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Abstract—Over the past decade, businesses have migrated to
the cloud for its simplicity, elasticity, and resilience. Cloud ecosys-
tems offer a variety of computing and storage options, enabling
customers to choose configurations that maximize productivity.
However, determining the right configuration to minimize cost
while maximizing performance is challenging, as workloads vary
and cloud offerings constantly evolve. Many businesses are
overwhelmed with choice overload and often end up making
suboptimal choices that lead to inflated cloud spending and/or
poor performance.

In this paper, we describe INFA-FinOps, an automated system
that helps Informatica customers strike a balance between cost
efficiency and meeting SLAs for Informatica Advanced Data
Integration (aka CDI-E) workloads. We first describe common
workload patterns observed in CDI-E customers and show how
INFA-FinOps selects optimal cloud resources and configurations
for each workload, adjusting them as workloads and cloud ecosys-
tems change. It also makes recommendations for actions that
require user review or input. Finally, we present performance
benchmarks on various enterprise use cases and conclude with
lessons learned and potential future enhancements.

I. INTRODUCTION

Maximizing resource utilization while meeting service-
level agreements (SLAs) is a perennial problem. Over the
last decade, however, resource management complexity has
increased significantly due to widespread transitions to cloud
computing. This is because the cloud offers limitless possibil-
ities for virtual resource instantiation and continues to expand
its options. The ability to choose the best configuration for
a given workload is powerful, but non-experts often cannot
choose the right configurations for their workloads, nor can
they predict or react to dynamic workload changes [1].

Informatica Advanced Data Integration (CDI-E [2]) users
are not immune to this problem either. We hear questions like:

• How do we ensure SLA compliance while minimizing
costs?

• Which instances and storage should we provision?
• How and when do we scale our resources up and down?
• How do we get visibility into our spending/performance?

Without carefully tuning their configurations, customers end
up largely over-provisioning resources and face runaway cloud
bills.

There is no silver bullet because workloads vary widely
across customers. They also change frequently, and customers

cannot manually configure every time. Cloud ecosystems
change as well. New instances and storage types are added,
old ones are removed, and prices fluctuate. Spot Instances
exacerbate these challenges. In short, it is non-trivial for cus-
tomers to optimize workloads and keep them optimized over
time. To understand the unique needs of CDI-E customers, we
dedicated a year to extensively research and consult customer
use cases. Based on customer feedback, we launched INFA-
FinOps in October 2023 to reconcile their workload SLA
requirements and budgetary constraints.

This paper focuses on the design and implementation of
INFA-FinOps, which optimizes Informatica CDI-E resource
management to enable our customers to find a balance between
cost and performance. Informatica CDI-E is a fully-managed
data engineering tool that utilizes Apache Spark on Kubernetes
as the execution engine. INFA-FinOps hides the complexity
of CDI-E resource management and performs continuous
resource optimizations to minimize cost while maximizing per-
formance of CDI-E workloads, all while adhering to customer
SLAs and budgets. Specifically, INFA-FinOps implements
three key use-inspired features:

• Cluster tuning: Boosting cluster efficiency by adaptively
selecting instance types, resizing them, auto-scaling the
cluster, and intelligently scheduling cluster resources.

• Job tuning: Fine-tuning individual jobs and recommend-
ing the right engine patterns to meet SLAs.

• Recommendations: Offering budget guidance and re-
gion co-location strategies, and providing job-specific
recommendations such as choosing the optimal execution
engine.

Outline. Section II provides a quick background on Informat-
ica CDI-E and its workflow, along with FinOps challenges
faced by our customers. Section III gives an overview of INFA-
FinOps system architecture. Sections IV describes our cluster
algorithms that automatically address most cost-related chal-
lenges. Section V describes how it provides recommendations
when automated decision making is not practical. We present
an analysis on the performance of common industry workloads
using INFA-FinOps in Section VI and conclude in Section VII
with lessons learned and our future vision.



(a) Without FinOps (b) With FinOps

Fig. 1: Informatica CDI-E life cycle comparison.

II. BACKGROUND

Informatica, founded in 1993, is a cloud data engineering
company focused on data engineering and warehousing. One
of its core products, CDI-E, is designed for processing large-
scale data in cloud environments using Apache Spark on
Kubernetes for high performance and scalability.

A typical CDI-E deployment involves the following per-
sonas: the Informatica Admin manages Informatica tools; the
Data Engineer develops the mapping task1 for execution; the
Cloud Admin manages cloud accounts such as the AWS admin-
istrative account; and the Financial Planning and Accounting
Team is responsible for budgets and financial planning. Tradi-
tionally, they need to perform several actions before getting
started “Fig. 1a”. The process is iterative, as it is hard to
determine the right cluster size upfront, and recalculations
are needed to achieve a balance between cost and perfor-
mance. Different teams find themselves in an ongoing loop
of planning, estimating, deploying, optimizing, monitoring,
and governing. This cycle must be revisited whenever any
deployment factor changes, such as data volume, workload
pattern, and cloud pricing.

