Transfers Using Many Single-Path TCP Connections The first challenge is imple-

menting a multipath transport across the WAN. We note that existing MPTCP implementations

[178] perform poorly when deployed in an HMCA setting (§2.6.2). So we build a multipath data

transfer layer on top of single-path TCP. TERRA creates an application-layer overlay network
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over the WAN using persistent connections between agents. For each path between each agent

pair, one or more persistent TCP connections are maintained. All data transfers happen over

these pre-established connections. We implement TERRA on top of an SD-WAN. The routing

of these pre-established connections are enforced by the SD-WAN controller. During an offline

initialization phase, the TERRA controller generates the corresponding forwarding rules for each

TCP connection identified by the TCP 4-tuple, and installs these rules to the SDN switches via

the SD-WAN controller.

When an SD-WAN is not available, the routing can still be enforced via static routing rules in

the application layer overlay, such as using Linux iptables.

2. Handling WAN Latency Heterogeneity Emulating multipath transmission over individual TCP

flows brings a new challenge. Because of heterogeneous latencies between pairs of sites, such

multipath transmissions can incur many out-of-order data chunks on the receiver side. TERRA

mitigates this by efficiently using the shuffle destination files in Hadoop – that are stored on

disk – as large reordering buffers. As TERRA substitutes the ShuffleHandler of Apache Hadoop,

it writes out-of-order data chunks directly into the destination file – each chunk is sent reliably

over single-path TCP but there is no ordering requirement across two chunks taking different

paths. It informs the application only after all the chunks in the entire shuffle destination file has

been received.

3. Rate Enforcement in TERRA Agent An additional challenge is enforcing rate allocation for

each DataBundle in the TERRA agent. TERRA maps a DataBundle across multiple end-to-end

TCP flows, each with a unique combination of a sending agent, a receiving agent, its sending

rate, and the path. When a DataBundle is scheduled to start, be preempted, or changes rate, the

controller informs its sending agents, which transmit data through pre-established connections

for each path at designated rates. TERRA agents perform rate limiting via the RateLimiter

provided by the Guava library [17].

2.6 Evaluation

We evaluate TERRA on three WAN topologies and three benchmarks/industrial workloads in

testbed experiments and large-scale simulations. Our key findings are as follows:
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• TERRA outperforms the state-of-the-art by up to 3.43× for the smallest and up to 32.04× for

the largest deployment. Median (95th) percentile improvements are up to 6.49× (2.86×) and

28.02× (13.40×) (§2.6.2).

• It improves WAN utilization by up to 1.76× (§2.6.3).

• It is robust against real-time network failures (§2.6.4), its controller can scale to large topologies

(§2.6.5), and it performs well under different parameter settings (§2.6.6).

2.6.1 Methodology

WAN Topologies We consider three HMCA deployment scenarios with real-world topologies

(Table 2.1 and Figure 2.7):

Topology
Latency (ms) Bandwidth (Gbps)
Min Max Min Max

Microsoft [101] 40 200 5 10
Google [113] 30 200 10 100

AT&T [6] 10 100 10 100

Table 2.1: HMCA configurations used in our evaluation.

We use geographic distances to calculate link latencies and estimate link bandwidth according

to the gravity model [182], resulting in heterogeneous bandwidths and latencies.

Workloads We use three industry standard benchmarks for data analytics – TPC-DS, TPC-H,

and TPCx-BB [37]. In each run of the benchmarks, we choose jobs randomly from one of the

corresponding benchmarks and apply the arrival rates from that in production traces [35], because

the benchmarks do not have arrival distributions.

We vary the database scale factor of the queries from 40 to 100 – so that each job lasts from few

minutes to tens of minutes – and create workloads with 400 jobs from the corresponding benchmark.

The input tables are randomly spread across the different geographical regions, similar to prior

studies [175, 201, 202]. Table 2.2 shows the average shuffle count of individual jobs in these

benchmarks.

Baselines We compare TERRA against the following:

1. Default: Default TCP-based shuffle service in Apache YARN, which is used by most wide-area

data analytics frameworks.
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Workload TPCx-BB TPC-DS TPC-H
Avg. shuffle count per job 5.49 4.53 5.01

Table 2.2: Average shuffle count of jobs in our TPC workloads.

2. MPTCP: We replace TCP in Default with MPTCP v0.94, and keep the default setting shipped

with Linux 4.14.70.mptcp, with net.mptcp.mptcp path manager set to fullmesh.

3. Siphon [149]: A recent WAN traffic manager for wide-area data analytics frameworks.

4. [64]: A 2-approximation offline algorithm.

Jobs are executed by Apache Tez [5] after applying site selection/task placement-related single-

query optimizations proposed in WANalytics, Pixida, and Clarinet to minimize WAN transfers.

Metrics Our primary metric to quantify performance improvement is job completion time (JCT),

and we use average WAN utilization to quantify the efficiency of the compared solutions.

Testbed Setup We build a testbed according to the Microsoft topology, with 10 machines in

each site. TERRA controller runs on a host inside the site that minimizes the control message

latency to all other sites. Each site has one switch, represented by a machine running one Open

vSwitch instance. The switches are connected by VLANs, on top of a physical 40Gbps switch. The

bandwidth and latency constraints are enforced by Linux Traffic Control (tc).

Simulator We conduct large-scale evaluations using a detailed flow-level simulator that imple-

ments the same logic as in the actual TERRA controller. We use the simulator to evaluate TERRA in

larger deployment scenarios where cost of testbed experiments is prohibitive; more importantly, we

use it to compare against solutions whose system implementations are not open-source. The simula-

tor simulates an ideal network without considering packet-level behavior such as TCP slow-start

and packet reordering, as packet-level simulation for such a large-scale network is infeasible. In the

simulator we model the I/O and computation time in direct proportion to the size of shuffle data. In

our simulation, we use a default of 200MB/s disk throughput per host.

We verify the fidelity of our simulator by confirming the job completion time (JCT) of TERRA

with the testbed results. However, the simulator systematically overestimates the performance of the

baselines such as Default and MPTCP, because it does not expose the issues of exacerbated packet

reordering for these baselines. Hence the simulation shows a “lower bound” of performance gain
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Figure 2.8: [Testbed] Improvement of job completion time (JCT) using TERRA w.r.t. Default and
MPTCP on the Microsoft topology.
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Figure 2.9: [Testbed] JCTs of individual jobs on the Microsoft topology.

using TERRA when compared to testbed experiments.

2.6.2 HMCA Performance Improvements

We evaluate TERRA on our testbed for Microsoft topology to examine its impact on JCT and

WAN utilization, and we evaluate Google and AT&T topologies using simulation due to cost

concerns.
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Topology Microsoft Google AT&T
Workload TPCx-BB TPC-DS TPC-H TPCx-BB TPC-DS TPC-H TPCx-BB TPC-DS TPC-H

Default
Avg. 1.78× 2.16× 2.53× 9.79× 12.45× 16.63× 8.64× 8.98× 9.57×

Median 3.87× 3.36× 6.49× 9.23× 11.83× 28.02× 10.46× 12.65× 17.19×
95%-tile 1.57× 1.63× 1.65× 8.82× 13.40× 11.93× 10.61× 7.41× 7.15×

MPTCP
Avg. 1.30× 1.25× 1.28× 2.77× 2.88× 3.24× 3.75× 3.03× 2.82×

Median 2.88× 2.15× 3.02× 3.05× 3.03× 4.44× 4.44× 4.97× 5.07×
95%-tile 1.15× 0.90× 0.86× 2.49× 3.51× 2.96× 5.24× 2.32× 2.26×

Siphon
Avg. 1.19× 1.34× 2.12× 7.30× 11.57× 23.38× 10.08× 16.64× 32.04×

Median 1.45× 1.13× 1.47× 3.26× 3.45× 6.09× 9.87× 9.99× 12.59×
95%-tile 1.24× 1.14× 2.25× 7.26× 21.03× 43.29× 11.88× 23.05× 35.07×

Table 2.3: [Simulation] Improvements in the average, median, and 95th percentile JCTs using
TERRA w.r.t. baselines.

2.6.2.1 Improvements in the Microsoft Deployment

Figure 2.8 shows that TERRA improves the average JCT by at least 2.19× in comparison to

Default (i.e., single-path, fixed-route TCP). At the 95th percentile, the improvement is at least

2.12×. Note that these numbers include the overheads of schedule computation, preemption, and

rescheduling messages from the controller.

Figure 2.9 presents the CDFs of JCTs for all jobs across workloads. Except for the very short and

very long jobs, TERRA’s improvements are even larger as demonstrated by the median improvement

of at least 2.57×. The former are dominated by other overheads outlined above, while the latter use

all available bandwidth with little room for optimization.

Next, we evaluate the same scenario in Microsoft topology in the simulator to understand the

fidelity of our simulator. We observe that w.r.t. Default, TERRA improves the average JCT by

1.78×–2.53× (Table 2.3), which is not far from the improvements observed in our testbed.

MPTCP We run MPTCP v0.94 using the default configuration and the same configuration for

TCP sockets as in Default. Surprisingly, MPTCP performs even worse (Figure 2.9). The reason

for this anomaly is high variations in end-to-end latencies between different paths in the Microsoft

topology. This results in more out-of-order packets, which may require significantly larger buffers to

be reordered before sending up the stack [68]. In contrast, TERRA writes out-of-order data chunks

to the destination file and informs the application after the entire file has been transferred.

Overall, although TERRA’s improvements over MPTCP is 1.25×–1.30× in simulation, its

real-world improvement is much larger in experiments (11.43×–13.46×). This is because our

conservative simulator does not consider the out-of-order packet problem.

Siphon Finally, we compare against a recent WAN optimization solution for wide-area data
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Figure 2.10: [Testbed] Improvement of average JCT w.r.t Default using TERRA, Scheduling Only,
and Net-Opt Only.

analytics called Siphon [149]. We find that TERRA outperforms Siphon by 1.19×–2.12× on the

Microsoft topology and up to 32.04× for larger topologies. This is because (i) Siphon suffers from

starvation and head-of-line blocking which is reflected in the high 95%-tile JCT, and (ii) it has high

scheduling overhead due to its Monte Carlo simulation-based design (§2.6.5).

2.6.2.2 Performance Improvements Breakdown

We break down the performance improvements of TERRA by incrementally enabling the

optimizations applied. Essentially, the optimizations in TERRA are two-fold: (i) application-aware

scheduling and (ii) networking optimizations based on application layer multi-path routing. In

Figure 2.10, we run experiments while independently enabling only the scheduling optimization

(Scheduling Only) or only networking optimizations (Net-Opt Only), and calculate the improvement

of average JCT. As can be seen, the performance improvements of TERRA comes from both the

scheduling and networking optimizations, with each contributing almost equally in significance for

TPC-H and scheduling contributing more in TPCx-BB and TPC-DS.

2.6.2.3 Improvements in Larger Topologies

TERRA’s improvements increase as topologies become larger with more paths between any pair

of sites. Across the baselines, TERRA improves the average JCT by 2.77×–23.38× in Google and

2.82×–32.04× in AT&T with similar median and 95th percentile improvements (Table 2.3).
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Workload TPCx-BB TPC-DS TPC-H
Improv. over Default 1.76× 1.49× 1.32×

Table 2.4: [Testbed] WAN utilization improvement using TERRA.

Workload TPCx-BB TPC-DS TPC-H
Avg. Breakeven Duration (s) 11.75 15.32 14.84

Table 2.5: [Testbed] Average duration of jobs that run faster with Default than TERRA

2.6.2.4 Impact of Workloads

TERRA’s improvements are evident across all workloads. To dig deeper, we calculate the

Pearson’s correlation coefficients (r) between TERRA’s improvements w.r.t. the Default baseline

and total WAN utilization for all ¡topology, workload¿ combinations. The result shows consistent

negative correlations (−0.05 to −0.39) across the board, suggesting that smaller jobs see more

benefits than the bigger ones due to the shortest-first nature of TERRA’s scheduler.

2.6.2.5 Which Jobs Should Bypass TERRA?

Even though smaller jobs are favored by the scheduler, the smallest jobs should bypass TERRA

to avoid the overhead of scheduling and orchestration. To find the watershed point, we filter out jobs

that run faster with Default than TERRA and calculate their average duration, as shown in Table 2.5.

This result suggests that jobs shorter than tens of seconds should not be submitted to TERRA.

2.6.2.6 How Far are We from the Optimal?

Because calculating the optimal solution for this problem is infeasible, we compare it against

the recent 2-approximation offline algorithm [64] instead. We found that TERRA performs

1.14×–1.16× better than the 2-approximation algorithm.

2.6.3 WAN Utilization Improvements

As is shown in Table 2.4, TERRA improves the WAN utilization by at least 1.32× w.r.t. Default.

This improvement comes from the multi-path routing of TERRA. Note that the job-level JCT
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Baseline Topology TPCx-BB TPC-DS TPC-H

MPTCP
Microsoft 1.12× 1.14× 1.06×
Google 1.22× 1.14× 1.09×
AT&T 1.42× 1.34× 1.76×

Default
Microsoft 1.14× 1.19× 1.06×
Google 1.37× 1.16× 1.11×
AT&T 1.53× 1.34× 1.77×

Siphon
Microsoft 1.16× 1.22× 1.21×
Google 1.39× 1.20× 1.38×
AT&T 1.56× 1.67× 2.53×

Table 2.6: [Simulation] WAN utilization improvement.

improvement (§2.6.2) is higher than the WAN utilization improvement, because the JCT has an

additional boost from scheduling.

Table 2.6 shows the improvements in WAN utilization using TERRA w.r.t. all three baselines for

all ¡topology, workload¿ combinations. TERRA achieved 1.06× to 2.53× higher utilization across

all combinations. Note that similar to performance improvements, these simulated improvements

are also a “lower bound”, as the simulator does not capture packet-level behaviors.

2.6.4 Reactive Re-Optimization Upon Failure

We evaluate TERRA’s robustness upon failure by a case study in our testbed. Figure 2.11 shows

a scenario where one link (LA-NY) failed when there are two jobs {Job 1, Job 2} running, and

Figure 2.12 shows the bandwidth allocation change throughout this process. Note that we set α = 0

for ease of exposition.

In this case, Job 1 has a smaller volume and thus higher priority than Job 2. TERRA reacts

to the link failure within 10 seconds and preempts Job 2 (Figure 2.11b), minimizing the impact

of link failure to Job 1’s throughput. After the completion of Job 1, TERRA re-schedules Job 2

(Figure 2.11c). Finally, when the failed link is reinstated (Figure 2.11d), TERRA adds a new path

for Job 2.
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Figure 2.12: [Testbed] WAN throughput of the two jobs in Figure 2.11 on the LA–NY link as it
cycled through failure and recovery states.

2.6.5 Complexity and Scalability

In our experiments, we run TERRA controller on a machine with two 2.6GHz Intel Xeon Gold

6142 CPU and measured the number of LP computations and total time spent for each scheduling

decision. For TPCx-BB on Microsoft topology, for each schedule, TERRA needs to solve 28.4 LPs

on average, taking 74.43 ms. For the same workload on AT&T topology, each schedules takes

589.1 ms to solve 31.46 LPs on average (2.991 s to solve 52 LPs at the 95th percentile). Given that

many jobs last for a few minutes, this overhead is acceptable.

We also compare TERRA against Siphon [149]. Siphon is highly computationally intensive,

with a complexity of O(nd) for the Monte Carlo Simulation-based scheduling [149]. For the Siphon
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Figure 2.13: [Simulation] Improvements in the average JCT and utilization using TERRA w.r.t.
Default on AT&T topology as the number of paths between two sites (k) is varied.

simulation, we choose n = 100 and d = 2 which is too small to guarantee good searching result.

However, even with this minimal parameter setting, Siphon is 7.15×–17.61× slower across all

topologies. For n = 100 and d = 3, Siphon is 763×–1649× slower, making it infeasible to deploy

to online systems.

Finally, we compare our online algorithm with an offline-only 2-approximation algorithm [64]

which is also based on solving an LP. Running the offline algorithm with TPCx-BB on the smallest

Microsoft topology takes more than 2 days to complete, whereas our online algorithm takes only

11.2 min. This huge difference in overhead comes from their different LP formulations. In the

offline algorithm, the number of variables in the LP is approximately |Jobs| · |Links| · |Intervals|,

compared to |Jobs| · |Links| in our proposed online algorithm. Therefore, for any LP solver that

takes Ω(n) time, the time complexity of the offline algorithm is higher by a factor of Ω(|Intervals|).

This difference can be very large depending on the granularity and accuracy requirements for the

offline algorithm.

2.6.6 Sensitivity Analysis

Impact of Restricting Paths If the number of possible paths between them (k) increases,

TERRA has to establish and maintain more TCP connections. Figure 2.13 shows the impact of k for

the all workloads on the AT&T topology. We observe that: (i) With larger k, TERRA’s improvements

become higher. This is because larger k allows for more multipath benefits. (ii) After k reached a

threshold (it is between k = 5 and k = 10 for AT&T), increasing k does not significantly affect
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Figure 2.14: Improvement in the average JCT for workloads with scaled (a) arrival rates and (b)
network speed in the Microsoft topology w.r.t. Default.

JCT or utilization.