INFA-FinOps simplifies this process so that an Informatica
admin only needs to receive the budget from the financial
planning and accounting team and the SLA from the data
engineer. Then, it sets up and maintains the cluster “Fig. 1b”.
The design and implementation of the solution will be the
focus of this paper.

A. Challenges

Balancing cloud costs and meeting SLAs presents complex
challenges that organizations must navigate to ensure opti-
mal performance and financial efficiency. To find a balance,
customers must understand both the cloud ecosystem and the

1The mapping task is the core abstraction of CDI-E [2]. The data engineer
defines a Directed Acyclic Graph (DAG) that contains the source(s) of data
to process, transformations that contain the processing logic, and the targets
where the data is written. This DAG, along with any runtime bindings,
constitutes the mapping task, which is executed as a job on the cluster
configured by the Admin.

compute and storage requirements for the job. Unfortunately,
they run into major issues:

Rightsizing resources: Rightsizing resources is crucial for
balancing cost and performance. Over-provisioning wastes
resources, while under-provisioning compromises SLAs. It
involves multiple factors, such as selecting instance types,
storage options, and the number of VMs, along with associated
costs. Customers must also account for job scheduling, node
scaling, Spot Instance usage, and other factors essential for
cluster setup.

Changing workload patterns: As workloads evolve, initial
resource allocations may become outdated, requiring ongoing
adjustments for performance and cost-efficiency. Cloud work-
loads can vary greatly, with peak demand followed by low
utilization. Meeting SLAs during peak times often requires
additional capacity, which can be costly if not properly man-
aged.

Complex pricing models: Cloud providers offer com-
plex pricing models—On-Demand, Reserved, and Spot In-
stances—each affecting cost and performance differently. Pre-
dicting expenses and maintaining optimal performance can be
challenging without the expertise to balance costs with SLAs.

TABLE I: INFA-FinOps customer success stories.



B. Customer Use Cases

The following use cases demonstrate a range of scenarios
where Informatica customers have successfully used INFA-
FinOps to address many of the aforementioned challenges
“Tab. I”.

An airline company with a fleet size of 150+ planes and
100+ hubs processes complex hierarchical jobs to analyze
flight data. Their upstream system deposits files in a cloud
object store, with data volumes evolving over time. Spark
jobs are tuned based on data size and partitioning, requiring
continuous adjustments to maintain performance and prevent
job failures due to insufficient resources.

A large U.S. healthcare provider processes patient data and
doctor’s notes in near real time, with strict SLAs for timely
updates. The concurrency requirement changes continuously
based on the number of patients processed by the provider each
day. Instead of manual intervention, cluster sizing to achieve
target SLAs is now handled by the engine.

A major U.S. life insurance providers is modernizing its
data platform, processing insurance files with high concur-
rency needs. Manually determining cluster size and node types
to handle the concurrency is challenging due to the required
expertise in Spark, Kubernetes, and cloud providers. INFA-
FinOps simplifies this with a one-click solution, hiding the
complexity.

A multinational bank has to process hierarchical data
and transfer it from one table in a Databricks Delta Lake to
another data store. Based on data-dependent factors, pushing
the processing to Delta Lake might be a better choice versus
processing it on a cluster to avoid ingress and egress charges to
the customer. INFA-FinOps automatically identifies the most
cost-effective option.

C. Design Goals

The primary objective of INFA-FinOps is to achieve finan-
cial accountability and cost efficiency while maintaining or
improving an organization’s job performance and SLA. It has
three design goals:

Cost allocation and optimization: We must allocate cloud
expenses accurately and efficiently to guarantee that cloud
spending remains within budget while optimizing cost and
performance to the fullest extent possible. In addition to au-
tomatic configurations, recommendations should be provided
for additional ways to improve efficiency, such as co-locating
data sources in the same region as the cluster and selecting
preferred times for workload execution.

Cost transparency: We must provide clear visibility into
cloud costs by tracking, analyzing, and reporting on expendi-
tures at a granular level. Allowing users to set a budget and
predict future cloud costs based on historical data and expected
usage patterns is paramount to planning and budgeting.

Simplicity: Users should only have to keep track of budgets
and SLAs. We must eliminate the complexity of understanding
cloud ecosystems and job compute requirements. Users should
have a one-click selection to optimize for cost or performance
and provide the budget details.

Fig. 2: Cost-vs-performance graph for different resource con-
figurations of same workload. The region within the three lines
contain the feasible configurations.

III. INFA-FINOPS OVERVIEW

INFA-FinOps offers a user-friendly interface to address
the FinOps challenges in CDI-E, making the setup process
straightforward for the Informatica admin. The admin needs
to provide only three values based on their business needs,
and the cluster is automatically configured and optimized for
them.