Impact of Job Arrival Rate and Network Speed We scale the arrival rate of the queries to

increase load and evaluated TERRA’s performance in our testbed. Figure 2.14a shows that TERRA

performs better with increasing arrival rate – i.e., with increasing load. When the network is more

heavily loaded, the room for performance improvement is higher. Increasing load by scaling down

the network speed (instead of making jobs arrive in shorter intervals) also resulted in increasing

benefits. (Figure 2.14b)

Computation vs. Communication By keeping the time spent in communication constant, we

vary the number of machines in each site and estimate the average JCT. Due to resource constraints,

we use the testbed for less than 40 machines per site and simulation for more than 40 machines per

site. Figure 2.15 shows improvements of average JCTs w.r.t. the number of machines used for all

jobs on Microsoft topology. Because JCT = (TComm + TComp)
for each stage, the improvements

increase with the number of machines used.

Choice of α We also vary α and measure the average JCT improvements across all workloads.

Figure 2.16 shows that highest average JCT improvements are achieved with α between 0.1 and 0.2.

This is because when α is too low starvation will occur, and when α is too high the performance

will degrade to be the same as MPTCP without any scheduling.
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Figure 2.15: Improvements in the average JCT using TERRA w.r.t. Default on the Microsoft
topology with increasing number of machines in each site.
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Figure 2.16: [Simulation] Improvements in the average JCT using TERRA w.r.t. Default on the
Microsoft topology with increasing α.

2.7 Related Work

Wide Area and Geo-Distributed Analytics Systems Existing wide-area data analytics solutions

primarily focus on two goals: (i) minimizing WAN usage and (ii) minimizing the average JCT via

query planning and/or data placement [175, 202, 203, 204, 177, 103, 201, 108, 107, 130, 46, 45].

However, they all ignore the WAN topology and cannot dynamically react to WAN variabilities. In

contrast, TERRA focuses on simultaneously scheduling and routing inter-site shuffles from HMCA

queries and can complement existing solutions.

SmartCoflow [145] is a recently proposed framework for jointly optimizing endpoint placement

and coflow scheduling to minimize the average completion time of coflows across geo-distributed

datacenters. Similar to previous studies [175, 202, 203, 204, 177, 103, 201, 108, 107, 130, 46, 45],
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it models the WAN as a fully connected mesh network, ignoring the underlying topology.

Siphon [149] is another solution that focuses on the WAN transfer aspect of HMCA jobs.

However, it is also agnostic to the WAN topology assuming a full-mesh network. Furthermore, the

multi-path routing is achieved by a heuristic that iteratively diverts traffic from the heavily loaded

links to alternative paths, which does not scale in larger deployments as confirmed in our evaluation

(§2.6.5). It does not address the implications of heterogeneous latency of the WAN and cannot

directly react to WAN dynamics either.

Theoretical Results There have been several theoretical studies on analyzing the optimality of

WAN transfers over general graphs with a focus on wide-area data analytics workloads. The earliest

of them can be credited to Jahanjou et al. [111] with an approximation factor of 17.6.

A recent study improved it and proposed a 2-approximation algorithm [64]. However, these

algorithms have many times higher time complexity than TERRA, and TERRA outperforms them in

practice (§2.6.5). In addition, we present a full-stack implementation and integration of TERRA.

Wide-Area Network Traffic Engineering Traditional networking techniques for optimizing

WAN transfers revolve around tuning weights and adapting allocations across pre-established

tunnels, often via MPLS [216]. A recent work [136] combines selecting forwarding paths and rate

adaptation together. Some others focus on WAN data transfers with deadlines [220, 114, 116, 136,

166]. TERRA extends these works by incorporating application-level semantics. With the advent of

software-defined networking (SDN), Google [113, 134] and Microsoft [101] have shown that it is

indeed possible to perform traffic engineering in a (logically) centralized manner. TERRA takes a

similar approach in its implementation.

2.8 Conclusion

We present TERRA, a data transfer optimizer for hybrid multi-cloud analytics (HMCA) jobs

that simultaneously performs scheduling, path selection, and bandwidth allocation for inter-site

shuffles in a scalable manner. While existing wide-area data analytics (WADA) solutions focus only

on minimizing the amount of inter-site data transfer, TERRA goes one step further to judiciously

manage how those data must be transferred after those optimizations have been applied. It builds

on a provably optimal offline algorithm and uses it as a building block to perform single- and
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multi-query optimizations with large performance benefits. Evaluation using three benchmarks on

three HMCA deployments show large performance benefits.
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CHAPTER 3

KAYAK: Application-Aware Transaction Processing

3.1 Introduction

Two trends stand out amid the rapid changes in the landscape of cloud infrastructure in recent

years:

• First, with cloud networks moving from 1Gbps and a few hundred µs to 100Gbps and single-digit

µs [119, 87, 52], disaggregated storage has become the norm [129, 20, 78, 190, 205, 109, 148].

It decouples compute from storage, enabling flexible provisioning, elastic scaling, and higher

utilization. As a result, increasingly more applications now access their storage servers over the

network using a key-value (KV) interface.

• Second, the steady increase in compute granularity, from virtual machines, to containers,

to microservices and serverless functions, is popularizing storage-side computation using

remote procedure calls (RPCs) [117]. Many databases allow stored procedures and user-defined

functions [29, 120, 32, 193, 192, 25, 26], and some KV stores allow just-in-time or pre-compiled

runtime extensions [133, 34, 187, 79].

The confluence of these two contradicting trends – the former moves data to compute, while the

latter does the opposite – highlights a long-standing challenge in distributed systems: should we

ship compute to data, or ship data to compute?

The answer, in broad strokes, boils down to the ratio of computation and communication. The

benefits of storage disaggregation, i.e., shipping data to compute, typically holds when most of the

time of a function invocation (hereafter referred to as a request) is spent in computation. However,

when a single request triggers multiple dependent accesses to the disaggregated storage, time

spent in network traversals and data (un)marshalling starts to dominate [42]. Figure 3.1a shows an
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int traverse_sum(Node* n){
int s = n->value;
while (n->next != NULL) {

n = get(n->next);
s += do_compute(n->value);

}
return s;

}

Application Server

App Logic

Storage Server

…

(a) Ship data to compute.

int rpc_traverse_sum(Node* n){
int s = n->value;
while (n->next != NULL) {

n = get(n->next);
s += do_compute(n->value);

}
return s;

}

RPC Endpoint int s = rpc_traverse_sum(head);

Application Server

Storage Server

(b) Ship compute to data.

Figure 3.1: Graph traversal implemented with (a) disaggregated storage and (b) storage-side
compute. The latter (3.1b) results in less network round-trips but exert more load on the storage
server.

example of a simple graph traversal algorithm implemented on top of disaggregated storage, where

“pointer chasing” can make network traversals the bottleneck.

In contrast, storage-side computation enables applications to offload part of their application

logic to storage servers. The storage layer is customized to support application-specific RPC-style

APIs [42, 133, 55], which shave off network round-trips. Figure 3.1b shows the previous example

implemented with storage-side computing, where only one network round-trip is sufficient. However,

this is not universally viable either; for compute-intensive workloads, the compute capacity of the

storage servers can become the bottleneck when too much computation is offloaded to the storage.

In short, there is no one-size-fits-all solution. Existing works have explored different points

in the design space (Figure 3.2). Arbitrarily forcing a disaggregated storage (i.e., ship data) or a
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Workload-agnosticWorkload-aware

Design Space

Ship compute
Performs poorly 
for compute-heavy 
workload

Ship data
Performs poorly for 
communication-
heavy workload

Adaptive

Static
One-shot profiling;
Cannot adapt to 
dynamic workload

Proactive
Application latency SLO-driven;
Proactively balance load;

Reactive
Storage-driven;
Reacts but cannot prevent exerted load;
Extra RTT + Queueing delay

Figure 3.2: Design space of KAYAK.

storage-side computation architecture (i.e., ship compute) in a workload-agnostic manner leads

to poor utilization and low throughput. Our measurements show that workload-agnostic solution

leads to up to 58% lower throughput and 37% lower utilization when compared to the optimal. For

workload-aware alternatives, one choice is taking a one-shot static approach, whereby a workload

is profiled once at the beginning. However, statically choosing either KV- or RPC-based approach

falls short even for a single tenant (§3.2.2).

The alternative, therefore, is taking an adaptive approach that can dynamically choose between

shipping data and shipping compute. Existing adaptive solutions such as ASFP [55] take a reactive

approach: all requests are forwarded using RPC to the storage server, which can then react by

pushing some of them back. While this provides a centralized point of control, each request

experiences non-zero server-side queueing delay, and more importantly, requests that are pushed

back suffer from one extra round-trip time (RTT), which is detrimental to low-latency applications

with strict latency SLOs. Moreover, throughput-driven designs cannot proactively throttle exerted

load on the storage server w.r.t. tail latency service-level objectives (SLOs).

We observe that an ideal solution fundamentally calls for a balanced architecture that can
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effectively utilize the available resources and increase overall throughput while satisfying tail

latency SLOs. In this project, we present KAYAK that takes a proactive adaptive approach to achieve

these goals (§3.3). In order to maximize throughput without SLO violations, KAYAK proactively

decides between shipping compute and shipping data when executing incoming requests, and it

throttles request rate in order to meet SLO requirements. Specifically, KAYAK takes a latency-driven

approach to optimize two parameters simultaneously: (1) the request rate, and (2) the RPC fraction,

which denotes the proportion of the incoming requests to be executed using RPC.

Unfortunately, the optimal RPC fraction varies for different workloads and their SLO require-

ments. There is no closed-form expression to precisely capture the relationship between RPC

fraction, request rate, and tail latency either. Finally, we show that the order in which we optimize

request rate and RPC fraction affects convergence of the optimization algorithm. We address these

challenges by designing a dynamic optimization method using a dual loop control (§3.4). KAYAK

employs a faster control loop to optimize request rate and a slower one to optimize RPC fraction.

Combined together, KAYAK iteratively searches for the optimal parameters, with a provable con-

vergence guarantee. In addition to increasing throughput in the single-tenant scenario, KAYAK

must also ensure fairness and work conservation of shared server resources in multi-tenant settings.

KAYAK pins tenants to CPU cores in a fair manner and employs work stealing to achieve work

conservation.

Our evaluation on a prototype of KAYAK shows that: (1) KAYAK achieves sub-second conver-

gence to optimal throughput and RPC fraction regardless of workloads; (2) KAYAK improves overall

throughput by 32.5%-63.4% for compute-intensive workloads and up to 12.2% for non-compute-

intensive and transactional workloads; and (3) in a multi-tenant setup, KAYAK approximates

max-min fair sharing and scales without sacrificing fairness.

3.2 Motivation

3.2.1 Limitations of Existing Designs

Existing solutions either fail to efficiently utilize the available CPU cores for a large variety

of workloads or introduce additional overhead to reactively adapt to workload variations, both of
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Figure 3.3: Throughput and overall request-level CPU utilization across both application and storage
servers for three different workloads under different execution schemes, with 200µs SLO.
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Figure 3.4: Throughput w.r.t. SLO (99%-tile latency) for 3 different workloads under different
execution schemes.

which lead to lower throughput.

Workload-agnostic approaches either use KV-only design or RPC-only design. The former

results in excessive network round-trips of storage access during execution, while the latter overloads

the storage server CPU and leaves the CPU on the application server underutilized. In either case,

the overall CPU utilization is low which hinders the performance.

ASFP [55] presents an alternative to workload-agnostic solutions by taking a workload-aware
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Figure 3.5: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for 3 different workloads.

approach with runtime adaptation. In that design, the requests are executed using RPC by default,

and if the storage server gets overloaded by the exerted computation, a pushback mechanism

is triggered to push the exerted computation back to the application server side. However, the

excessive queueing on the storage server still cannot be prevented, although it can be alleviated by

the pushback mechanism. Furthermore, the execution of pushed-back requests needs to restart on

the application server, wasting CPU cycles on both servers.

To illustrate these issues, we perform an experiment with the graph traversal application shown

in Figure 3.1. We configure the workload so that the each request triggers two storage accesses (i.e.,

two network round-trips) when executed using the KV scheme. We vary the computation after each

access and refer to them as Light (100ns computation time per access), Medium (1µs per access) and

Heavy (10µs per access). For reference, adding one network round-trip incurs 9.2µs more latency

for each request in our testing environment. We measure the maximum achievable throughput and

the CPU utilization (defined as CPU cycles spent only in executing the requests). As shown in

Figure 3.3, using only KV or RPC leads to lower overall CPU utilization and lower throughput.

Although the reactive adaptive design utilizes a higher amount of CPU on both application and

storage servers, its overheads add up quickly, and its CPU usage for request-level computation does

not increase significantly.
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To summarize, existing designs do not efficiently utilize the CPU resource on both application

and storage servers, which limits their performance. There exists an optimal RPC fraction that

maximizes the throughput (calculated by a comprehensive sweep as explained below).

3.2.2 Need for Dynamically Finding the Optimal Fraction

A key challenge here is that this optimal fraction varies for different workloads. To highlight this,

we perform another experiment with the same graph traversal workload as before. We configure

the application server to handle a fraction of the requests using RPC and the rest using the KV

approach. We vary the RPC fraction from 0 to 1 and measure the overall throughput and end-to-end

latency of all requests. In doing so, we obtain the throughput-latency measurements for all possible

execution configurations, as shown in Figure 3.4 and Figure 3.5. The upper bound in Figure 3.4

is defined by selecting the best RPC fraction for each latency SLO to maximize the throughput,

and the selected fraction is plotted in Figure 3.5. ASFP is configured as using RPC by default with

pushback enabled.

As shown in Figure 3.4, workload with less computation favors RPC over KV, and vice versa.

For Medium and Heavy workloads, the highest throughput is achieved by combining RPC and KV

together. Moreover, we observe that, (1) for different workloads, the highest throughput is achieved

with different RPC fraction; and (2) for different SLO constraints, the optimal fraction for highest

throughput is also different. This calls for a proactive design to search for the optimal RPC fraction.

Note that we repeated the same parameter sweep with the number of storage accesses per request

set to 4 and 8, and observe similar trends (please refer to Appendix A.1.1).

3.3 KAYAK Overview

KAYAK proactively decides between shipping compute and shipping data in a workload-adaptive

manner. It arbitrates incoming requests and proactively decides the optimal RPC fraction (i.e.,

what fraction of the compute to ship to storage servers) of executing the requests while meeting

end-to-end tail latency SLO constraints.
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3.3.1 Design Goals

KAYAK aims to meet the following design goals.

• Maximize throughput without SLO violations: Applications have stringent tail latency SLO

constraints to ensure low user-perceived latency. KAYAK should maximize the throughput while

not violating these SLO constraints.

• High CPU utilization across all servers: KAYAK should balance the computation imposed by

application logic across the application and storage servers.

• Fair sharing of storage server resources: In a multi-tenant cloud, multiple applications may be

sending requests to the same storage server, which should be fairly shared.

• Ease of deployment: Applications should be able to use KAYAK with minimal code modification.

3.3.2 Architectural Overview

At a high level, KAYAK adaptively runs application logic on both the application and storage

servers (Figure 3.6). However, even though it ships some computation to the storage server,

KAYAK’s core control logic runs only on the application server and the storage server acts as an

extended executor. Unlike existing reactive solutions, KAYAK proactively decides the amount of

computation to ship to the storage side.

Key ideas. Essentially, KAYAK finds the optimal RPC fraction and maximizes throughput at

runtime while meeting tail latency SLO constraints. The main design challenge is that the optimal

fraction varies in accordance with different workloads and their SLO requirements (Figure 3.5), as

well as the amount of load exerted on the storage server. In a multi-tenant cloud, all of these change

dynamically. In order to keep up with the changing environment, KAYAK proactively adjust the

RPC fraction and the request rate according to realtime tail latency measurements.

However, the relationship between the request rate, RPC fraction and latency cannot be easily

captured with a closed-form expression. Thus KAYAK adopts a numerical optimization method

based on a dual loop control algorithm (§3.4.3) to search for the optimal parameters iteratively.

We notice that latency measurements in real systems exhibit large variance, which detrimentally

impacts the performance of such iterative optimization algorithms. KAYAK’s algorithm accounts for
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Figure 3.6: KAYAK architecture. Tenant application servers interact with shared storage servers
using KAYAK, which proactively decides which requests to run on the application server using KV
operations and which ones to ship to the storage server via RPC.

such variance and has a provable convergence guarantee.

From an implementation perspective, KAYAK faces another challenge as it has to make adjust-

ments very quickly due to the high-throughput, low-latency nature of the environment. KAYAK

cannot afford to gather global information and make centralized decisions. Hence, the algorithm for

KAYAK is fully decentralized and runs only on the application servers.

Application server. The application server consists of three main components (Figure 3.6): (i)

the Rate Limiter limits the rate of incoming requests from the tenant to satisfy SLO constraints;

(ii) the Request Arbiter determines the optimal RPC fraction; and (iii) the Executor handles the

requests according to the scheme decided by the Request Arbiter.
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The Rate Limiter interacts with the tenants and 1 receives incoming requests. It continuously

monitors real-time tail latency of end-to-end request execution, and pushes back to signal the tenant

to slow down. When the servers are overloaded and the SLO cannot be met, it drops overflowing

requests. We assume that tenants implement mechanism to handle overflowing, such as resubmit

dropped requests, and increase provisioning so that in the worst case scenario all requests can still

be executed on all application servers within the SLO.

The Request Arbiter proactively determines the optimal RPC fraction. It selects the execution

scheme for each request based on that fraction. For each request, the choice of execution scheme is

determined by a Bernoulli distribution B(1, X) where X is the proportion of requests processed

using RPC.

The Executor handles the request in its entirety and reports the end-to-end completion time back

to the Rate Limiter upon completion. It consists of two parts: (i) the Request Handler and (ii) the

RPC Endpoint. If the request is to be executed using 2a the KV scheme, the Request Handler is

triggered. The Request Handler executes the application logic locally on the application server

and keeps track of the states of the request. Whenever it needs to access data stored in the storage

server, 3a the KV API of the storage server is subsequently called. In contrast, if the request is to

be executed on the storage side using the RPC scheme, then the request is simply forwarded to 2b

the RPC Endpoint on the application server. The RPC Endpoint issues an RPC request 3b to the

storage server for processing the request.

Storage server. The storage server includes an additional Request Handler to handle RPC requests

in addition to a KV interface. Similar to allocating CPU cores in the application server to run

application code, in KAYAK, computation resources in the storage server are also allocated to

specific tenants at the CPU core granularity.

Each tenant has a dedicated request queue, from which its core(s) polls KV and RPC requests.

Handling an incoming KV request in KAYAK is the same as what happens in a traditional KV store:

the request is simply forwarded to the KV store. Upon receiving an RPC request, the Request

Handler is triggered and executes the application logic on the storage server. The Request Handler

calls 4 the local KV API whenever data access is needed, interacting with the stored data without

crossing the network.
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This static pin-request-to-core allocation scheme of KAYAK makes it easier to enforce fair

computation resource sharing between tenants. However, static allocation of CPU cores cannot

guarantee work conservation of the CPU cores on the storage server. KAYAK uses work stealing

to mitigate this issue: whenever a tenant’s dedicated queue is empty, the corresponding CPU core

steals requests from other queues.

3.4 KAYAK Design

Our primary objective is to maximize the total throughput without violating the tail latency

SLO. However, higher throughput inevitably leads to higher latency in a finite system [128], and

there exists a fundamental tradeoff between throughput and latency. Unfortunately, the precise

relationship between latency and throughput of a real system, however, is notoriously difficult to be

captured by a closed-form expression. In this project, we use an analytical model to highlight our

insights and take a tail latency measurement-driven approach to design a pragmatic solution.

At the same time, as illustrated in Section 3.2, a reactive approach to achieve this can lead

to CPU wastage. Hence, KAYAK proactively decides what fraction of the requests to offload vs.

which ones to run in the application server, while maximizing the total throughput within the SLO

constraint. The need for optimizing both raises a natural question: which one to optimize first? In

this section, we analyze both optimization orders and design a dual loop control algorithm with

provable convergence guarantees. Detailed proofs can be found in the appendix.

3.4.1 Problem Formulation

We denote the proportion of requests to be executed using RPC by X , the total incoming request

rate by R, and we define τ as the random variable of request latency, thus we have:

τ ∼ P (R,X),

where R and X are the parameters of distribution P . Table 3.1 includes the key notations used in

this project.

We denote T (X,R) as our SLO statistics metric, which takes a specific statistical interpretation
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Sym. Description
R Total request rate
X Proportion of requests processed using RPC
τ Random variable of request latency
to Latency SLO target
T (X,R) Latency SLO as a function of X , R
R(X) Function implicitly defined by T (X,R(X)) = t0
k Index of iterations

Table 3.1: Key notations in problem formulation.

for the particular SLO metric. For instance, if the SLO is defined as the 99%-tile latency then T is

the 99%-tile for τ . We denote t0 as the SLO target under the same statistic metric. Thus the problem

can be formulated as:

max
X

R (3.1)

s.t. T (X,R) ≤ t0 (3.2)

R > 0, (3.3)

X ∈ [0, 1]. (3.4)

Here constraint (3.2) captures the latency SLO constraint, and constraints (3.3) and (3.4) represents

the boundary of R and X , respectively.

We make the following observation when solving this optimization problem:

Observation 1. Fixing X , FX(R) := T (X,R) is monotonic increasing.

Observation 1 captures the relationship of throughput and latency from queueing theory [128]

for finite systems like KAYAK.

3.4.2 Strawman: X-R Dual Loop Control

Optimization (3.1) cannot be directly solved with a closed-form solution of R and X due to the

intractability of the function T (X,R). Therefore, we use a numeric optimization method and try to

optimize R and X independently and iteratively. To put it into our context, we need to design an

iterative algorithm such that in each iteration, we first optimize either R or X , and then optimize
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the other. We also have to prove that this algorithm would actually converge to ensure optimality

and stability of the system.

Now we are facing a question: which one to optimize first? In our problem, there is an asymmetry

for X and R: X is the parameter in Optimization (3.1) where as R is the objective. A straightforward

solution is to optimize X first, which leads to the following algorithm.

Algorithm I (X-R Dual Loop Control) For k = 1, . . . , K, we alternatively update Xk and Rk by

1. Fix Rk, and find the RPC fraction Xk that minimizes latency, i.e., Xk = argminX T (X,Rk);

2. Update Rk according to gradient descent so that T ≈ t0, i.e.,

Rk+1 = Rk + η (t0 − T (Xk, Rk)) ,

where η > 0 is the stepsize.

In this algorithm, the first step is to solve a convex optimization problem. Because our assump-

tions guarantee that Xk is unique and finite, this iteration is well defined for at least the first step

(and we will show it is also good for the second step). Moreover, because TRk
(X) := T (X,Rk)

is µ-strongly convex and L-smooth, Xk can be solved very quickly (or mathematically, in a linear

rate) by iterative algorithms such as gradient descent. We have the following theorem that char-

acterizes the convergence of this algorithm. The rigorous statements and proofs are deferred to

Appendix A.2.2.

Theorem 1. Fixing R, FR(X) := T (X,R) is strongly convex and smooth. Suppose for all X ,

0 < α ≤ ∂T (X,R)
∂R

≤ β. Let 0 < η < 1
β

, then under mild additional assumptions1,

|RK −R∗| ≤ (1− ηα)K · |R0 −R∗| .

Here R∗ denotes the optimal request throughput, and R0 denotes the initialization. This result

shows the iteration of X-R Dual Loop Control converges to the optimal requests exponentially fast,

i.e., after at most O(log 1
ϵ
) iterations, the algorithm outputs a solution that is ϵ-close to the optimal.

1For the sake of presentation, we omit the technical assumptions. For a complete description on the theorem, please
refer to Appendix A.2.2
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Figure 3.7: Instability of throughput and RPC fraction w.r.t time, with X-R Dual Loop Control.

Instability of X-R dual loop control. However, while Algorithm I is theoretically sound, it is

not practical to be implemented in a real system. The key obstacle is that the latency SLO metric

cannot be directly obtained in practice. Instead, we can only measure a set of samples of latency τ ,

and then gather statistics to derive the SLO metric. Hence the derived SLO metric – be it average

or 99%-tile – is only an estimate T̂ based on sampling. While sampling might not be a problem

for many systems by using a high sampling rate, it is indeed a problem for KAYAK. In particular,

because of the microsecond-scale workload and the real-time requirement of KAYAK, the sample

size for each estimate is limited. This leads to large variance in the estimated T̂ , which results in

degraded convergence speed and quality.

To quantify the impact of this variance and show the gap between theory and practice, we conduct

a verification experiment. We run Algorithm I with the Heavy workload from Section 3.2 under an

SLO constraint of 200µs 99%-tile latency. Our experiment confirms the aforementioned issue of

variance in SLO estimates. Figure 3.7 shows poor convergence quality of both the throughput and

the RPC fraction.

3.4.3 Our Solution: R-X Dual Loop Control

A naive mitigation to counter the SLO variance is to simply use a metric that is more robust, such

as average latency. But this limits the operators to only one viable SLO metric and compromises

the generality of the system.

In order to solve the challenge of unstable SLO estimates, we must design an algorithm that
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Input: Current throughput R, latency t, SLO target t0
Output: Updated throughput R

/* Initialize global variables. */
1 T← 0; R← 0 ▷ Last involved latency and throughput.

/* Update R for each round. */
2 Procedure UpdateR()

/* Calculate ∆R according to Newton’s method. */

3 ∆R ← (R−R)(t0−T )
T−T

/* Bounds checking, throughput should be positive. */
4 if R +∆R ¡ 0 then ▷ Unlikely. Violates (3.3).
5 R← R

M
▷ Discard ∆R and divide R by half.

6 else
7 R← ∆R +R

Pseudocode. 2: Dynamic search of optimal R.

is not sensitive to the variance of T̂ . Compared with the RPC fraction X , the request rate R has a

more intuitive and better-studied interaction with latency T from extensive study in queueing theory.

Specifically, we take inspiration from recent works [80, 135] showing that even with variance in

latency measurements, one can still achieve rate control (i.e., optimization of the throughput) in a

stable manner. From the starting point of latency-driven rate control, we design a dual loop control

algorithm that first optimizes R and then optimizes X to numerically solve the optimization problem.

The algorithm is shown as follows. The first part is latency-driven rate control, and the second is

gradient ascent.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . , K, we respectively update Xk and Rk

by

1. Apply rate control so that the latency approximates SLO, i.e., Rk be such that T (Xk, Rk) ≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e., Xk+1 = Xk+η dRk

dX
, where T (X,Rk) =

t0, and η is a positive stepsize.

R loop: rate control. In order to satisfy the SLO requirement (T ≤ t0), we need to carefully

control the request rate R. Intuitively, too high an R leads to excessive queueing on the server side,
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causing SLO violations; at the same time, too low an R leads to low overall throughput and low

resource utilization.

Let R(X) be a function implicitly determined by the boundary constraint Eq. (3.2), i.e.,

T (X,R(X)) = t0.

The implicit function R(X) is indeed well defined, since for any X , T (X,R) is monotonically

increasing,2 implying there exists an unique request throughput R(X) that satisfies the boundary

constraint, i.e., the maximum throughput is achieved when the latency is equal to the SLO target.

Essentially, we have to design a dynamic algorithm that actuates R(X) in real-time (via Rk(X)

in step 1). This problem can be solved with a root-finding algorithm such as the classic Newton’s

method. However, if we apply this method directly, we may encounter situations where the updated

throughput R is negative, which violates constraint (3.3). This happens when the throughput is too

high and needs to be significantly reduced. In this case, we divide R by M instead of updating

it using Newton’s method. This ensures that (i) the updated throughput is positive; and (ii) the

updated throughput is still significantly lower than before. We note that this out-of-bound scenario

does not happen frequently. For simplicity, we choose M = 2. Our algorithm of searching for the

optimal R is shown in Pseudocode 2.

X loop: RPC fraction control. For any given RPC fraction, the rate control of KAYAK essentially

maximizes throughput within the allowance of SLO requirement. With rate control, we effectively

get the throughput as a function of the given RPC fraction (R(X)). In this part, we focus on

the complementary and optimize the RPC fraction to maximize R(X). We use a gradient ascent

algorithm to achieve that. When the updated RPC fraction falls out of the range of [0, 1], we apply

rounding to ensure it is within the boundary. Our algorithm of searching the RPC fraction is shown

in Pseudocode 3.

Putting them together. Combing the rate control and the RPC fraction control, our algorithm

(Algorithm II) naturally forms a bi-level (nested) control loops [73], with two actuators X and R

2We assume that T (X,R) is continuous, and for any X , there exist R1 and R2 such that T (X,R1) ≤ t0 ≤ T (X,R2).
This assumption pluses monotonicity yields the existence and uniqueness of the implicit function R(X).
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Input: Current throughput R, RPC propotion X ,
Output: Updated RPC propotion X

/* Initialize global variables. */
1 R← 0; X← 0 ▷ Last involved throughput and RPC fraction.

/* Update X for each round. */
2 Procedure UpdateX()

/* Calculate ∆X according to Gradient Ascent. */
3 ∆X ← −η R−R

X−X

/* Bounds checking, X should be within constraints. */
4 if X +∆X /∈ [0, 1] then ▷ Unlikely. Violates (3.4).
5 X ← max{min {X +∆X , 1}, 0}
6 else
7 X ← ∆X +X

Pseudocode. 3: Dynamic search of optimal X .

( , )

+= 0 −
+= −

0

Latency Feedback

Fast loop Slow loop

Figure 3.8: Nested control loops of KAYAK.

and only one feedback signal t. We adopt a single control loop (the inner/fast loop), called R loop,

to implement the rate control, i.e., finding the maximum throughput R while not violating the SLO

t0. The input of this control loop is the measured latency SLO metric T̂ and the output is request

rate R which is the input for our request arbiter. We then adopt another control loop (the outer/slow

loop), called X loop, to implement our request arbiter, i.e., choosing the best X that maximizes R0.

Although this dual loop control design decouples the two actuators X and R, the resulting two

feedback loops may be coupled. The coupling between two feedback loops may cause oscillation,

which can be mitigated by choosing different sampling frequencies [73]. The exact two values can

be tuned by the operator according to different workloads and system configurations. However,
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because the functioning of the second loop is dependent on the output of the first loop (R) to

have converged to a stable point, it is best practice to choose a lower frequency for the second

loop. Theoretically, we show that this dual loop control algorithm is guaranteed to converge in

Section 3.4.4. Empirically, in our experiments, we let the sampling rates of the first and second loops

to be 200Hz and 20Hz respectively, and we show that the system converges fast to near optimal

throughput in Section 3.6. We evaluate the impact of frequency selection in detail in Section 3.6.5.

3.4.4 Perfomance Guarantee

From the R loop, we obtain an estimation Rk(x) at each iteration k, which approximately

satisfies T (X,Rk(X)) ≈ t0. In the X loop, we optimize X for our request arbiter such that R0 is

maximized. This is done by stochastic gradient ascent (SGA, or online gradient ascent) on X .

There is a rich literature in online learning theory for SGA when Rk(x) is concave, e.g., see [168].

Applying related theoretical results to our problem, we have the following performance guarantee

for our system. The proof of Theorem 2 is deferred to Appendix A.2.3.

Theorem 2. Suppose for all k = 1, . . . , K, Rk(X) is concave, and ∥∇Rk(X)∥2 ≤ L. Consider

the iterates of SGA, i.e.,

Xk+1 = Xk + η∇Rk(Xk).

Then we have the following regret bound

K∑
k=1

(Rk(X∗)−Rk(Xk)) ≤ C ·
√
K, (3.5)

where C := L ∥X1 −X∗∥2 is a constant depends on initialization and gradient bound, and X∗ can

be any fixed number. Note that the regret bound holds even Rk(X) is chosen adversarially based on

the algorithm history.

Inteperation of Theorem 2. The sublinear regret bound implies SAG behaviors nearly optimal

on average: we see this by setting X∗ = argmaxX
∑K

k=1 Rk(X), and noticing that

1

K

K∑
k=1

Rk(X∗)−
1

K

K∑
k=1

Rk(Xk) ≤ O
(

1√
K

)
→ 0.
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More concisely, in our algorithm, {Rk(X)}Kk=1 corresponds to a sequence of inaccurate estimations

to the true implicit function R(X) — even so the theorem guarantees a sublinear regret bound, which

implies that our algorithm behaviors nearly as good as one can ever expect under the estimations,

no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estimator to the true concave function R(X),

i.e., ERk(X) = R(X), then X̄ = 1
K

∑K
k=1Xk converges to the maximal of R(X) in expectation:

we see this by choosing X∗ = argminX R(X) and noticing that

E
[
R(X∗)−R(X̄)

]
≤ 1

K

K∑
k=1

E [R(X∗)−R(Xk)]

=
1

K

K∑
k=1

E [Rk(X∗)−Rk(Xk)]

≤ C · 1√
K
→ 0.

The above convergence result does not require any assumptions on the randomness of Rk, as

long as Rk(X) is an unbiased estimator of R(X). This means our algorithm can tolerate variance

in the measured latency which causes variance in estimated Rk. The convergence is empirically

validated by our experiments in Section 3.6.1.

3.4.5 Scalability and Fault Tolerance

Scalability. KAYAK is fully decentralized, and its control logic (e.g., rate and RPC fraction

determination) is decoupled from the request execution in the dataplane. Throughput of a tenant

is limited by its total available resources in application and storage servers; one can increase

throughput by adding more application servers or by ensuring more resource share in the storage

servers.

Fault tolerance. KAYAK does not introduce additional systems components beyond what tradi-

tional KV- or RPC-based or hybrid systems do. As such, it does not introduce novel fault tolerance

challenges. The consistency and fault tolerance of the KV store is orthogonal to our problem and

out of the scope of this project.
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3.5 Implementation

We build a prototype of KAYAK with about 1500 lines of code and integrate it with the in-

memory kernel-bypassing key-value store Splinter [133]. The code is available at: https://

github.com/SymbioticLab/Kayak

KAYAK interface. Users of KAYAK provide their custom defined storage functions (App Logic in

Figure 3.6), which are compiled with KAYAK and deployed onto both the application server and

storage server. At runtime, users connect to KAYAK and set the desired SLO target. Users then

submit request in the format of storage function invocations to KAYAK.

Application server. The core control logic of KAYAK is implemented in the application server.

One challenge we face during implementation is to optimize the code to reduce overhead, which is

especially important because of the high throughput low latency requirement. For instance, the inner

control loop constantly measures request latency and calculate the 99%-tile. One naive way is to

measure the quantile is using selection algorithm to calculate the k-th order statistics of n samples,

with has at least O(n) complexity. Instead, we apply DDSketch [157] to estimate the quantile in

real time with bounded error.