• Cost limit: Define the maximum dollar-per-hour limit.
• Performance requirements: Define performance SLA.
• Cost vs. performance optimization: Binary choice to

prioritize cost-efficiency or cluster performance. Based
on this value, INFA-FinOps tries to move toward the left
or the bottom of the feasible region shown in “Fig. 2”.

These options enable organizations to effectively optimize
and streamline their workload execution with exceptional
precision using FinOps capabilities. Automated analysis of
cluster and job metrics, evaluation of workload patterns, and
monitoring of resource utilization are used to get high levels
of performance, scalability, and cost-efficiency in their cloud
infrastructure.

INFA-FinOps utilizes cluster and job metrics to optimize
the cluster within customer-provided constraints. “Fig. 2”
demonstrates the high-level process using an example where
the axes show the hourly cost and the total execution time
for the job. Over time, INFA-FinOps collects metrics for the
same workload running on a cluster with different resource
configurations. Depending on the cost-vs-performance slider’s
value, it attempts to minimize one or the other while keeping
both within the budget and the SLA.

A. Architecture

INFA-FinOps has different functionalities powered by ded-
icated components as show in “Fig. 3”.

a) Automated Configuration: INFA-FinOps automati-
cally configures many cluster properties to allow the Infor-
matica admin to have more control over resource costs.

Cluster Tuner. Using values provided by the Informatica ad-
min, the Cluster Tuner dynamically updates job configurations
for optimal operation. The Cluster Metric Analyzer generates



Fig. 3: INFA-FinOps architectural overview.

signals used by the Cluster Configuration Generator to decide
optimal values for runtime properties such as the cluster node
count and node types.

b) User Recommendations: INFA-FinOps generates rec-
ommendations to provide actionable items for users. Some
recommendations are automatically applied but can be turned
off by the user (e.g., the use of Spot Instances for cost-
optimized clusters). Other recommendations have business
implications, so the user is required to make explicit changes
(e.g., increasing the minimum or the average budget).

Insight Handler. This component analyzes different metrics
and generates resource usage insights that help the user make
relevant changes. For example, if a cluster is often heavily-
loaded during a specific time of day, the user is prompted to
change the job schedule.

Engine Recommender. This component provides informa-
tion to help the user choose the correct engine for a job
by generating predictions about future runtime behavior. This
is necessary because Informatica can run the same mapping
task on different engines based on the sources, targets, and
transformations used.

c) Metrics Provider: INFA-FinOps is powered by met-
rics collected from the cluster and the job. Some metrics such
as the number of rows processed by a task are gathered directly
from the ConfigMap in the Kubernetes cluster. It also deploys
Prometheus to collect metrics on the cluster and job resources
at regular intervals. Prometheus forms the major source of
metrics that are used by INFA-FinOps. The Metrics Provider
collects and stores all of these metrics.

IV. CLUSTER TUNER

The Cluster Tuner uses an AI-driven optimization model
that can be customized to increase cost efficiency or enhance
performance based on user preferences. At its core, it relies
on the Cluster Config Generator, employing a metric-based
algorithm to formalize the cluster configuration challenge and
discover an optimal cluster configuration [3]–[5].

a) Optimization: Formally, the Cluster Tuner performs
the following optimization:

Minimize Cost(c) for c ∈ C;

b(c) ≤ Budget and p(c) ≥ Performance Threshold

where Cost(c) represents the cost metric associated with a
particular configuration c within the space of all possible
configurations C, accounting for the expenses incurred for
cloud services, infrastructure, and other pertinent elements.
Configuration space is searched under budget constraint (b(c))
and performance threshold (SLA) constraint (p(c)). These
constraints ensure that the resulting configuration stays within
customer requirements “Fig. 2”.

b) Algorithm Overview: As shown in “Fig. 3”, the
Cluster Metric Analyzer gathers performance metrics from
the Metric Provider to generate and save rolling cluster in-
sights. The Cluster Configuration Generator uses most recent
N rolling insights to guide the generation of new cluster
configurations using the algorithm described in “Algorithm 1”.
The rolling insights are crucial to determine if the cluster
configuration meets predefined constraints such as resource
usage limits (e.g., CPU, memory), performance thresholds
(e.g., latency, throughput), and budget constraints. If any
constraints are not met, dynamic adjustment is done to cluster
configuration parameters such as master and worker instance
types, instance sizes, enabling Spot Instances, the scale set
for worker nodes, disk types, disk size scale set, autoscaling
settings and scheduler configurations. The adjusted config-
uration is then explored within the configuration space to
alternative configurations that may better achieve the optimiza-
tion goal. An adaptive parameter mechanism further enhances
this process by enabling the algorithm to learn from previous
iterations, refining its decision-making in subsequent runs.

This iterative process continues, interacting with new runs
of the cluster until either the maximum number of iterations
is reached or the convergence criteria are satisfied. The con-
vergence criteria determine when the algorithm should stop
by assessing whether the rolling insights indicate stabiliza-
tion in the objective function or successful attainment of
the optimization goal. Convergence is typically recognized
through minimal changes in the objective function over several
iterations, a plateau in performance improvement, or meeting
the optimization goal within an acceptable tolerance range.

A. Adaptive Selection

Cloud providers offer a diverse array of infrastructure op-
tions. However, the inherent disparity between Spark work-
load characteristics and the underlying hardware often leads
to performance degradation and resource inefficiency [6],
[7]. Therefore, selecting the ideal combination is critical for
achieving a harmonious balance between workload demands,
performance, and cost efficiency [8].

Instance type selection: There is no one-size-fits-all in-
stance type among the available options [9]–[11]. For exam-
ple, in “Fig. 4a”, the CPU-bound application showed better



Input: C, optimizationGoal, constraints
Output: ClusterConfig

c* = InitialConfiguration(C, optimizationGoal);
i← 0;
while i < MAX ITERATIONS do

insightsBuffer = CollectInsights(c*,currentTime);
M(c*) = ObjectiveFunction(insightsBuffer);

// Update rolling insights
rollingInsights.enqueue(M(c*))
if rollingInsights.size() ¿ N then

rollingInsights.dequeue();
end

if ConstraintsNotSatisfied(c*, rollingInsights,
constraints) then
// Dynamic adjustment
newConfiguration = DynamicAdjustment(c*,

rollingInsights);
// Explore configuration space
c* = ExploreConfigurationSpace(C,

newConfiguration, optimizationGoal);
// Adaptive learning
c* = UpdateAdaptiveParameters(c*);
if Converged(rollingInsights) then

break;
end

end
sendClusterConfigrationForNewRun(c*);
i← i+ 1

end
return c*;

Algorithm 1: MetricBasedClusterConfigTuner

performance on the ARM machine, AWS m6g.4xlarge,
but the multi-stage shuffle-intensive job exhibited superior
performance on the X86 64 machine, AWS m5.4xlarge.
Likewise, in our comparison between GPU-based instances
and non-GPU CPU instances “Fig. 4b”, we found that there
was no definitive winner.

(a) Arm vs x86 64 (b) GPU vs CPU

Fig. 4: Instance type comparison.

The Cluster Tuner is trained using proprietary Informatica
data, which comprises historical records of job executions. It
calculates a mapping task’s score on a specific instance type.

The score is a function of the comprising transformation units,
data volume, and computation complexity. The Cluster Tuner
actively monitors historical usage patterns and discerns the
nature of the user’s workloads. Based on the workload, it
assembles an adaptive and heterogeneous cluster governed by
the user’s budget and optimization strategy. It then intelligently
routes each job to the appropriate node group types within this
heterogeneous cluster.

Storage instance type selection: Among available options
for the storage type, SSDs exhibit superior read/write perfor-
mance compared to HDDs, and NVMe SSDs further excel
when dealing with intensive workloads. Within AWS, the
i4i.2xlarge instance features AWS Nitro SSDs, which
bring about up to a 60% reduction in storage I/O latency
compared to other options, and up to 75% lower latency
than NVMe SSDs [12]. “Fig. 5a” provides insights into the
variations in sequential read/write among storage variants.

(a) IOPS of different storage types. (b) Workload execution time.

Fig. 5: Storage performance.

Selecting the appropriate storage solution for a workload
can significantly enhance performance. We conducted exper-
iments to analyze cost and performance of different storage
types. “Fig. 5b” shows the results for a shuffle-intensive job
with rank and aggregate operations where NVMe SSDs exhib-
ited 20-30% reduction in overall execution time compared to
SSD2, and AWS Nitro SSDs achieved a 30-35% improvement
in overall execution time compared to SSD2. In scenarios
where the workload is shuffle-intensive or I/O bound, the
system automatically matches the storage type or opts for an
instance type with either NVMe SSD or AWS Nitro SSD [13].

Spot Instance type selection: Spot Instances are a chal-
lenge for efficient workload execution due to fluctuating prices
and interruption rates. When interrupted, tasks halt abruptly
leading to delays and latency in time-sensitive workloads as
new Spot Instances are identified and tasks restarted. To strike
a balance between cost efficiency and minimal interruption
rates, insights from the Spot Advisor [14]are used by Cluster
Tuner to select Spot Instance types by factoring in cost-
effectiveness factor (CE) :

CE =
Predicted Price

(1− Predicted Interruption Rate)

“Fig. 6” shows a sample assessment of the Spot Advi-
sor’s effectiveness, demonstrating the comparative analysis
of running workloads with and without Spot Instances for



a life insurance provider. The entire execution process took
approximately 2 hours and 17 minutes. Notably, there were
no reported interruptions when using Spot Instances, although
this outcome can be influenced by the specific timing of the
workload execution. Our experiment resulted in a substantial
cost reduction of 1.65 times, showcasing the financial benefits
of leveraging Spot Instances effectively.