Storage server. The main challenge of implementing the storage server is supporting multi-

tenancy and ensuring fairness and work conservation. We pin requests from different tenants to

different CPU cores to ensure fairness. And we adopt work stealing to ensure work conservation:

CPU cores with no requests to process steal requests from the queues of other cores. Specifically,

similar to ZygOS [174], each CPU core of KAYAK steals from all other CPU cores, which is

different from Splinter’s work stealing from only neighboring cores. This further improves overall

CPU utilization.

3.6 Evaluation

In this section we empirically evaluate KAYAK with a focus on: (i) verification of convergence;

(ii) performance improvement against state of the art [55]; and (iii) fairness and scalability with
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Figure 3.9: Throughput and 99%-tile latency w.r.t time, with only the fast loop of KAYAK and fixed
RPC fraction of 100%.
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Figure 3.10: Dynamics of throughput and RPC fraction w.r.t time, with nested control loops of
KAYAK.

multiple tenants. Our key results are as follows.

• KAYAK achieves sub-second convergence to optimal throughput and RPC fraction regardless of

workloads. It can proactively adjust to dynamic workload change as well (§3.6.1).

• KAYAK improves overall throughput by 32.5%-63.4% for compute-intensive workloads and up

to 12.2% for non-compute-intensive and transactional workloads (§3.6.2).

• In a multi-tenant setup, KAYAK approximates max-min fair sharing, with a Jain’s Fairness

Index [112] of 0.9996 (§3.6.3) and scales without sacrificing fairness (§3.6.4).

• We also evaluate KAYAK’s sensitivity to its different parameters (§3.6.5).

Methodology. We run our experiments on CloudLab [12] HPE ProLiant XL170r machines

(Table 3.2). Unless specified otherwise, we configure KAYAK to use 8 CPU cores across all servers.

CPU Intel E5-2640v4 2.4 GHz
RAM 64GB ECC Memory DDR4 2400MHz
NIC Mellanox ConnectX-4 25 GB NIC
OS Ubuntu 16.04, Linux 4.4.0-142

Table 3.2: Server configurations for our testbed in CloudLab.
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SLO YCSB-T Light Medium Heavy Bimodal
KAYAK ASFP KAYAK ASFP KAYAK ASFP KAYAK ASFP KAYAK ASFP

50µs 2.63 2.58 3.05 3.05 1.71 1.06 N/A N/A 2.13 1.43
100µs 3.12 2.78 3.36 3.36 2.37 1.45 0.37 N/A 2.74 2.16
200µs 3.35 3.01 3.59 3.52 2.54 1.64 0.48 0.33 2.98 2.37
400µs 3.35 3.02 3.70 3.61 2.61 1.68 0.57 0.40 3.03 2.48

Table 3.3: Throughput (MOps) of KAYAK and ASFP under different workloads and SLO targets.
“N/A” means the SLO target is infeasible.

The fast control loop algorithm is configured to run every 5ms and the slow control loop runs every

50ms. The initial RPC fraction is set at 100%, and we define SLO as the 99%-tile latency.

Workloads. We use the workload described in Section 3.2. Unless otherwise specified, we

configure the workload with a traversal depth of two so that each request issues two data accesses

to the storage. We vary the amount of computation that takes place after each access and refer to

them as Light (100ns computation time per access), Medium (1µs per access) and Heavy (10µs

per access). This workload emulates a variety of workloads with different computational load in a

non-transactional environment.

We extend this workload and create a Bimodal workload. We denote by Bimodal(1us,

100ns, 50%, 5s), a workload that consists of 50% Medium (1µs/RTT) and 50% Light

(100ns/RTT) with an interval of 5 seconds.

We also run YCSB-T [72] as a transactional workload. This workload is not computationally

intensive.

Unless otherwise specified, for all workloads, we set our latency SLO target as: 99%-tile request

latency lower than or equal to 200µs.

Baseline. Our primary baseline is ASFP [55], which is available at https://github.com/

utah-scs/splinter/releases/tag/ATC’20 and also built on top of Splinter [133].

3.6.1 Convergence

In this section, we validate that KAYAK’s fast loop can converge to a stable throughput R while

satisfying SLO constraint and when running together with fast loop, the slow loop can also converge

to the optimal RPC fraction.
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Fast loop only. We first disable the slow loop and run KAYAK with a fixed RPC fraction (100%),

to show that the fast loop (rate control) can converge to optimal throughput with different workloads.

We run Light, Medium and Heavy workloads with one application server and one storage server,

and measure how the throughput and 99%-tile latency changes with time. As shown in Figure 3.9,

KAYAK ramps up the throughput quickly when the measured 99%-tile request latency is below

the SLO threshold of 200µs. Along with the increase of throughput, the latency also increases, as

observed from the rise of red line. The entire converging process happens within 0.2 seconds.

After approaching the SLO limit, both the throughput and latency remains stable with minor

fluctuations, confirming the convergence of our fast loop. We note that the converged throughput

are the same as the measurements of the RPC-only configuration in Figure 3.4. This means that our

fast loop indeed converges to the optimal throughput.

Dual loop control. Now we move on to verifying the convergence of both loops combined.

We repeat the previous experiments, but with both control loops enabled. Figure 3.10 shows the

dynamics of throughput and RPC fraction and how they change with time. We highlight three

observations.

• Similar to Figure 3.9, throughput increases rapidly within the first 0.2 seconds; this is due to the

fast loop.

• With the Medium and Heavy workloads, the throughput increase slows down after 0.2 seconds.

This increase comes from the slow loop, as we can see a change in RPC fraction. Note that the

Light workload does not show this trend, because in this setup the initial RPC fraction (100%)

is already the optimal for it.

• After 1 second since the start, the throughput converges to a stable value with only minor

fluctuations.

Comparing the RPC fraction in Figure 3.10 against Figure 3.5, we observe that our algorithm

converges to the optimal RPC fraction. Comparing the throughput in Figure 3.10 against the Optimal

configuration in Figure 3.4, we observe that the converged throughput is the optimal throughput.

Convergence under dynamic workloads. One advantage of KAYAK is that it can proactively

adjust to changing workload. To verify this, we run KAYAK with the Bimodal(1us, 100ns,
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Figure 3.11: Dynamics of throughput and RPC fraction w.r.t time under Bimodal workload.

50%, 5s) workload. Figure 3.11 shows the dynamics of throughput and RPC fraction. As we can

see, KAYAK adapts to the changing workload, and adjusts both the throughput and RPC fraction

accordingly in a timely fashion.

3.6.2 Performance

Performance improvement. We compare the performance of KAYAK against the state of the

art ASFP [55]. We use all the workloads: (i) Light/Medium/Heavy computational workload; (ii)

Bimodal workload; and (iii) YCSB-T workload. We use one application server and one storage

server, and vary the SLO target from 50µs to 400µs. The results are shown in Table 3.3, which we

summarize as follows.

• For non-compute-intensive workloads (Light and YCSB-T), KAYAK achieves up to 12.2%

throughput improvement. In this case, most of the requests are handled via RPC and KAYAK’s

opportunity for improvement is lower.

• For compute-intensive workloads, KAYAK achieves 32.5%-63.4% throughput improvement. In

this case, the RPC fraction decreases, and ASFP’s pushback mechanism kicks in; the overhead

of pushing requests back in comparison to KAYAK’s proactive placement increases the gap.

Overall, KAYAK outperforms ASFP because its proactive design is more efficient in using both

application- and storage-side CPUs.
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Workload YCSB-T Light Medium Heavy Bimodal
Gap 5.4% 11.8% 6.7% 3.5% 10.6%

Table 3.4: KAYAK’s performance gap from the upper bound for different workloads.

Gap between KAYAK and upper bound. We set the SLO target to be 200µs and compare the

achieved throughput between using KAYAK and the upper bound obtained by the parameter sweep

method (§3.2.2). We define the gap between KAYAK and the upper bound as follows:

Gap =
Throughputmax

Throughputmax,Kayak

− 1

Intuitively, the lower the gap is, the closer KAYAK is to the optimal. As shown in Table 3.4, KAYAK

has a slowdown of 11.8% for computationally light workload and 3.5% for computationally heavy

workload.

3.6.3 Fairness

In this section, we show that KAYAK can enforce max-min fairness when multiple tenants

contend for server resources.

We run two tenants with the same setup and configure each to use four CPU cores instead of

eight, while the server is still configured with eight CPU cores. Tenant A is started first, and after

20 seconds, tenant B is started. Figure 3.12a shows the dynamics of tenant A. During the first 20

seconds, tenant A quickly converges to the optimal throughput of around 1.82MOps. After 20

seconds when tenant B is started, the throughput achieved by tenant A drops to around 1.21MOps.

Note that in this process, the optimal RPC fraction also shifts from 60% to 40%. This is because

after tenant B joins, the server has less CPU resource to process tenant A’s requests. After 40

seconds, tenant A stops sending requests.

Figure 3.12b shows the dynamics of tenant B, and we can see that when the two tenants are

running together the achieved throughput is 1.21MOps and 1.24MOps, respectively. The gap

between the two tenants is only 2.4%, which indicates that the server resources are fairly shared.

After 40 seconds, the throughput and RPC fraction of tenant B increases because the storage server

has more available CPU resources after tenant A stops.

Then we increase to four tenants and start the tenants one after one, with ten seconds in between.
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(a) Tenant A
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(b) Tenant B

Figure 3.12: Dynamics of throughput and RPC fraction w.r.t time of tenant A and B in the multi-
tenant experiment.

Each tenant is configured with one CPU core, and runs a different workload. Tenant {1, 2, 3, 4} runs

{Light,Medium,Heavy,Bimodal}, respectively. We plot the occupied CPU cycles on the storage

server for each tenant in Figure 3.13. When the 4 tenants are running together, we measure the

Jain’s Fairness Index [112] to be 0.9996.

3.6.4 Scalability

In this section, we verify that the KAYAK control loops are decoupled from data plane and do

not limit KAYAK’s scalability. To do so, we run experiments with Heavy workload, and vary the

number of application and storage servers. For simplicity, we make sure a single request does not
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Figure 3.13: Fair-sharing of throughput for 4 applications sharing one storage server.
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Figure 3.14: Throughput and RPC Fraction of KAYAK with different server configurations.

access data from more than one storage servers. We measure the total throughput and the converged

average RPC fraction. As shown in Figure 3.14a, throughput increases with both adding a storage

and an application server. This is because adding either essentially adds more CPU cores to the

system. Note that the RPC fraction increases with the increment of the storage servers but decreases

with the increment of the application servers (Figure 3.14b). This is because KAYAK can judiciously

arbitrate the requests and balance the load between the application and storage servers, by choosing

the optimal RPC fraction.
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3.6.5 Sensitivity Analysis

Initial state. First we evaluate whether KAYAK is sensitive to its initial state. We run four

experiments using the Heavy workload, and vary the starting value for RPC fraction X from {0,

0.25, 0.75, 0.100}. As shown in Figure 3.15, KAYAK converges to the optimal request throughput

and RPC fraction regardless of the initial RPC fraction in all four scenarios.

Choice of loop frequencies. In Section 3.4 we argue that in order for the dual loop control to

work, we need to choose appropriate sampling frequencies for both loops. Here we analyze how

different sampling frequencies affect the dynamics of our system.

We run two experiments using the Medium workload, and plot our results in Figure 3.16. In the

first experiment we set the interval for both loop to be 200Hz; in the second experiment we invert

the loop frequency so that the inner control loop runs slower than outer control loop. As shown in

Figure 3.16a and 3.16b, the convergence quality degrades significantly in both cases. Hence, it is

important to choose proper sampling frequencies to ensure that the inner control loop runs faster

than the outer.

3.7 Related Work

Key-Value Stores. A recent line of research on key-value store has been focusing on utilizing

RDMA to boost key-value store performance. Stuedi et al. [195] have achieved a 20% reduction

in GET CPU load for Memcached using soft-iWARP without Infiniband hardware. Pilaf [160]

uses only one-sided RDMA read to reduce CPU overhead of key-value store. In addition, it uses a

verifiable data structure to detect read-write races. FaRM [74] proposes a new main memory key-

value store built on top of RDMA. FaRM comes with transaction support but still support lock-free

RDMA reads. HERD [118] further improves the performance of RDMA-based key-value store by

focusing on reducing network round trips while using efficient RDMA primitives. FaSST [119]

generalizes HERD and used two-sided RPC to reduce the number of QPs used in symmetric settings

such as distributed transaction processing, improving scalability.

While there have been many research works focusing on improving raw performance of key-

value stores, few investigates real performance implications on the application. TAO [57] is an
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Figure 3.15: Throughput and RPC fraction during the converging process, with different starting
RPC fraction.

application-aware key-value store by Facebook that optimizes for social graph processing. KAYAK

builds on top of this concept and focuses on application-level objectives such as SLO constraint.

Storage-side computation. Storage-side computation (i.e. shipping compute to data) has made

its way from latency-insensitive big data systems such as MapReduce [218, 3, 170] and SQL

databases [29, 120, 32, 193, 192, 25, 26] into latency-critical KV stores [133, 34, 187, 79].

Comet [79] supports sandboxed Lua extensions to allow user-defined extensions to customize

the storage by enabling application-specific operations. Malacology [187] utilizes Lua extensions

contributed by users of the Ceph storage system [11], allowing installing and updating new object

interfaces at runtime. Splinter [133] pushes bare-metal extension to storage server to allow RPC-like
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Figure 3.16: Dynamics of throughput and RPC fraction w.r.t time, with different loop frequencies:
(a) both loops run at 200Hz; (b) inner loop at 20Hz, outer loop at 200Hz.

operations in addition to traditional key-value operations. These works breaks the assumption of

dissagregated storage and necessitates the need for proactive arbitration provided by KAYAK.

Adaptive compute placement. An emerging line of research aims at adaptively balancing between

client-side processing and server-side processing. ASFP [55] extends Splinter by reactively pushing

back requests to the client side if the server gets overloaded, but at the cost of wasting CPU

and network resource.Instead, KAYAK proactively balances the load exerted on both application

and storage server. Cell [161] implements a B-tree store on RDMA supporting both client-side

(RDMA-based) and server-side (RPC-based) search. Cell determines between these two schemes

by tracking RDMA operation latency. This requires instrumentation into the application, which

KAYAK avoids by measuring end-to-end request latency instead. A recent work called Storm [167]

uses a reactive-adaptive approach similar to that of ASFP [55] but with a different policy, where

for each request it will try the traditional KV API first, and switch to RPC API if it detects that the

application is trying to chase the pointers.
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3.8 Conclusion

In this project, we show that by proactively and adaptively combining RPC and KV together,

overall throughput and CPU utilization can be improved. We propose an algorithm that dynamically

adjusts the rate of requests and the RPC fraction to improve overall request throughput while

meeting latency SLO requirements. We then prove that our algorithm can converge to the optimal

parameters. We design and implement a system called KAYAK. Our system implementation ensures

work conservation and fairness across multiple tenants. Our evaluations show that KAYAK achieves

sub-second convergence and improves overall throughput by 32.5%-63.4% for compute-intensive

workloads and up to 12.2% for non-compute-intensive and transactional workloads.
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CHAPTER 4

ZEUS: Application-Aware Deep Learning Optimizations

4.1 Introduction

Deep neural networks (DNNs) have received ubiquitous adoption in recent years across many

data-driven application domains such as computer vision [70, 96, 153], personalized recommenda-

tion [89, 97], and speech recognition [91]. As DNN models strive to become more accurate, their

complexity, size, and overall demands for larger amounts of training data and computation resources

are increasing too [189, 181]. As a result, training modern DNN models predominantly relies on

highly parallel and increasingly more powerful GPUs [59, 162].

However, larger models and their growing computing demands ultimately translate to greater

energy demands for training. For instance, training the GPT-3 model consumes 1,287 megawatt-

hour (MWh) [172], which is equivalent to 120 years of electricity consumption for an average

U.S. household [18]. This trend continues to grow as models become even larger: Meta reports an

increasing electricity demand for AI, despite a 28.5% operational power footprint reduction [214].

Yet, existing literature on DNN training mostly ignores energy efficiency [186].

We observe that common performance optimization practices for DNN training can lead to

inefficient energy usage. For example, many recent works propose using a large batch size to

increase training throughput or goodput [84, 191, 176]. We show that increasing training throughput

may come at the cost of lower energy efficiency. Similarly, modern GPUs allow a GPU power limit

that dictates its maximum power draw, but existing solutions often ignore it. Our analysis of four

generations of NVIDIA GPUs show that none of them are entirely power proportional, and drawing

maximum power is not always ideal. Indeed, carefully choosing batch size and GPU power limit

can reduce energy consumption by 23.8%–74.7% for diverse workloads (§4.2.2).
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Unfortunately, reducing energy consumption is not entirely free. Indeed, we discover a tradeoff

between energy consumption and training time for a given target accuracy – one must give when

optimizing for the other (§4.2.3). Our characterization of the Pareto frontier highlights two notable

phenomena. First, for a given training job, all Pareto-optimal configurations provide varying

amounts of energy reductions in comparison to blindly using maximum batch size and GPU power

limit. Second, the amount of reduction has a non-linear relationship with the loss of performance

– while reducing one may increase the other, there exists an inflection point beyond which little

savings cost disproportionately more. This raises a simple question: how do we automatically

identify and navigate the tradeoff between energy consumption and training time for DNN training?