Fig. 6: Spot Instance price savings.

B. Resource Resizing

Resource sizing in Kubernetes involves determining the
appropriate scale set of worker nodes and their respective node
sizes to accommodate a given workload effectively.

Cluster resizing: When manually configuring a cluster,
predicting the optimal cluster size for a specific workload
can be challenging. The Kubernetes Autoscaler [15] allows
users to set a maximum node limit. However, setting it too
high can result in wasted resources and increased costs, es-
pecially for Spark workloads with dynamic allocation. Setting
the maximum load limit can generate numerous short-lived
executor Pods, overwhelming the cluster and increasing cloud
infrastructure costs.

The Cluster Tuner uses insights on Pod requests and pending
Pods throughout the cluster’s life cycle. It predicts the optimal
range for the minimum and maximum number of nodes and
optimizes the configuration within budget constraints.

Node resizing: Selecting the right worker node size is
crucial for scalable applications. For example, when aiming for
a total of 384 GB memory and 96 CPUs in a cluster, admins
have to choose between twelve 8 CPU/32 GB machines or
two 48 CPU/192 GB machines.

Smaller and larger nodes exhibit their own advantages and
drawbacks, with no definitive winner. An 8 CPU machines
may be deemed optimal for irregular workloads, whereas 16-
32 CPU machines are more suitable for consistent workloads.
It is recommended to refrain from scheduling more than 20
Pods on a single worker node to prevent resource bottlenecks,
especially for the healthcare provider use case (§II-B). In this
specific scenario, involving 1 TB of input data and utilizing
AWS instances such as r6i.2xlarge and r6i.4xlarge,
the augmentation of vCPUs and memory did not yield pro-
portional improvements in network and EBS bandwidth. This

discrepancy resulted in bottlenecks during data-intensive shuf-
fle operations, particularly on the r6i.4xlarge instance, as
depicted in “Fig. 7”.

Fig. 7: Shuffle-intensive job execution time.

The Cluster Tuner employs the coefficient of variation (CV),
i.e., the ratio of standard deviation and mean, of resource
requests made by Pods over time to determine the workload
pattern. A lower value of CV indicates the number of Pods
running over time was consistent; a higher value indicates
inconsistency. Value of CV and the nature of the workload
are used to determine the appropriate instance size.

C. Optimized Autoscaling Configuration

Optimized autoscaling involves fine-tuning system parame-
ters to efficiently adapt to workload changes. This process aims
to strike a balance between responsiveness and stability that
will optimize resource allocation in changing environments.

Optimized cluster autoscaling: The current Kubernetes
Autoscaler [15] responds to events and periodically checks
for any unschedulable Pods every 10 seconds. When there
is a pending request for a new Pod, it initiates a scale-up
process. Similarly, when no Pods have been active on a node
for the default duration of 10 minutes, it initiates a scale-out
process. In situations where Spark execution is characterized
by frequent spikes in short-lived Spark executor Pods, it tends
to result in an increased number of nodes within the cluster,
leading to suboptimal node utilization. In contrast, if a Pod
becomes unschedulable during a heavy load, it is often too
late to address the issue.

Cluster Tuner dynamically fine-tunes the Pod scale-up delay
time at the job level, drawing insights from critical metrics
such as the average execution time of Spark tasks, workload
priority, and optimization model. This calibration manifests as:

ScaleUpDelayT ime = k ×AvgTaskT ime

k = f(WorkloadPriority,OptimizationModel)

This approach balances the number of worker nodes with
the demand for executor pods for cost-optimized clusters. With
a performance-optimized cluster, the Cluster Tuner employs a
proactive scaling approach by adopting a predictive strategy.
This strategy leverages a trained model that analyzes Pod
request patterns during the execution of user workloads. This
proactive approach involves adding instances to the Auto Scal-
ing group before demand spikes are expected. This strategy
enhances both availability and performance for workloads
that exhibit predictable demand patterns. For example, if



an application takes 5 minutes to initialize, the Kubernetes
Autoscaler will create new instances 5 minutes ahead of the
anticipated load increase as illustrated in “Fig. 8”.

Fig. 8: With and without proactive scaling.

To assess the performance of our autoscaling mechanism,
we established two distinct clusters: one cost-optimized and
one performance-optimized. Both clusters were configured
with an average and maximum hourly budget at $4 and
$10, respectively.We subjected both clusters to an identical
workload that a life insurance provider typically runs (§II-B).

Our findings, as shown in “Fig. 9”, reveal that the
performance-optimized cluster had aggressive scaling response
to increasing resource demands and effectively downscaled
when resource demand decreased. In contrast, the cost-
optimized cluster adopted a more conservative scale-up ap-
proach. As a result, it achieved a remarkable 10-15% cost
savings compared to the cluster that was configured with
the default autoscaling settings. These results demonstrate the
effectiveness of the cost-optimized configuration in achieving
substantial cost savings while maintaining acceptable perfor-
mance levels.

Fig. 9: Cluster life cycle using two approaches.

Optimized storage autoscaling: In addition to computing
power, Spark jobs in a cloud environment need storage with
some workloads being storage-heavy. For example, a Spark
job that joins or ranks a large amount of data might require a
large shuffling of data between worker processes. This shuffle
data is kept in temporary storage on the local file system (in

case it doesn’t fit in memory) until its consumers have fully
read it. When using temporary storage, we have two options:

• Add nodes to the cluster, providing additional storage.
• Increase storage on the same node where it is required.
Increasing storage is more cost-effective than adding nodes,

making it the preferred solution for storage-intensive work-
loads. The Cluster Tuner, incorporating the storage scaler [2],
functions as a daemon-set on Kubernetes worker nodes. It
manages the provisioning of storage volumes for Spark jobs
and identifies opportunities to streamline storage scale-down.

Fig. 10: Advantage of storage scaling.

Let us compare cost savings from upscaling and downscal-
ing storage at fixed intervals versus no storage scaler at all,
assuming a 48-hour cluster lifespan with varying storage needs
up to 1 TB. “Fig. 10” shows that the total storage expenses for
48 hours will be $0.9594 with the storage scaler and $6.816
without, considering the cloud vendor’s rate of $0.0139 per
hour for 100 GB of storage. This represents a nearly 7-fold
cost reduction. To illustrate the significance of this difference,
consider a cluster with 100 nodes, each requiring 1 TB of
storage for a specific time frame. Consequently, the impact of
this cost differential becomes quite substantial.

D. Smart Cluster Scheduling

When deploying Spark applications on Kubernetes, efficient
resource allocation is essential. By default, Kubernetes uses a
first-in first-out queue for scheduling where the first task in
the queue gets access to resources before others. Prioritization
ensures that high-priority tasks promptly receive resources.

With INFA-FinOps, users can explicitly set job priorities
and choose preemption or non-preemption execution mode.
Our custom scheduler can avoid preempting Pods with specific
labels, particularly critical in avoiding preemption of driver
Pods, as it can disrupt the entire Spark job. To mitigate job
starvation, we use an aging-based mechanism that gradually
increases the priorities of low-priority tasks over time.

Furthermore, the default Kubernetes scheduler
does not lend itself well to autoscaling. It uses the
LeastRequestedPriority parameter as one of its
scheduling strategies. This parameter prioritizes selecting a
node with the least resource usage to place a pending Pod,
resulting in a poor scale-down mechanism. Whereas our



custom scheduler uses the MostRequestedPriority
[2] parameter as a scheduling strategy. This strategy aids
in scheduling incoming Pods onto the most occupied
nodes, resulting in efficient bin packing. To enhance
further scheduling efficiency on a large cluster, it uses the
percentageOfNodesToScore parameter to evaluate
only a portion of nodes to find the most occupied node,
resulting in time saved in the scheduling process. Through
experiments across a range of workload types (§II-B), we
consistently observed 15% to 35% savings. The degree of
savings fluctuates due to variations in workload patterns.

V. USER RECOMMENDATIONS

INFA-FinOps provides recommendation to help optimize
Kubernetes clusters and mapping tasks. Recommendations
are available during both the design and execution phases,
ensuring a holistic approach to data integration.

A. Cluster Recommendations

To ensure that the Kubernetes cluster remains in its optimal
state, some manual interventions might be necessary. These
manual actions are available in the recommendation panel. The
following are some examples of recommendations.

1) Cluster Budget Recommendations: INFA-Finops sug-
gests increasing the maximum hourly budget allocations in re-
sponse to increased resource demands detected by the Cluster
Tuner[IV]. This aims to improve performance and scalability,
ensuring optimal workload execution within constraints.

2) Cluster Region Recommendations: Cloud providers
charge for inter-region data transfers, which increase expenses.
The Cluster Tuner[IV] mitigates this by recommending a cost-
effective region, typically the one where the majority of the
data resides. As detailed in II-B, this approach results in
significant savings, ranging from 10% to 30% of job costs. The
extent of these savings is directly influenced by the volume of
data being processed.

3) Peak Workload Recommendations: Customer use case
analysis revealed that workloads suffer during peak cluster
usage times, typically when users in the same region schedule
mapping tasks concurrently. Identifying peak times allows
mapping tasks to run in a more balanced distribution. Any
critical jobs during peak times can be scheduled to start sooner
to improve performance.