In this project, we present ZEUS to address this question. ZEUS is a plug-in optimization

framework that automatically configures the batch size and GPU power limit to minimize the overall

energy consumption and training time for DNN training jobs (§4.3). Developers can specify their

preference for energy optimization, performance optimization, or their combination through a single

knob. Unlike some recent works that only consider GPU-specific configurations [197, 54], ZEUS

simultaneously considers job- and GPU-related configurations. It does not require per-job offline

profiling or prediction model training either[207, 222], both of which can be prohibitive in large

clusters with heterogeneous hardware and time-varying workloads [212]. Instead, ZEUS provides

an online solution that is tailored to the characteristics of DNN training workflows. That is, as

new data flows into the pipeline, the model needs to be periodically re-trained [95], manifesting

as recurring jobs in production clusters [212]. Leveraging this fact, ZEUS automatically explores

various configurations, measures corresponding gains or losses, and continuously adjusts its actions

based on its measurement.

ZEUS takes an online exploration-exploitation approach that leverages such recurrence to

minimize the overall energy-time cost of recurrent DNN training tasks (§4.4). It addresses two

major sources of uncertainty to find an effective solution. First, the energy consumption of a training

job varies even when the same job is run on the same GPU with the same configuration. This is due

to randomness introduced into model initialization and data loading [185, 66]. Second, both DNN

models and GPUs have diverse architectures and unique energy characteristics [211]. As a result,

information acquired from profiling the energy consumption of specific models and GPUs offline

do not generalize. To this end, we design a just-in-time (JIT) energy profiler which is triggered
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by the training job online and efficiently captures the energy characteristics of it within just a few

epochs. Moreover, ZEUS adopts a multi-armed-bandit formulation with Thompson Sampling [198],

which allows us to capture the stochastic nature of DNN training and optimize under uncertainty

with bounded regret [44, 43].

We have implemented ZEUS and integrated it with PyTorch [171] (§4.5). Our evaluation

(§4.6) on a diverse workload consisting of speech recognition, image classification, NLP, and

recommendation tasks shows that ZEUS reduces energy consumption by 15.3%–75.8% and training

time by 60.6% w.r.t. simply selecting the maximum batch size and maximum GPU power limit.

ZEUS converges to optimal configurations quickly and can adapt to data drift effectively. ZEUS’s

benefits expand to multi-GPU settings as well.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to characterize the energy consumption vs. perfor-

mance tradeoff for DNN training in terms of job- and GPU-specific configuration parameters.

• We present an online optimization framework that can learn from and adapt to workload

dynamics over time.

• We implement and evaluate the optimizer in ZEUS that integrates with existing DNN training

workflows with little code change and negligible overhead, while enabling large benefits.

4.2 Motivation

In this section, we present an overview of energy consumption characteristics of DNN training

on GPUs, opportunities for reducing energy consumption, and conclude with characterizing the

tradeoff between reducing energy consumption and improving training performance.

4.2.1 DNN Training

Modern DNNs are trained by going over a large dataset multiple times, where each pass over the

dataset is termed an epoch [83]. One epoch of training consists of thousands of iterations of gradient

descent over equally sized mini-batches, with the batch size affecting model accuracy,1 training

1In this project, we specifically target the validation accuracy of the model, which captures how well the model
performs on unseen data.
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throughput, and energy consumption. The performance of DNN training is often measured in terms

of time-to-accuracy (TTA) for a given target accuracy [66], and increasing training throughput (or

more precisely goodput [176]) leads to lower TTA.

As modern DNN models grow in size/complexity and are trained on increasingly larger datasets

[189, 181], they are predominantly trained on increasingly more powerful GPUs, consuming more

energy in the process [172, 214]. Recent benchmarks show that GPUs are responsible for around

70% of the total energy consumption during DNN training [99].

In production GPU clusters, as new data flow into the deep learning pipeline, DNNs need to

be periodically re-trained [95]. This need manifests itself in the form of recurring jobs. Indeed, as

reported in a recent cluster trace [212], more than 50% of the jobs recur more than 35 times over a

two-month period (see Appendix B.3).

4.2.2 Opportunities for Improving Energy Efficiency

We focus on two job and hardware configurations that can cause sizable energy inefficiency

in DNN training: (1) choice of batch size for each mini-batch; and (2) leaving the GPU at the

maximum power limit (default configuration).

Impact of batch size on energy efficiency The size of each mini-batch during DNN training

(batch size) determines how many samples are processed in one iteration. The higher it is, the faster

we can go over the entire input dataset. It is typically set to the maximum value that fits in the GPU

VRAM.

We observe across diverse DNN training workloads that choosing a batch size simply to increase

throughput can lead to more energy consumption for the same target accuracy. Specifically, we

performed a sweep over a large range of valid batch sizes (from 8 to the maximum batch size that

fits in GPU memory) for six computer vision (CV), natural language processing (NLP), and speech

workloads on an NVIDIA V100 GPU (Figure 4.1).2 Section 4.6.1 provides details on workloads

and methodology. We find that the energy-optimal batch size (Batch Size Opt. in Figure 4.1) can

lead to 3.4%–65.0% lower energy consumption than the throughput-optimal one for the same target

accuracy.

2We measure GPU power consumption by invoking the NVML [30].
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Figure 4.1: Energy usage normalized against baseline for DNN training, measured on NVIDIA
V100 GPU. Baseline uses maximum power limit and throughput-optimal batch size.
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Figure 4.2: DeepSpeech2 trained with LibriSpeech on NVIDIA V100: (a) ETA vs. TTA. The
red dots indicate all feasible configurations. The two gray dotted lines indicate two boundaries
characterized by average power consumption. The green line indicates the Pareto frontier over all
configurations. (b) Zoom-in view on the Pareto frontier, with batch size and power limit annotated
on each data point.

Impact of GPU power limit on energy efficiency GPU power consumption is affected by the

frequency and voltage of the GPU core and VRAM on board [210, 121], which is regulated by

the dynamic voltage and frequency scaling (DVFS) algorithm [159]. The default DVFS policy

always sets the GPU core and memory frequency to its maximum, regardless of the workload. We
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performed a sweep over a wide range of GPU power limits3 for the aforementioned setup. We found

that the optimal energy consumption (Power Limit Opt. in Figure 4.1) may happen at a lower power

limit than the maximum and can reduce energy consumption by 3.0%–31.5%.

Joint optimization As Figure 4.1 shows, we can achieve even more energy savings (23.8%–

74.7% reduction) if we jointly optimize both of these configurations. Note that we observed similar

opportunities for reducing energy consumption for other generations of GPUs as well (Figure B.1

in Appendix B.1).

4.2.3 Energy-Performance Tradeoffs

Opportunities for reducing energy consumption during DNN training comes with a cost. When

optimized for efficiency, DNN training performance (TTA) may be impacted. In the following, we

characterize the tradeoff.

We define the total energy consumption of a DNN training job to reach its target accuracy as

its energy-to-accuracy (ETA). Similar to TTA, ETA focuses on the process of end-to-end training.

Their relationship can be captured as follows:

ETA(b, p) = TTA(b, p)× AvgPower(b, p), (4.1)

where p denotes the GPU power limit, b the batch size, and AvgPower(b, p) the average power

consumption during training with configuration (b, p). Note that the average power consumption is

not the same as the GPU power limit.

It is worth noting that when changes in configuration (b, p) lead to increase of TTA, ETA does

not always follow because AvgPower(b, p) can decrease. Instead, there exists a tradeoff between

ETA and TTA.

Tradeoff between ETA and TTA We characterize and elaborate on this tradeoff using Deep-

Speech2 on LibriSpeech as an example (Figure 4.2). It shows a scatter plot of (TTA, ETA) for the

3From the minimum to the maximum power limit allowed by NVIDIA System Management Interface [31]; from
100W to 250W for NVIDIA V100.
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experiments in Section 4.2.2. We observe similar results for other workloads as well (Figure B.2 in

Appendix B.2).

Let us start with Figure 4.2a first, where each data point denotes the (TTA, ETA) of training the

model for a certain configuration until it reaches target accuracy. While sweeping the configurations,

we focus on the boundary of all feasible (TTA, ETA) pairs. We find them to be bounded by two

straight lines characterizing the average GPU consumption. When the GPU is under heavy load, the

data points of (TTA, ETA) appear closer to the upper limit of GPU power consumption, which in

this workload is about 210W. On the other hand when GPU is nearly idle, the data points appear

closer to the idle power consumption of 90W. More importantly, we find a curve along which

all (TTA, ETA) pairs achieves Pareto optimality [60], for which we cannot improve ETA without

sacrificing TTA, and vice versa.

Now let us take a closer look at the Pareto frontier in Figure 4.2b, with the configurations used

during training annotated along each data point. We highlight two takeaways:

1. These results clarify why baseline configurations can lead to suboptimal energy efficiency (§4.2).

Moreover, it shows that blindly going for high batch size and power limit configurations can

lead to suboptimal TTA as well.

2. There exists a tradeoff between ETA and TTA, with different optimums for each. The configu-

ration optimizing the ETA (b =32, p =100W) is different from that optimizing TTA (b =48,

p =250W).

4.3 ZEUS Overview

ZEUS is an optimization framework that navigates the ETA-TTA tradeoff by automatically

configuring the batch size and GPU power limit of recurring DNN training jobs. It enables

developers to optimize energy and/or performance metrics using a single knob.

80



4.3.1 Optimization Metric

Defining a good cost metric for developers to express their priority in this tradeoff is critical for

designing ZEUS. We propose a simple cost metric:

C(b, p) = η · ETA(b, p) + (1− η) · MAXPOWER · TTA(b, p) (4.2)

Here η is a user-defined parameter to specify the relative importance of energy efficiency

and training performance (training throughput). When η = 0, we are only optimizing for time

consumption, whereas when η = 1, we are only optimizing for energy consumption. MAXPOWER

is the maximum power limit supported by the GPU used. This is introduced to unify the units of

measure in this equation, so that any 0 < η < 1 can strike a balance between ETA and TTA.

Note that this cost metric can potentially be extended beyond a simple linear function to a

user-defined function.

4.3.2 Challenges in Picking the Optimal Configuration

Combining Equation 4.1 and 4.2, we have:

C = (η · AvgPower(b, p) + (1− η) · MAXPOWER) · TTA(b, p). (4.3)

Picking the optimal configuration(s) to minimize the energy-time cost C for DNN training is

challenging because the search space [b× p] is large and obtaining the cost of each configuration is

difficult. This is because both the average power consumption AvgPower(b, p) and DNN training

duration TTA are hard to predict without actually running a configuration to completion, as explained

below.

• Complex power consumption model: The total energy consumption of a GPU is affected in a

non-linear fashion by both the characteristics of a workload such as the number of instructions

and memory accesses, as well as GPU hardware configurations such as the frequency and

voltage of the GPU core and VRAM on board [121, 48]. Existing efforts estimate GPU energy

consumption based on instruction- or kernel-level information [102, 152], which is hard to get

before training completes. These energy-prediction models are architecture-specific and static
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too.

• Stochastic nature of DNN training: Modeling and predicting the duration for training a

specific model to target accuracy (TTA) is known to be difficult in practice [86]. Moreover,

randomness introduced into model initialization and data loading leads to variations of TTA,

even when the same job is run on the same GPU with the same configuration – TTA variations

can be as large as 14% [66].

Fortunately, DNN training jobs often recur in production [212]. This provides opportunities for

empirical estimation through repeated measurements across recurrences of the same training job.

4.3.3 Architectural Overview

At a high-level, ZEUS takes a novel online exploration-exploitation approach to minimize the

aggregate cost of recurrent DNN training jobs. ZEUS resolves the aforementioned challenges with

three key design choices:

1. A fully online solution without offline profiling, allowing ZEUS to immediately begin optimizing

incoming jobs.

2. A just-in-time (JIT) online profiler, which efficiently profiles the energy characteristics of the

training job online.

3. Adopting multi-armed-bandit (MAB) with Thompson sampling, which allows us to embrace the

stochastic nature of DL training and optimize under uncertainty with bounded cost difference

with the optimal choice while also adapting to changing workloads such as data drift.

Workflow of ZEUS Figure 4.3 shows an overview of the high-level workflow of ZEUS. In a pro-

duction environment, users submit 1 recurrent DNN training jobs (a tuple of data, model, optimizer,

and the target model accuracy) to ZEUS, along with a set of feasible batch sizes B and power limits

P to explore. ZEUS then predicts 2 the optimal batch size and power limit configuration based

on past execution history, and launches 3 the training job with such configuration. During and

after the training process, statistics about DNN training (e.g., validation accuracy) and GPU power

consumption are collected and fed back 4 to the ZEUS optimizer. ZEUS optimizer learns from the

feedback and adjusts the cost prediction model. The training job will be terminated upon either
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reaching target accuracy or exceeding a predefined stopping threshold before reaching target. The

whole process is an automated feedback loop that minimizes the key objective of energy-time cost.

Building ZEUS requires both algorithm designs and systems support. Next we describe the core

optimization algorithm details (§4.4) and ZEUS implementation highlights (§4.5).

4.4 ZEUS Algorithm Design

In this section, we delve into the details of how ZEUS selects the best batch size and GPU power

limit to optimize the overall cost of recurrent DNN training tasks. We first present the optimization

problem formulation and how we decouple the optimizations of batch size and power limit (§4.4.1).

Next, we show how to optimize power limit (§4.4.2) and batch size (§4.4.3) under the decoupled

framework. We conclude by discussing how we address common challenging scenarios (§4.4.4).
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4.4.1 Problem Formulation

The objective of ZEUS is to minimize the cost of a recurring job by automatically exploring the

feasible set of batch sizes B and power limits P . In essence, we neither want to incur too much cost

searching for the optimal configuration, nor do we want to miss it. Minimizing the cumulative cost

of the job over recurrences captures the implicit trade-off between exploration and exploitation. Put

formally in terms of the cost function defined by Equation (4.2), our objective becomes

min
b,p

T∑
t=1

C(bt, pt; η)

s.t. bt ∈ B, pt ∈ P ,∀t ∈ [1, T ],

(4.4)

where bt and pt denote the batch size and power limit chosen at the tth recurrence of the job,

respectively.

This is a challenging problem without modification, mainly because the size of the search space

can be in the order of hundreds, and each value of C(b, p; η) inside the search space can only be

obtained by running DNN training until it reaches the target metric. However, further expanding the

cost function from Equation (4.3) allows us to decouple explorations of batch size and power limit,

making the problem more tractable:

C(b, p; η)

= (η · AvgPower(b, p) + (1− η) · MAXPOWER) · TTA(b, p)

= Epochs(b) · η · AvgPower(b, p) + (1− η) · MAXPOWER
Throughput(b, p)

.

(4.5)

where Epochs(b) denotes the number of epochs needed to reach the target, and Throughput(b, p)

epochs per second.

We find two key insights that allow the decoupling of batch size b and power limit p:

1. Given b, AvgPower(b, p) and Throughput(b, p) can be profiled quickly during training for all

possible choices of p. This is due to the iterative nature of DNN training, yielding stable power

and throughput estimations even with a small number of iterations.

2. Epochs(b) is not affected by the choice of p as changing the power limit does not change what
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is computed.

This implies that the optimal power limit, given any batch size, can be determined independently

based on online profiling. Moreover, since any choice of batch size is automatically accompanied

by the optimal power limit, our search space is reduced to the set of batch sizes B.

Formally put, we have decoupled the problem in Equation (4.4) into an equivalent two-level

optimization problem

min
b∈B

T∑
t=1

Epochs(bt) · EpochCost(bt; η) (4.6)

where
EpochCost(bt; η)

= min
pt∈P

η · AvgPower(bt, pt) + (1− η) · MAXPOWER
Throughput(bt, pt)

.
(4.7)

When a job arrives, ZEUS will first decide which batch size to use based on Equation (4.6)

(§4.4.3). Then, based on the batch size, ZEUS will pick the optimal power limit based on Equa-

tion (4.7) (§4.4.2).

4.4.2 Optimizing the Power Limit

We start with how ZEUS determines the optimal power limit based on Equation (4.7), given a

choice of the batch size. As highlighted earlier, We leverage the iterative nature of DNN training

and the recurrent nature of jobs in production DNN training workflows.

When a job with batch size decision b is submitted, our just-in-time (JIT) profiler is triggered

and checks if this batch size had been profiled before. For a batch size b that was never tried, it

profiles AvgPower(b, p) and Throughput(b, p) for all possible power limits p during the first epoch

of the job by partitioning the epoch into slices at iteration boundaries and dynamically changing

the GPU power limit for each slice. The profile information is fed back to ZEUS, and the optimal

power limit of the batch size is determined by solving Equation (4.7). The rest of the epochs are

executed with the optimal power limit. Our online JIT profiling approach consumes strictly less

time and energy compared to offline profiling before running the job, because the profiling process

itself contributes to training without affecting its accuracy.
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4.4.3 Optimizing the Batch Size

Now we focus on how ZEUS determines the batch size bt for each job recurrence t that optimizes

Equation (4.6). As seen in Section 4.4.2, EpochCost(bt; η) is a cheap and deterministic function

that identifies the optimal power limit for any batch size bt and returns the optimal cost of one epoch.

Thus, we may limit our exploration to choosing the optimal batch size because whichever batch size

we choose, the optimal power limit will accompany it.

Due to the unpredictable and stochastic nature of DNN training, picking out the optimal batch

size without adequate exploration is difficult. Hence, a good solution must (1) incorporate such

nature of DNN training into its exploration process, and (2) intelligently tradeoff the cost of

exploring for potentially better batch sizes and the gain of exploiting batch sizes that are already

known to be good.

Grid search is suboptimal We argue that exhaustively going through all batch sizes and selecting

the one with the smallest cost is still suboptimal due to the stochastic nature of DNN training.

That is, because the cost of a DNN training job can differ even when executed with the exact

same configurations, it must be modeled as a cost distribution with unknown mean and variance.

Although performing several trials for each batch size may yield a better estimation of the mean

cost, such a strategy leads to high exploration cost because it does not quickly rule out obviously

suboptimal batch sizes.

Multi-Armed Bandit formulation ZEUS aims to explore the cost of different batch sizes and

converge to the optimal batch size, while not incurring too much exploration cost.

ZEUS formulates the problem as a multi-armed bandit (MAB) with T trials and B arms, where

each trial corresponds to a recurrence of the job and each arm to a batch size in B. MAB is a good fit

to our problem scenario in that it models each arm’s cost as a probability distribution, and it balances

exploration and exploitation as it estimates the parameters of the cost distribution in each arm. Here,

the cost of each arm is modeled as a Gaussian distribution [184] due to its representational flexibility.
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Input: Batch sizes B
Belief posterior parameters µ̂b and σ̂2

b

Output: Batch size to run b∗

Function Predict(B, µ̂b, σ̂2
b):

1 foreach batch size b ∈ B do
/* Sample from the belief distribution */

2 Sample θ̂b ∼ N (µ̂b, σ̂
2
b )

/* Select the arm with smallest mean cost sample */

3 b∗ ← argminb θ̂b

Pseudocode. 4: Gaussian Thompson Sampling: Choosing the next batch size to run (Predict)

The objective of the MAB formulation is to minimize the cumulative cost regret defined as

T∑
t=1

Regret(bt; η) (4.8)

where the regret of choosing bt in the is defined as

Regret(bt; η)

= Epochs(bt) · EpochCost(bt; η)−min
b,p

Cost(b, p; η)
(4.9)

Minimizing cumulative cost regret aligns with our objective in Equation (4.6).

Thompson Sampling We adopt the Thompson Sampling [184] policy for the MAB formulation

to tradeoff exploration and exploitation, not only because it is known to perform well in practice [62,

184] and had successful adoption recently [156, 144], but also because its modeling assumptions fit

our problem scenario well.

At a high level, Thompson Sampling is an online procedure that refines its belief about the mean

cost of each arm (batch size) based on experience. At each recurrence, the belief is used to pick

the arm with the lowest estimated mean cost (Algorithm 4), and the belief is updated based on the

actual cost observed (Algorithm 5).

Specifically, the cost distribution is modeled as a Gaussian distribution with unknown mean θb.

Then, the belief about θb is modeled with its conjugate prior distribution, which is also a Gaussian
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Input: Batch size b and observed cost C
Previous cost observations Cb for b
Belief prior parameters µ̂0 and σ̂2

0

Output: Belief posterior parameters µ̂b and σ̂2
b

Function Observe(b, C, Cb, µ̂0, σ̂2
0):

/* Add the most recent cost to history */
1 Cb ← Cb ∪ {C}

/* Compute the variance of the cost */
2 σ̃2 ← V ar (Cb)

/* Compute the belief distribution’s posterior variance */

3 σ̂2
b ←

(
1
σ̂2
0
+ |Cb|

σ̃2

)−1

/* Compute the belief distribution’s posterior mean */

4 µ̂b ← σ̂2
b

(
µ̂0

σ̂2
0
+ Sum(Cb)

σ̃2

)
Pseudocode. 5: Gaussian Thompson Sampling: Updating the belief distribution (Observe)

distribution [75]. That is, θb ∼ N (µ̂b, σ̂
2
b ). Here it is important to note that 1/σ̂2

b can be thought as

of how confident Thompson Sampling is in its belief about that arm, with the confidence increasing

as it accumulates more observations of the cost of choosing that arm. Then, Thompson Sampling

automatically balances exploration and exploitation by choosing the arm with the smallest mean cost

sample θ̂b ∼ N (µ̂b, σ̂
2
b ) (Algorithm 4). With low confidence (high variance), θ̂b will be dispersed

across a larger range of potential costs, having a higher chance of getting chosen even if some of its

initial observations showed high cost. In contrast, when the arms observed a lot of cost samples

and the confidence is high (low variance), θ̂b is likely to be centered around the mean observed

cost, allowing the exploitation of arms that are known to be good. After the actual cost of an arm is

observed, the belief parameters of that arm is updated using the Bayes Rule [184] (Algorithm 5).

The belief prior parameters µ̂0 and σ̂2
0 reflect prior belief about the mean cost of using the batch

size for training and the confidence of such belief. Hence, the choice of prior parameters serve as a

way to initialize the arms such that they reflect prior knowledge about the cost of each arm. If such

information is not available, which is our default assumption, it is also possible to initialze the arms

with a flat prior that assumes no prior knowledge – in our case, this is a Gaussian distribution with

zero mean and infinite variance.

In contrast to grid search, our formulation using MAB and Thompson Sampling meets the two
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Figure 4.4: An example of batch size pruning during exploration stage. Each point is a recurrence.

requirements mentioned earlier. That is, MAB inherently incorporates the stochastic nature of DNN

training in that it models cost as a probability distribution. Moreover, Thompson Sampling can

quickly rule out batch sizes that are obviously suboptimal because the probability of a smaller mean

cost being sampled from an arm that observed noticeably large cost is low.

4.4.4 Extensions

Handling unknown cost variance Unlike conventional Gaussian Thompson Sampling applica-

tions, we may not assume that the variances of the cost of each arm are known. That is, the cost

variance (i.e., how much the cost will fluctuate even when training is run with the same batch size) is

not known before any observation. Moreover, the cost variance depends not only on the batch size,

but also on the DNN’s robustness to the randomness in parameter initialization and data loading,

making it difficult to quantify at the time the MAB is constructed. Hence, our approach is to learn

the cost variance as we observe cost samples (Line 2 in Algorithm 5).

Handling stragglers during exploration There may be cases where an exploratory job does not

reach the target metric within a reasonable amount of time, especially during the earlier exploration

stage. To handle this, we employ early stopping and pruning. The intuition is that if a batch size

does not reach the target metric even after incurring an exceedingly large cost, it is highly unlikely

to be the optimal one.

For early stopping, we define a cost threshold β ·mint Ct, meaning that when the cost of the

current job is to exceed β times the minimum cost observed so far, we stop the job and retry with

another batch size. Here β is a parameter to account for the stochastic nature of DL training. By
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Figure 4.5: ETA of each batch size for DeepSpeech2 trained on LibriSpeech. Plots for rest of the
workloads are in the Appendix B.4.

default we choose β = 2, with which we should be able to tolerate variations of TTA between

different runs of the same configuration, which is usually less than the 14% [66].

For pruning, as illustrated in Figure 4.4, we begin with the default batch size provided by the

user and first try smaller batch sizes until we meet the minimum batch size or a batch size that fails

to reach the target metric before the early stopping threshold. The same process is repeated for batch

sizes larger than the default batch size. Then, only the batch sizes that reached the target metric are

kept in the batch size set we explore. After performing an initial round of pruning, the default batch

size is updated to be the one with the smallest cost observed, and we performing pruning once more

starting from the new default batch size.

The intuition behind our batch size pruning approach is the convexity we observe in the BS-ETA

curve around the optimal batch size (See Figure 4.5). Moreover, pruning allows ZEUS to quickly

rule out batch sizes that are noticeably suboptimal (typically too large, leading to more training

epochs and loss of accuracy [125, 82], or too small, yielding gradients that are too noisy [183]),

thus cutting down the cost of exploration.

The overall process is depicted in Algorithm 6.

Handling concurrent job submissions Classic multi-armed bandit scenarios assume that the

MAB immediately observes the cost of pulling an arm. However, in a DNN training cluster,

recurring jobs may overlap in their execution when a later job starts before the completion of an

earlier job. In this case, the MAB does not get to observe the cost of the earlier job at the time it

has to decide the batch size for the later job. For deterministic policies like [142, 51], this leads to

duplication exploration of the same batch size back-to-back, reducing the efficiency of exploration.
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Input: Set of batch sizes B
Default batch size b0
Belief prior parameters µ̂0 and σ̂2

0

/* Pruning phase */
1 Recurrence t← 0
2 repeat 2 times
3 Explore b0
4 Explore b < b0 until convergence failure
5 Explore b > b0 until convergence failure
6 B ← {b : b converged}
7 b0 ← b with smallest cost observed
8 t← t+ |B|

/* Thompson Sampling phase */
9 while t ≤ T do

10 b∗ ← Predict(B, µ̂b, σ̂
2
b ∀b ∈ B)

11 Run job with batch size b∗ and add cost to Cb
/* Update our belief of the mean cost */

12 µ̂b, σ̂
2
b ← Observe(b, Cb, µ̂0, σ̂

2
0)

13 t← t+ 1

Pseudocode. 6: Gaussian Thompson Sampling Batch Size Optimizer.

However, Thompson Sampling naturally mitigates this problem without modification because

deciding the next batch size to explore (Predict) is a random function. That is, because Thompson

Sampling samples the estimated mean cost from each arm’s belief distribution and returns the

arm with the lowest sampled value, concurrent jobs have a high probability of running different

batch sizes even if there was no information gained between the invocations of Predict. This is

especially the case during the early stage of Thompson Sampling when the arms’ belief distributions

have large variances (low confidence), losing little exploration efficiency.

During the short initial exploration phase, we run concurrent job submissions with the best-

known batch size at that time. As the best batch size constantly updates throughout the exploration

stage, this strategy fairly distributes the additional exploration opportunities from concurrent job

submissions to batch sizes that are known to converge. We evaluate ZEUS’s efficacy on handling

concurrent job submissions in Section 4.6.3.
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1 from zeus import ZeusDataLoader
2

3 train_loader = ZeusDataLoader(
4 train_set, batch_size, max_epochs, target_metric)
5 eval_loader = ZeusDataLoader(eval_set, batch_size)
6

7 for epoch in train_loader.epochs(): # may early stop
8 for batch in train_loader:
9 # Learn from batch

10 for batch in eval_loader:
11 # Evaluate on batch
12 train_loader.report_metric(validation_metric)

Listing 4.1: ZEUS Integration Example

Handling data drift In production training clusters, the data on which the model is trained shifts,

which is one of the reasons why re-training is triggered [151, 147]. The implication of drift in the

perspective of the MAB is that the cost distribution of each arm is non-stationary.

Thompson Sampling allows a simple modification that allows us to handle non-stationary cost

distributions. Since older cost observations become less and less relevant, we only operate on

a window of N most recent cost observations [53], and the belief distributions will not take old

observations into account. When old history entries are evicted, computing the new parameters of

the arm is also cheap thanks to the conjugate prior property. This way, ZEUS transparently adapts to

data drifts in an online manner, as we show in Section 4.6.4.

4.5 ZEUS Implementation

ZEUS is implemented as a Python library that can be imported into DNN training scripts. We

have integrated ZEUS into PyTorch [171] by extending the DataLoader class, i.e., ZeusDataLoader.

The class profiles power and throughput online by slicing epochs in iteration boundaries and in-

voking the NVML [30] library for power configuration and profiling. We have observed that five

seconds of profiling for each power limit is enough to yield stable results. With the information, the

optimal power limit can be automatically determined and applied. Moreover, ZeusDataLoader

monitors the cost incurred by training and early stops the job if needed. Listing 4.1 shows an

example training loop integrated with ZEUS.
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Task Dataset Model Optimizer b0 Target Metric
Speech Recognition LibriSpeech [169] DeepSpeech2 [91] AdamW [150] 192 WER = 40.0%
Question Answering SQuAD [180] BERT (QA) [71] AdamW [150] 32 F1 = 84.0
Sentiment Analysis Sentiment140 [81] BERT (SA) [71] AdamW [150] 128 Acc. = 84%
Image Classification ImageNet [70] ResNet-50 [96] Adadelta [219] 256 Acc. = 65%
Image Classification CIFAR-100 [132] ShuffleNet-v2 [153] Adadelta [219] 1024 Acc. = 60%

Recommendation MovieLens-1M [92] NeuMF [97] Adam [127] 1024 NDCG = 0.41

Table 4.1: Models and datasets used in our evaluation. The provided target metrics is the target
for each training job. Here b0 denotes the default batch size presented in the original work when
feasible, otherwise we choose the maximum batch size which can consistently reach the target.
The BERT(QA) and BERT(SA) means fine-tuning BERT on the tasks of question answering and
sentiment analysis, respectively.

Observer Mode ZeusDataLoader supports an Observer Mode, where it profiles the power

consumption and throughput of each power limit and determines the optimal one, but keeps

the power limit at the maximum. By doing so, without affecting time or energy consumption,

ZeusDataLoader reports how much time and energy the job would have consumed if the power

limit were the optimal one, allowing the user to get an idea of the impact of using ZEUS. We believe

that such a feature can encourage ZEUS’s adoption by informing users of its potential savings.

4.6 Evaluation

We evaluate ZEUS’s effectiveness in terms of navigating the energy-time tradeoff. Our key

findings are as follows:

1. ZEUS reduces energy consumption by 15.3%–75.8%. It achieves this by trading off small

performance for jobs that are already throughput-optimal; otherwise, it reduces training time by

up to 60.1% too (§4.6.2).

2. ZEUS converges to the optimal configuration in a timely fashion (§4.6.2).

3. ZEUS can handle workloads with data drift well (§4.6.4) and overall incurs low overhead

(§4.6.5).

4. ZEUS scales to multi-GPU settings (§4.6.6) and provides consistent savings across four genera-

tions of GPUs (§4.6.7).
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Node GPU Specification Host Specification
HPE Apollo
6500 Gen10 Plus
A40 × 4

Model A40 PCIe CPU AMD EPYC 7513
VRAM 48GB RAM 512GB DDR4-3200
mArch. Ampere Disk 960GB NVMe SSD

CloudLab [12]
r7525
V100 × 2

Model V100 PCIe CPU AMD EPYC 7542
VRAM 32GB RAM 512GB DDR4-3200
mArch. Volta Disk 2TB 7200rpm HDD

Chameleon
Cloud [124]
RTX6000

Model RTX6000 CPU Xeon Gold 6126
VRAM 24GB RAM 192GB
mArch. Turing Disk 256GB SSD

Chameleon
Cloud [124]
P100 × 2

Model P100 CPU Xeon E5-2670 v3
VRAM 16GB RAM 128GB
mArch. Pascal Disk 1TB HDD

Table 4.2: Hardware used in the evaluation.

4.6.1 Experimental Setup

Testbed Setup We evaluate ZEUS with four generations of NVIDIA GPUs as specified in Ta-

ble 4.2.

Workloads Table 4.1 summarizes our workloads. The default batch size (b0) is chosen from the

original model publication when available; otherwise, it is set to be the maximum batch size which

consistently achieves the target accuracy. See Appendix B.5 for more details.

Baselines We compare against the following baselines:

1. Default (b = b0, p = MAXPOWER). This is often the default configuration used by practitioners,

where the GPU power limit is set to, or rather not changed from, the maximum. This is the most

conservative baseline with no exploration.

2. Grid Search with Pruning. This one tries out one configuration of (b, p) for each recurrence of

the job and selects the best one. We optimize naı̈ve grid search by having it prune out batch

sizes that failed to reach the target metric.

Metric Our primary metrics are ETA (energy consumption) and TTA (training time). Ideally, we

want to reduce both; but due to their tradeoff, sometimes it may not be possible to simultaneously

do both.
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Figure 4.6: ZEUS reduces energy consumption for all workloads. (a) energy consumption, (b)
training time of each workload, normalized by the Default baseline. Results are computed with the
last ten recurrences, capturing the knobs each method converged to.

Defaults All experiments are done on NVIDIA V100 GPUs, unless otherwise mentioned. By

default, we highlight η = 0.5 to strike a balance between ETA and TTA. Later, we sweep η from 0

to 1 (§4.6.7). The early-stopping threshold β is set to 2, and we also sweep β from 1.5 to 5 (§4.6.7).

See Appendix B.6 for details on experimental methodology and parameter choices.

4.6.2 ZEUS Performance

In this section, we evaluate the performance of ZEUS in terms of energy consumption and

training time as well as the convergence characteristics of our Multi-Armed Bandit algorithm. Each

experiment is run across multiple recurrences of DNN training jobs. We select the recurrence

number to be 2 · |B| · |P|, so that the Grid Search baseline finishes exploration and also has plenty

of chances to exploit its choice.
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Figure 4.7: Cumulative regret of Zeus vs. Grid Search for (a) DeepSpeech2 and (b) ResNet-50.

Improvements in ETA Figure 4.6a shows the energy consumption (ETA) of the last ten recur-

rences of ZEUS and Grid Search w.r.t. the Default baseline, aiming to compare the final point each

approach converged to. ZEUS reduces energy consumption (ETA) by up to 15.3%–75.8% w.r.t. the

baseline. This is also comparable to the reduction we found by exhaustively searching through all

the configurations in Section 4.2 as well as by using Grid Search.