Peak workload detection uses a moving z-score of cluster
data collected and bucketed into small time intervals. To cal-
culate the peak during the day, multiple days’ data is averaged
over 24 hours. The z-score at each point i is calculated with
a moving window of size w using the formula zi =

xi−µw

σw
;

where xi, µw, and σw denote the value at point i, the moving
average and the moving standard deviation in range [i-w,i].

A cutoff k is used as a peak detector. Any point i is defined
to be the peak start such that zi−1 < k and zi >= k. We
identify multiple potential starting points this way. Our initial
approach to detect the end of peak j was to simply take the first
point after i where zj−1 > k and zj <= k, but this approach
failed to cover many cases. The availability of historical data

Fig. 11: INFA-FinOps engine recommendation.

allowed us to take a new approach to define the peak based
on behavior beyond j. In this new approach, the peak start
detection algorithm is used on the time-reversed series which
gives us multiple candidates for peak endpoints.

Among the peak candidates, the final peak is determined by
calculating total usage for each period. Then, we consolidate
adjacent peaks [start1, end1] and [start2, end2] if the following
condition is satisfied, as per the aggregation factor a:

usageavg([start1, end2]) >

a ∗max(usageavg([start1, end1]), usageavg([start2, end2]))

This process is repeated until no more merges are possible.
After this, the peak with the highest total usage is selected as
the final peak. For this algorithm, w, k, and a are hyperparam-
eters that are tuned for sample workloads observed.

B. Engine Recommendation

INFA-FinOps provides recommendations to help user run-
ning the mapping task choose the right engine “Fig. 11”. For
example, Extract, Load, Transform (ELT) scenarios are suited
for the pushdown engine where the processing happens in
the data warehouse; while Extract, Transform, Load (ETL)
is better addressed by executing the workload on an engine
like Apache Spark or Informatica’s proprietary native engine.
Transformation logic and dataset characteristics determine the
optimal engine.

The Engine Recommender uses a decision tree trained on
Informatica’s diverse use cases. It analyzes mapping task meta-
data and predicts the optimal engine if it has high confidence
that a specific engine will optimize cost and/or performance. If
the decision tree fails to determine a clear winner, the runtime
prediction algorithm described in Section V-B1 predicts the
runtime for each engine and selects the fastest one as the
performance-optimal engine.

1) Mapping Task Runtime Prediction: INFA-FinOps uses
past execution metadata of different mapping tasks to predict
the runtime for a given mapping task. The problem statement
is to calculate expected value of runtime duration tx for given
mapping task Mx using past runtime durations ti for mapping



tasks Mi. The expected value needs to be calculated for given
engine E. The first step is to filter out past executions on any
other engine. Then all durations ti are transformed based on
their effective dataset sizes in Mi so that the values can be
used for the dataset of Mx.

To calculate the runtime we needed a similarity function.
We found Euclidean distance, Manhattan distance, and inner
product to be too sensitive to mappings with larger vectors.
Hamming distance and Cosine similarity were tried as they
are immune to vector size issues. Hamming distance was
found to be less accurate so Cosine similarity as defined below
was finalized as the similarity function to use on the vector
representation of the mapping tasks.

similarity(Mx,Mi) = sxi = cos(θxi) =
vx · vi
|vx|.|vi|

This similarity function was used to calculate the similarity
score sxi of given mapping task Mx with vector vx against
each of the previous executions Mi. These scores were used
as weights to get final value of the expected runtime for the
new mapping task Mx. The time taken for this calculation was
high as the iteration over the Mi mappings takes O(n) time
with a high constant. For the results to be shown in the UI,
this calculation has to be in real time. To reduce the algorithm
runtime, the formula was rewritten as described below.

estimate(tx) =

∑
i sxiti∑
i sxi

=

∑
i

vx·vi

|vx|.|vi| ti∑
i

vx·vi

|vx|.|vi|

=

∑
i vx · (

viti
|vi| )∑

i vx · (
vi

|vi| )
=

vx · (
∑

i
viti
|vi| )

vx · (
∑

i
vi

|vi| )

The final expression is more useful as the summations
do not include vx, the vector of the test mapping task Mx.
The iterated vector sum is precomputed and used when a
prediction for any Mx needs to be made. This change reduced
the computation time after the UI call from O(n) to O(1)
even though the overall work remained the same. With this
approach, every mapping task run updates the vector sums for
use in future predictions.

VI. PERFORMANCE AND USE CASE TIE-IN

A. Experimental Setup

To provide a comprehensive evaluation of INFA-FinOps’s
performance, we conducted an extensive analysis across a
wide spectrum of real-world use cases and scenarios detailed
in Section II-B. To replicate these scenarios, we choose 4
distinct workload types “Tab. I”. These workloads fall into
2 categories: those benefiting from FinOps tuning and those
benefiting from Engine Selection. All experiments were con-
ducted using the following cluster configurations:

• Default cluster: Includes 10 machines with the default
Kubernetes setup, each having 8 cores and 32 GB RAM,
totaling 80 cores and 320 GB RAM for worker nodes.