Tradeoff with TTA Figure 4.6b shows the time consumption (TTA) of the last ten recurrences

of ZEUS and Grid Search w.r.t. the Default baseline. Even though ZEUS reduces training time

by up to 60.1%, for some workloads TTA is increased by 12.8% (Figure 4.6b). This is due to the

tradeoff between ETA and TTA, which is the central focus of this project. This is especially true for

workloads with close to throughput-optimal b0, where there is little room for TTA improvement.

Cumulative regret While ZEUS and Grid Search perform close to each other, ZEUS use signifi-

cantly smaller amount of resources to converge. As a bandit-based solution, the effectiveness of our

algorithm can be quantified via regret, the difference between the decision selected and the optimal

choice (Equation 4.9 in Section 4.4.3).

Figure 4.7 shows the cumulative regret of ZEUS and Grid Search for DeepSpeech2 and ResNet-

50. The optimal configuration is chosen by an exhaustive parameter sweep. We observe that in both

workloads, ZEUS is able to achieve better regret from the first job recurrence. ZEUS reaches the

plateau in the cumulative regret earlier than Grid Search, which means it converges to the optimal
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Figure 4.8: Search paths of (a) ZEUS and (b) Grid Search for Deepspeech2. The heatmap in the
background shows the regret of each (Batch Size, Power Limit) configuration. Darker background
denotes lower regret and therefore better configuration. The colored line with shifting color shows
the search path, with darker color being later recurrences.

solution earlier. We observe similar results for other workload as well (Appendix B.7). In the worst

case, Grid Search uses 72× more energy than ZEUS in finding Pareto-optimal solutions.

Convergence to a Pareto-optimal configuration Despite having no information about the

application beforehand, ZEUS learns the energy characteristics of it online in a few iterations.

Figure 4.8 shows the search path of ZEUS and Grid Search during training DeepSpeech2. Due

to the decoupling in optimization of power limit and batch size, ZEUS explores the configuration
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space more efficiently and converges to the optimal configuration much faster. We observe similar

results for other workloads (see Appendix B.8). In contrast, in Figure 4.8b we observe that Grid

Search may not even converge to optimal configuration. This is due to the stochastic nature of DNN

training, with even the same batch size yielding different energy and time consumptions. Hence,

Grid Search may choose a suboptimal configuration when a suboptimal configuration luckily yields

good energy and time consumptions.

4.6.3 Trace-Driven Simulation Using the Alibaba Trace

Here we evaluate how ZEUS can save energy and time consumption for DNN training in large

clusters. We run trace-driven simulation using the Alibaba trace [212] which contains over 1.2

million jobs spanning a period of two months. The Alibaba GPU cluster trace to be suitable for our

evaluation due to two reasons. First, the trace identifies recurring jobs, and each job is annotated

with its group ID. Second, jobs inside the same group show overlap in their execution, allowing us

to evaluate ZEUS’s capability of handling concurrent job submissions with Thompson Sampling.

In order to assign job groups to the workload (Table 4.1) that best resembles its runtime, we

remove jobs that did not successfully terminate and run K-Means clustering [94] on the mean job

runtime of each group to form six clusters. Then, we match the six clusters with our six workloads

in the order of their mean runtime. When running simulation, in order to capture the intra-cluster

runtime variation of each job, we scale the job runtime with the ratio of the job’s original runtime to

its cluster’s mean runtime. We compare ZEUS with Default and Grid Search and plot the results in

Figure 4.9.

Figure 4.9a shows the cumulative energy consumption of training using all three approaches.

ZEUS outperforms both baselines for workloads of all types and sizes. Note that there are scenarios

where the Grid Search performs worse than Default, due to it wasting too much energy and time

during the exploration stage. Thanks to ZEUS’s early stopping and quick online power optimization,

its energy and time cost during exploration stage of ZEUS is significantly reduced. Across all the

models, ZEUS reduces training energy usage by 7%–52%. Figure 4.9b shows the training time using

ZEUS to be increased by at most 16%, and in many cases even decreased by up to 33%. Finally,

similar to earlier experiments, ZEUS had significantly lower cumulative regret than Grid Search.
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Figure 4.9: ZEUS reduces energy consumption for all jobs in the Alibaba cluster trace [212],
compared to Grid Search and Default. (a) Energy consumption with ZEUS comparing against
baselines, (b) Training time of each type of workload. Both are normalized by the Default baseline.

4.6.4 Handling Data Drift

While there are previous works that attempt to identify and address data drift in general ML

settings [151], existing datasets are classification tasks based on small feature vectors [93, 56],

completely synthetic [77, 106], or closed [154].

Therefore, we create and open-source a new sentiment analysis dataset called Capriccio that is

suitable for evaluating DNN models. Capriccio consists of 1.6 million tweets over three months

from the Sentiment140 [81] dataset, labeled with sentiment scores and the timestamp of the tweet.

We emulate data drift by capturing a sliding window of 500,000 tweets (roughly the amount of

tweets in one month) at a time and moving the window forward by each day, generating 38 slices.

We skip empty dates to avoid having identical slices.
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Figure 4.10: Energy consumption of training BERT with ZEUS on drifting dataset Capriccio and
the batch size chosen for each slice.

We train BERT [71] on Capriccio with ZEUS configured with a window size of 10, roughly

corresponding to a time frame of two weeks on Twitter. We plot the selected batch size for each

recurrence (slice) and its corresponding ETA of training in Figure 4.10. We observe that the changes

in ETA trigger the exploration of a batch size that is different from the converged optimal one, at

slice 36.

4.6.5 Overhead of JIT Profiling

Measurements with the Deepspeech2 model using the default batch size b0 show that JIT profil-

ing results in a 0.01% increase in energy consumption and a 0.03% increase in time consumption.

Such a tiny overhead is possible because the time needed to profile all power limits is very small

(less than one minute) while one epoch of training spans hours (which is typical for DL work-

loads). Measurements on ShuffleNet-v2, which has much shorter epoch duration, show that JIT

profiling results in a 0.6% increase in terms of time consumption and a 2.8% reduction in energy

consumption.

4.6.6 Scaling to Multi-GPU

While the primary focus of this project is on single-GPU setting, in this section, we show

that ZEUS can be extended to (single-node) multi-GPU training settings by profiling the power

consumption of all GPUs that participate in training. Extensions to distributed multi-GPU setup
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Figure 4.11: Pareto Front of DeepSpeech2 and how η nativates it.

that involves the network is a potential future work.

Extending to multi-GPU allows us to compare our energy and time consumption with Pol-

lux [176], a state-of-the-art distributed cluster scheduler that dynamically tunes the batch size

during DNN training in order to maximize goodput. Training LibriSpeech on four NVIDIA A40

GPUs with Deepspeech2, ZEUS consumes 12% more time but 21% less energy, comparing favor-

ably. We especially note that while Pollux does not take energy into account, ZEUS allows the user

to select a different time-energy tradeoff point (e.g., speed up training but consume more energy) by

selecting an appropriate η.

4.6.7 Sensitivity Analysis and Ablation Studies

Impact of η To characterize the impact of η as defined in Equation 4.2, we perform a sweep of

0 ≤ η ≤ 1 when training DeepSpeech2 and plot the resulting optimal (TTA, ETA) in Figure 4.11.

We also plot the corresponding Pareto Front for reference. We observe that the resulting (TTA,

ETA) data points falls closely to the Pareto Front. Moreover, we plot the lines along which the C in

Equation 4.2 is a constant, shown as the dotted lines. As expected, these lines form an envelope

around the Pareto Front. Additional sensitivity analysis for η can be found in Appendix B.9.

Impact of early-stopping threshold β To study impact of the early-stopping threshold β, we

sweep β from 1.5 to 5 and measure the cumulative ETA across all jobs. We calculate the difference
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Figure 4.12: Relative cumulative energy consumption of ZEUS across all jobs, w.r.t. the early-
stopping threshold β.

in ETA relative to our default choice of β = 2.0, and plot the result of all jobs as well as a geometric

mean across all jobs in Figure 4.12. The result shows that the default β = 2.0 chosen by ZEUS

achieves the lowest geometric mean across all jobs. The intuition behind this is: when the β is

too low, ZEUS prematurely stops exploratory runs, reducing the effectiveness of exploration. In

contrast, when β is too high, it dilutes the benefit of early stopping which leads to inflated energy

consumption during exploration.

Impact of individual components In order to show the gains from each component, we show the

degradation of removing one component from ZEUS: no early stopping (setting β to infinity), no

pruning (keeping a batch size that didn’t reach the target accuracy), and no JIT profiling (profiling

each power limit in different recurrences). Figure 4.13 shows the slowdown relative to ZEUS after

disabling these components. We observe that the performance of ZEUS benefits mostly from early

stopping.

Impact of GPU models Figure 4.14 shows the geometric mean of ETA normalized against

Default across all jobs. We observe a consistent ETA reduction of ZEUS across four generations of

NVIDIA GPUs. More in Appendix B.10.
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4.7 Related Work

DNN Training A large body of recent studies focus on creating fast kernels for tensor opera-

tions [115, 209, 221, 63], efficiently placing data and/or computation [165, 179, 217, 141], and

optimizing communication [208, 173]. However, most of them optimize for TTA and are oblivious

of the energy impact of the techniques employed. These works can be applied together with ZEUS,

potentially accelerating training while making it energy efficient.

Another recent effort in reducing TTA (without considering energy) in multi-GPU DNN training

is Pollux [176]. Pollux dynamically changes the batch size during training based on the Gradient

Noise Scale (GNS) [158]. However, GNS does not theoretically capture the generalization of

the model [158] and can only be efficiently approximated when there are more than one GPUs

participating in training. ZEUS, on the other hand, optimizes and trades-off TTA and ETA by tuning

the batch size across job recurrences and does not alter the model’s convergence characteristics.

Energy Measurement for Deep Learning A recent line of research has analysed the energy

consumption [172] as well as the environmental impact [194, 137] for training large DNN models

inside a cluster. On the device-level, benchmarking efforts have been made to understand the energy

efficiency and performance of training DNN on GPUs and other accelerators [211]. Several Python

frameworks have been built, for measurement [98, 58] and prediction [47] of energy consumption
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for DNN training. ZEUS takes a similar software-based approach to measure power consumption

via NVML [30], in order to perform JIT profiling of DNN training jobs.

Energy Optimization for Deep Learning Existing work has investigated energy-accuracy trade-

off in the context of DNN inference with new neural network architecture [206] and algorithm-

hardware co-design [196], and training strategies such as warm-start [50] and gradient-matching-

based data subset selection [126]. Other works optimize energy for DNN training on multiple GPUs

with scheduling [123] and task mapping [131]. ZEUS complements these solutions as it can be plug

in transparently into these frameworks.

Several works have studied the impact of GPU DVFS and power configuration on energy

consumption and performance of DNN training [222, 207, 197, 54, 131], wherein they focus on the

tradeoff between the transient metric of system throughput and power consumption. They rely on

offline modeling and profiling. In contrast, ZEUS focuses on the more realistic end-to-end metric of

Energy-to-accuracy, and is fully online.

BatchSizer [164] introduces batch size as a control knob to optimize for energy efficiency of

DNN inference. ZEUS focuses on DNN training, and takes a holistic approach, optimizing both

GPU and job configurations together.

GPU Power Modeling Recent GPU architecture efforts have built program-level energy con-

sumption models of GPU using machine learning [215], with consideration of DVFS [210]. A

recent work AccelWattch [121] models GPU power consumption at cycle-level granularity. They

require offline profiling to model and predict energy consumption. In contrast, ZEUS is an online

adaptive mechanism.

4.8 Conclusion

In this work, we sought to understand and optimize the energy consumption of DNN training on

GPUs. We identified the tradeoff between energy consumption and training time, and demonstrated

that common practices can lead to inefficient energy usage. ZEUS is an online optimization

framework for recurring DNN training jobs that finds the Pareto frontier and allows users to

navigate the frontier by automatically tuning the batch size and GPU power limit of their jobs.
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ZEUS outperforms the state-of-the-art in terms of energy usage for diverse workloads and real cluster

traces by continuously adapting to dynamic workload changes such as data drift. We earnestly

hope that ZEUS will inspire the community to consider energy as a first-class resource in DNN

optimization.
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CHAPTER 5

Conclusions

This dissertation focuses on bringing application-awareness into infrastructures and optimizing

the end-to-end performance and efficiency of them. In this dissertation, we explore the opportunities

and propose different means of co-optimizing applications and infrastructures for a wide variety

of big data applications. We highlight two ways of implementing application-awareness: (a)

white-box design, where the application explicitly exports its context to the infrastructure, and (b)

black-box design, where the infrastructure infers application-level information instead. The former

approach depends on an accurate model of the relationship between application-level objectives

and infrastructure-level knobs as well as the availability of detailed application-level context, and it

also requires changing the application. The latter approach infers application-level context from

real-time signals such as performance counters, and performs empirical optimization without an

analytical model. It does not change the application, making it more transparent for adoption

and adaptive to new applications. We discuss how these advantages and disadvantages of the two

approaches manifest in three popular big data use cases. The insights from this dissertation promote

introducing application-awareness and can help future system designers choosing the approach of

implementing it.

Application-Awareness for Data Analytics TERRA introduces the abstraction of DataBundle,

which effectively captures application-level context. We forward this context into the infrastructure

and update the scheduling algorithm to make informed decisions. By adopting the white-box

application-awareness, TERRA improves average Job Completion Time by up to 3.43× for the

smallest and up to 32.04× for the largest deployment.
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Application-Awareness for Transaction Processing KAYAK shows that transaction processing

systems can achieve higher throughput and lower latency with the help of black-box application-

awareness. In this project, we show that by proactively and adaptively combining RPC and KV

together, overall throughput and CPU utilization can be improved. We propose an algorithm that

dynamically adjusts the rate of requests and the RPC fraction to improve overall request throughput

while meeting latency SLO requirements.

Application-Awareness for Deep Learning Training ZEUS is an online optimization framework

for recurring DNN training jobs that finds the Pareto frontier and allows users to navigate the frontier

by automatically tuning the batch size and GPU power limit of their jobs. ZEUS outperforms the

state-of-the-art in terms of energy usage for diverse workloads and real cluster traces by continuously

adapting to dynamic workload changes such as data drift.

5.1 Limitations

TERRA TERRA assumes a cooperative scheduling policy where each job submitted has the same

level of priority, and focuses on improving the collective metric of Job Completion Time (JCT) of all

jobs. In reality, jobs may be submitted with different priorities and should be scheduled accordingly.

In addition, TERRA assumes the knowledge of the topology of the underlying Wide-Area Network

(WAN) as well as the capacity of the links.

KAYAK In KAYAK, we consider rate limiting and admission control because simply moving up

the latency curve cannot push the servers beyond their physical capacity. This is because if a tenant

specifies a strict SLO target, requests that miss this target are essentially failed requests. As such,

we assume that the tenants will implement a mechanism such as resubmitting requests which are

dropped due to rate limiting, after adapting to a slower rate. At a slower timescale, tenants should

also increase provisioning to avoid slowing down, so that in the worst case scenario all requests can

still be executed on all application servers within the SLO target. In practice, rate limiting has to be

coordinated with the reprovision of the capacity at the cluster level.
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ZEUS In ZEUS, we introduce a parameter η to balance the tradeoff between time consumption

and energy cost for DL training, which simplifies the tradeoff. Even though the user can specify the

η to prioritize either saving time or energy cost, picking the appropriate η is non-intuitive and may

require some tuning. In addition, ZEUS assumes the DL training jobs to be recurrently submitted,

and it performs better with more recurrences.

5.2 Future Work

Topology-Aware Query Planning for HMCA TERRA performs scheduling, path selection, and

bandwidth allocation for inter-site shuffles of HMCA job, under a given query execution plan. The

query planning and task placement (e.g. for instance finding out what is the best site to perform some

aggregation of intermediate data) are out of the scope for this project. Existing work [201, 202]

does not take the WAN topology into account when performing query optimizations, leaving a gap

in this field. Future research of query optimization for HMCA applications should consider the

heterogeneity of WAN topology.

Automatic Code Generation for Storage Functions Currently, developers using KAYAK have

to code the same application logic again in the storage functions running inside the storage server.

This duplication complicates the development process and increases the chance of human errors and

bugs. Automatically generating server-side storage functions from code written using traditional

KV API can alleviate this problem. This would be an interesting avenue for future work as it makes

adoption and migration easier.