• FinOps cluster (Cost and Performance Optimized
Cluster): The maximum hourly budget is set at 10,
aligning with the cost of the default cluster configuration.

(a) Cost comparison (b) Execution time comparison

Fig. 12: Workload use cases.

B. Results

1) Workload-Level Improvements and Breakdowns: We ex-
ecuted our first category of workloads to assess the efficiency
of our FinOps tuning with the data set illustrated in “Fig. I”.
We computed the execution time of the workload as well as
the total execution cost reported by the cloud vendor, AWS.
Our findings are shown in “Fig. 12a” and “Fig. 12b”. In
terms of cost optimization, our cluster configuration achieved
cost savings ranging from 2x to 3.5x compared to the default
cluster. These cost savings are achieved through the utilization
of Spot Instances, optimized cluster scheduling, conservative
cluster autoscaling, judicious instance type selection, and
smart cluster shutdown. The observed average distribution of
these savings is outlined in II.

Conversely, performance-optimized cluster demonstrated a
significant performance boost, ranging from 1.5x to 1.7x
in overall execution speed. The factors contributing to this
acceleration include effective instance type selection, aggres-
sive autoscaling, and smart cluster scheduling. The observed
estimated distribution is outlined in II. Note that Spot Instances
and Smart Shutdown are not utilized in the performance-
optimized cluster.

TABLE II: Categorical benefit distribution

Category Savings Acceleration
Spot Instance selection 27% N/A
Instance type selection 18% 48%
Cluster autoscaling 29% 34%
Smart scheduling 14% 18%
Smart shutdown 12% N/A

2) Job-Level Improvements: During the evaluation of indi-
vidual job runs, we observed performance enhancements of up
to 3.1x and cost savings of up to 3.5x “Fig. 13”. Interestingly,
shuffle-intensive and IO-bound jobs on the cost-optimized
cluster demonstrated similar or even superior performance
compared to jobs executed on the default cluster. This is due
to the fact that these jobs predominantly depend on network
bandwidth and RAM speed rather than advanced CPU hard-
ware. Leveraging more economical Spot machines allowed us
to acquire a greater number of them at a reduced cost, enabling
improved execution. However, it is important to note that the
execution of CPU-bound, mixed-nature applications relies on



Fig. 13: Individual mapping task improvements.

advanced CPU hardware. So, the cost-optimized execution for
such applications resulted in degraded performance.

3) Dynamic Adaptation: We conducted experiments to in-
vestigate the dynamic behavior of the cluster for the health
care provider use case, where the Cluster Tuner continuously
refines the cluster configuration (§IV). In this specific ex-
periment, we introduced a workload characterized by high
concurrency, a substantial data volume of 1 TB, and multi-
stage shuffle operations. Initially, we executed the workload on
both the cost-optimized and performance-optimized clusters
having a max budget 10 to optimize job performance. Later,
we conducted consecutive runs of the same workload over the
performance-optimized cluster, given that our use case places
a higher emphasis on SLA adherence.

We observed a notable 25% improvement across 3 con-
secutive runs along with cost savings of approximately 20%.
Furthermore, after 3 iterations, the Cluster Tuner recognized
that the initially allocated budget was insufficient to meet the
demands of the user workload. This recognition prompted an
adjustment in the allocated budget. As shown in “Fig. 14”,
when the user increased the maximum budget from 10 to
20, we witnessed a further performance improvement of 19%,
resulting in an overall performance enhancement of 40%.

4) Impact of Engine Selection: For the second category
of workloads was used to assess the impact of engine se-
lection recommendations. When we implemented an engine
selection recommendation for a multinational bank use case,
particularly opting for the SQL ELT engine, we observed a
significant improvement in workload execution time, achieving
an impressive enhancement of 2.72×, while simultaneously
reducing job costs by up to 2×. These cost savings can be
attributed to several factors, including reductions in ingress
and egress network expenses.

VII. CONCLUSIONS

In conclusion, this paper introduced INFA-FinOps, Infor-
matica’s FinOps-powered advanced data integration solution
for addressing challenges in cloud infrastructure planning and
budgeting. We discussed key production deployment issues
and outlined Informatica’s solutions, along with our perfor-
mance observations.

Fig. 14: Dynamic cluster (workflow with concurrent Mapping
tasks with large data volumes).

While we’ve made progress in optimizing the system, there
are still opportunities for further improvement. Our future
roadmap includes integrating metric-aware and AI-based al-
gorithms to enhance cost and performance tracking. We aim
to expand beyond compute and storage metrics, improving cost
efficiency and user optimization. We also plan to help users
predict and plan future budgets by sharing usage patterns.
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