Cluster-wide Energy Optimization for Distributed Deep Learning ZEUS monitors GPU energy

consumption using a software-based approach via NVIDIA Management Library [30]. Due to lack

of reliable energy measurement tools for other components such as RAM, CPU, disk and NIC, the

scope of ZEUS is limited to single-host deep learning (DL) training. Further research is needed to

find ways to measure and monitor energy consumption for those components, in order to enable

energy optimization for multi-host distributed DL training.
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5.3 Final Remarks

As new applications and hardware emerge, the endeavor of designing appropriate software

systems to orchestrate the two will never end. In this dissertation, we focus on bringing application-

awareness to the underlying software systems and hardware, and highlight two approaches of

implementing application-awareness. We discuss the advantages and disadvantages of each ap-

proach, within the context of three popular big data use cases. We believe that my preliminary work

can be a reference point and stepping stone for future research on building more efficient big data

systems.
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APPENDIX A

Kayak Appendices

A.1 Supplemental Measurements

A.1.1 Supplemental Measurements for Graph Traversal Workload

We repeat the same parameter sweep as in §3.2.2 but with the number of storage accesses per

request set to 4 and 8. We vary the RPC fraction from 0 to 1 and measure the overall throughput

and end-to-end latency of all requests. In doing so, we obtain the throughput-latency measurements

for all possible execution configurations, as shown in Figure A.1 and Figure A.3. The optimal RPC

fraction during these sweeps are shown in Figure A.2 and Figure A.4. We note that the observation

we make in §3.2.2 still holds in these measurements.
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Figure A.1: Throughput w.r.t. SLO (99%-tile latency) for graph traversal with four storage accesses
per request.
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Figure A.2: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for graph traversal with four storage
accesses per request.
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Figure A.3: Throughput w.r.t. SLO (99%-tile latency) for graph traversal with eight storage accesses
per request.

A.2 Analysis of Algorithms

A.2.1 Problem Formulation

We aim to solve the following optimization problem

max
X

R

s.t. T (X,R) ≤ t0

(P)
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Figure A.4: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for for graph traversal with eight
storage accesses per request.

where we assume:

Assumption 1. Fix X , FX(R) := T (X,R) is monotonic increasing and twice differentiable.

Assumption 2. For any X , there exist R1 and R2 such that minX T (X,R1) ≤ t0 ≤ minX T (X,R2).

A.2.2 Algorithm I: X-R Dual Loop Control

We adopt the following iterative algorithm to solve the problem:

Algorithm I (X-R Dual Loop Control) For k = 1, . . . , K, we alternatively update Xk and Rk by

• Xk = argminX T (X,Rk);

• Rk+1 = Rk + η (t0 − T (Xk, Rk)).

We have the following theorem to characterize the convergence of the above algorithm.

Theorem 1. Suppose in addition we have,

1. T (X,R) is twice differentiable and lower bounded.
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2. Fix R, FR(X) := T (X,R) is µ-strongly convex1, L-smooth2 and coercive.3

3. For all X , we have 0 < α ≤ ∂T (X,R)
∂R

≤ β.

If we set 0 < η < 1
β

, then

|RK −R∗| ≤ (1− ηα)K · |R0 −R∗| .

In the following we elaborate the proof for Theorem 1. We begin with introducing a series of

lemmas. Let us denote

H(R) = min
X

T (X,R).

Lemma 1. For all R ̸= S,

0 < α ≤ H(R)−H(S)

R− S
≤ β.

Moreover, the above inequality implies H(R) is monotonic increasing and continuous.

Proof. Without loss of generality let R > S. Let X = argminX T (X,R) and Y = argminX T (X,S).

Then

H(R)−H(S)

R− S
=

T (X,R)− T (Y, S)

R− S≤
T (Y,R)−T (Y,S)

R−S
= ∂T (Y,P )

∂R
≤ β,

≥ T (X,R)−T (X,S)
R−S

= ∂T (X,Q)
∂R

≥ α > 0.

Here P,Q ∈ (S,R) are given by mean-value theorem.

Lemma 2. There exists an unique R∗ such that H(R∗) = t0. Moreover, this R∗ gives the maximum

of the original optimization problem.

Proof. We have already shown that H(R) is monotonic and continuous. Recall that there exists R1

and R2 such that H(R1) ≤ t0 ≤ H(R2), thus there exists an unique R∗ such that H(R∗) = t0.

1f(x) is µ-strongly convex, if for all x and y, it holds that f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ
2 ∥y − x∥22.

2f(x) is L-smooth, if for all x and y, it holds that f(x) ≤ f(y)+ ⟨∇f(y), x− y⟩+ L
2 ∥y − x∥22. In general, if f(x)

is twice-differentiable and x is restricted in a bounded domain, then f(x) is L-smooth in that domain, for some finite L.
3f(x) is coercive if f(x)→ +∞ as ∥x∥ → +∞. A strongly convex and coercive function admits an unique and

finite minimum point.
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For any R so that R > R∗, we have H(R) > H(R∗) = t0 by monotonicity, thus R does not

meet the constraint. Therefore R∗ is the maximum of the optimization problem.

Proof of Theorem 1. With H(R) := minX T (X,R), we can rephrase Algorithm I as

Rk+1 = Rk + η (H(R∗)−H(Rk)) .

Let R0 be the initialization. We next show the convergence of this iteration.

Case I: R0 < R∗. If Rk < R∗, then

R∗ −Rk+1 = R∗ −Rk − η (H(R∗)−H(Rk))≤ R∗ −Rk − ηα (R∗ −Rk) = (1− ηα) (R∗ −Rk)

≥ R∗ −Rk − ηβ (R∗ −Rk) = (1− ηβ) (R∗ −Rk)

that is 0 ≤ (1− ηβ) (R∗ − Rk) ≤ R∗ − Rk+1 ≤ (1− ηα) (R∗ − Rk). Using this recursion, if

R0 < R∗, we have

0 ≤ (1− ηβ)K (R∗ −R0) ≤ R∗ −RK ≤ (1− ηα)K (R∗ −R0).

Case II: R0 > R∗. If Rk > R∗, then

Rk+1 −R∗

= Rk + η (H(R∗)−H(Rk))−R∗

= Rk −R∗ − η (H(Rk)−H(R∗))≤ Rk −R∗ − ηα (Rk −R∗) = (1− ηα) (Rk −R∗)

≥ Rk −R∗ − ηβ (Rk −R∗) = (1− ηβ) (Rk −R∗)
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that is 0 ≤ (1− ηβ) (Rk − R∗) ≤ Rk+1 − R∗ ≤ (1− ηα) (Rk − R∗). Using this recursion, if

R0 > R∗, we have

0 ≤ (1− ηβ)K (R0 −R∗) ≤ RK −R∗ ≤ (1− ηα)K (R0 −R∗).

To sum up, when η < 1
β

(hence smaller than 1
α

), we have

|RK −R∗| ≤ O
(
(1− ηα)K

)
.

A.2.3 Algorithm II: R-X Dual Loop Control

Let us take a closer look at the optimization problem (P) under Assumption 1 and Assumption 2.

First we observe the maximal must be attended at the boundary

T (X,R) = t0. (A.1)

Second the boundary constraint Eq. (A.1) implicitly defines a function R(X), where

T (X,R(X)) = t0.

We highlight that R(X) is indeed well defined, since under Assumption 1 and Assumption 2, for

any X , there exists an unique R(X) that satisfies the boundary constraint.

With the above observations, we may rephrase the optimization problem (P) as

max
X

R(X) (P’)

where R(X) is implicitly defined by the boundary constraint. In the following we discussion

algorithms that solve problem (P’).

Our challenge it that we do not have direct access to R(X); instead at each fast loop step, we
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have an estimation to R(X), denoted as Rk(x), which approximately satisfies

T (X,Rk(X)) ≈ t0.

In this set up we can perform stochastic gradient ascent (SGA, or online gradient ascent) for Rk(X).

We summarize the algorithm in the following.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . , K, we respectively update Xk and Rk

by

1. Apply rate control so that the latency approximates SLO, i.e.,

Rk be such that T (Xk, Rk) ≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e.,

Xk+1 = Xk + η dRk

dX
, where T (X,Rk) = t0, and η is a positive stepsize.

There is a rich literature for the theory of online learning when Rk(X) is concave, e.g., see [168].

For completeness, we introduce the following theorem to characterize the behavior of the above

algorithm.

Theorem 2. Suppose Rk(X) is concave. Consider the iterates of SGA, i.e.,

Xk+1 = Xk + η∇Rk(Xk).

Then we have the following bound for the regret

K∑
k=1

(Rk(X∗)−Rk(Xk)) ≤
∥X1 −X∗∥22

2η
+

η

2

K∑
k=1

∥∇Rk(Xk)∥22 .

If in addition we assume ∥∇Rk(X)∥2 ≤ L, and set

η =
∥X1 −X∗∥2

L
√
K

,

then
K∑
k=1

(Rk(X∗)−Rk(Xk)) ≤ C ·
√
K, (A.2)
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where C := L ∥X1 −X∗∥2 is a constant depends on initialization and gradient bound.

Remark. The sublinear regret bound implies SAG behaviors nearly optimal on average: we see this

by setting X∗ = argmaxX
∑K

k=1Rk(X), and noticing that

1

K

K∑
k=1

Rk(X∗)−
1

K

K∑
k=1

Rk(Xk) ≤ O
(

1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}Kk=1 corresponds to a sequence of inaccurate estimations

to the true implicit function R(X) — even so the theorem guarantees a sublinear regret bound, which

implies that our algorithm behaviors nearly as good as one can ever expect under the estimations,

no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estimator to the true concave function R(X),

i.e., ERk(X) = R(X), then X̄ = 1
K

∑K
k=1Xk converges to the maximal of R(X) in expectation:

we see this by choosing X∗ = argminX R(X) and noticing that

E
[
R(X∗)−R(X̄)

]
≤ 1

K

K∑
k=1

E [R(X∗)−R(Xk)]

=
1

K

K∑
k=1

E [Rk(X∗)−Rk(Xk)]

≤ C · 1√
K
→ 0.

Proof of Theorem 2. We first notice the following ascent lemma

∥Xk+1 −X∗∥22

= ∥Xk + η∇Rk(Xk)−X∗∥22

= ∥Xk −X∗∥22 + η2 ∥∇Rk(Xk)∥22 + 2η⟨∇Rk(Xk), Xk −X∗⟩

≤ ∥Xk −X∗∥22 + η2 ∥∇Rk(Xk)∥22 + 2η (Rk(Xk)−Rk(X∗)) ,

where the last inequality is due to the assumption that Rk(X) is concave. Next we re-arrange the
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terms and take telescope summation,

K∑
k=1

(Rk(X∗)−Rk(Xk))

≤
K∑
k=1

1

2η

(
∥Xk −X∗∥22 − ∥Xk+1 −X∗∥22

)
+

K∑
k=1

η

2
∥∇Rk(Xk)∥22

=
1

2η

(
∥X1 −X∗∥22 − ∥XK+1 −X∗∥22

)
+

T∑
t=1

η

2
∥∇Rk(Xk)∥22

≤ 1

2η
∥X1 −X∗∥22 +

K∑
k=1

η

2
∥∇Rk(Xk)∥22 ,

which gives the first regret bound.

If further we have ∥∇Rk(X)∥2 ≤ L, then

K∑
k=1

(Rk(X∗)−Rk(Xk)) ≤
1

2η
∥X1 −X∗∥22 +

η

2
L2K,

by setting η =
∥X1−X∗∥2

L
√
K

we obtain

K∑
k=1

(Rk(X∗)−Rk(Xk)) ≤
1

2η
∥X1 −X∗∥22 +

η

2
L2K

≤ L ∥X1 −X∗∥2 ·
√
K.
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APPENDIX B

Zeus Appendices

B.1 Energy Savings Potential on GPUs
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(a) NVIDIA A40.
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(b) NVIDIA V100.
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(c) NVIDIA RTX6000.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y 

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(d) NVIDIA P100.

Figure B.1: Energy usage normalized against Baseline for DNN training, measured on (a) NVIDIA
A40 GPU, (b) NVIDIA V100 GPU, (c) NVIDIA RTX6000 GPU and (d) NVIDIA P100 GPU.

Figure B.1 shows the potential for energy savings on four different generations of NVIDIA

GPUs: Ampere (A40), Volta (V100), Turing (RTX6000), and Pascal (P100). All four generations

show that there are sufficient potential for energy savings, motivating ZEUS.

119



B.2 TTA vs. ETA for All Workloads

Figure B.2 plots the Pareto Front for all six workloads and the baseline (default batch size and

maximum power limit) is shown as a red triangle. Note that the axes do not start from zero in order

to zoom into the Pareto Front. Data points were gathered on an NVIDIA V100 GPU.

B.3 Job Recurrence in the Alibaba Cluster Trace

We perform independent analysis on the production GPU cluster trace provided by [212].

Figure B.3 shows the fraction of jobs that recur at least a certain number of times. For instance,

75% of the jobs are recurring 35 times or more. Based on this analysis and [212], we argue that

DNN jobs recur in a production environment.

B.4 ETA w.r.t. Configurations for All Workloads

Figures B.4 and B.5 respectively show the ETA value when batch size and power limit are

sweeped. Especially note the convexity of all BS-ETA curves, which justifies the design of our

pruning exploration algorithm.

B.5 Choice of the Default Batch Size and Learning Rate

Our choice of the default batch size b0 is to best-effort simulate the common practice of DNN

training. Thus, whenever possible, we choose the default batch size from the original model

publication assuming that the authors reasonably tuned it. If such method is not possible, we choose

the maximum batch size which consistently achieves the target accuracy (we have this information

available from the training trace collected in Appendix B.6).

In terms of learning rate, models trained with the Adadelta [219] optimizer do not require an

initial learning rate. For optimizers that do require an initial learning rate, we made our best effort in

choosing a batch size and learnig rate pair that achieves reasonable accuracies by experimenting with

values from the original publication of the model and those discovered by popular DL frameworks
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(e.g., Huggingface [213]).

After collecting the inital batch size and learning rate pairs, when we scale the batch size, we

applied Square Root Scaling [100] for adaptive optimizers such as Adam [127] following recent

theoretical results [85].

B.6 Experiment Methodology

Due to resource constraints and environmental concerns, we cannot afford to repeatedly train all

of our workloads with various configurations end-to-end hundreds of times sequentially. However,

similar to how ZEUS decouples the exploration of batch size and power limit, we may apply the

same decoupling in our experimentation. That is, we instead take a trace-driven approach, where

we collect two kinds of trace data:

1. Training trace. We train all possible combinations of models and batch sizes until convergence

and record the number of epochs the model took to reach its target accuracy. We repeat this with

four different random seeds for every combination to capture the stochasticity in DNN training.

2. Power trace. We use our JIT profiler to collect the throughput and average power consumption

of all possible combinations of model, batch size, and power limit.

We then replay these traces when we need to train a model and reconstruct its TTA and ETA

values in order to evaluate the decisions made by ZEUS and baselines. Moreover, since we have

access to all the possible choices and their outcome, we also know the optimal choice. Therefore,

with the traces, we can evaluate the regret achieved by ZEUS and baselines.

Note that ZEUS does not directly learn from these traces (which would be offline-profiling), but

instead only learns from the replay of these traces in an online fashion. We will make all of our

traces and artifacts available.

While the aforementioned trace-driven method is used widely throughout our evaluation, for the

case of Cappricio, it is more expensive to construct the trace than to run ZEUS end-to-end. This is

because Cappricio is essentially a set of 38 different datasets. Thus, we implement and run ZEUS

end-to-end on Cappricio and report its results in Section 4.6.4.
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B.7 Cumulative Regret of All Workloads

Figure B.6 shows the cumulative regret of ZEUS and Grid Search over job recurrences for all

six workloads. In general, ZEUS converges to a better knob than Grid Search while being faster.

B.8 Search Paths for All Workloads

Figures B.7 and B.8 respectively show the search path of Zeus and Grid Search in the 2D

configuration space. Thanks to the decoupling of batch size and power limit, ZEUS is able to more

efficiently navigate the search space and converge to a knob while consuming less energy and time

during exploration.

B.9 Additional Sensitivity Analysis

Figure B.9 compares both the energy consumption and training time for ZEUS against Default.

We also calculate and plot the geometric mean across all jobs. The result shows that with higher η,

ZEUS prioritizes reducing energy consumption over time, leading to higher improvement factor of

energy, and vice versa.

B.10 Performance of ZEUS on All GPUs

Figure B.10 presents the energy and time consumption of all workloads on four different

generations NVIDIA GPUs: Ampere (A40), Volta (V100), Turing (RTX6000), and Pascal (P100).

The overall trends hold for all GPUs.
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Figure B.2: ETA vs. TTA across all workloads, with Pareto Front and default configuration
highlighted. Measured on an NVIDIA V100 GPU.
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Figure B.4: ETA w.r.t batch size of different DNN training workload. The blue shade shows the
error margin across repeated runs.

124



100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

6

ET
A 

(J
)

1e6

(a) DeepSpeech2

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

ET
A 

(J
)

1e6

(b) BERT (QA)

100 150 200 250
GPU Power Limit (W)

0.0

2.5

5.0

7.5

ET
A 

(J
)

1e5

(c) BERT (SA)

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

ET
A 

(J
)

1e7

(d) ResNet-50

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

ET
A 

(J
)

1e4

(e) ShuffleNet V2

100 150 200 250
GPU Power Limit (W)

0

500

1000

ET
A 

(J
)

(f) NeuMF

Figure B.5: ETA w.r.t GPU power limit of different DNN training workload. Measured on an
NVIDIA V100 GPU.
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Figure B.6: Cumulative regret of Zeus vs. Grid Search across all workloads.
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Figure B.7: Search path of Zeus across all workloads.
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Figure B.8: Search path of Grid Search across all workloads.
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Figure B.9: Impact of priority knob η on ETA and TTA.
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Figure B.10: Energy and time consumption of DNN training, normalized against Default for DNN
training. Results measured on (a) NVIDIA A40 GPU, (b) NVIDIA V100 GPU, (c) NVIDIA
RTX6000 GPU and (d) NVIDIA P100 GPU.
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