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Abstract

In this paper, we study how to optimally provide isola-
tion guarantees in multi-resource environments, such as
public clouds, where a tenant’s demands on different re-
sources (links) are correlated. Unlike prior work such as
Dominant Resource Fairness (DRF) that assumes static
and fixed demands, we consider elastic demands. Our
approach generalizes canonical max-min fairness to the
multi-resource setting with correlated demands, and ex-
tends DRF to elastic demands. We consider two natu-
ral optimization objectives: isolation guarantee from a
tenant’s viewpoint and system utilization (work conser-
vation) from an operator’s perspective. We prove that
in non-cooperative environments like public cloud net-
works, there is a strong tradeoff between optimal iso-
lation guarantee and work conservation when demands
are elastic. Even worse, work conservation can even de-
crease network utilization instead of improving it when
demands are inelastic. We identify the root cause be-
hind the tradeoff and present a provably optimal alloca-
tion algorithm, High Utilization with Guarantees (HUG),
to achieve maximum attainable network utilization with-
out sacrificing the optimal isolation guarantee, strategy-
proofness, and other useful properties of DRF. In co-
operative environments like private datacenter networks,
HUG achieves both the optimal isolation guarantee and
work conservation. Analyses, simulations, and experi-
ments show that HUG provides better isolation guar-
antees, higher system utilization, and better tenant-level
performance than its counterparts.

1 Introduction

In shared, multi-tenant environments such as public
clouds [2, 5, 6, 8, 40], the need for predictability and the
means to achieve it remain a constant source of discus-
sion [15, 44, 45, 50, 51, 58, 59, 61, 62]. The general con-
sensus — recently summarized by Mogul and Popa [53]
— is that tenants expect guaranteed minimum bandwidth
(i.e., isolation guarantee) for performance predictability,
while network operators strive for work conservation to
achieve high utilization and strategy-proofness to ensure
isolation.

Max-min fairness [43] — a widely-used [ 16, 25, 34, 35,
55, 63, 64] allocation policy — achieves all three in the
context of a single link. It provides the optimal isolation
guarantee by maximizing the minimum amount of band-
width allocated to each flow. The bandwidth allocation
of a user (tenant) determines her progress — i.e., how fast
she can complete her data transfer. It is work-conserving,
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Figure 1: Bandwidth allocations in two independent links (a)
for tenant- A (orange) with correlation vector d4 = <%, 1) and

H
tenant-B (dark blue) with dz = (1, 1). Shaded portions are
not allocated to any tenant.

because, given enough demand, it allocates the entire
bandwidth of the link. Finally, it is strategyproof, because
tenants cannot get more bandwidth by lying about their
demands (e.g., by sending more traffic).

However, a datacenter network involves many links,
and tenants’ demands on different links are often corre-
lated. Informally, we say that the demands of a tenant on
two links ¢ and j are correlated, if for every bit the ten-
ant sends on link-z, she sends at least « bits on link-j.
More formally, with every tenant-%, we associate a cor-
relation vector d, = (d},d%,...,d}), where di, < 1,
which captures the fact that for every di bits tenant-k
sends on link-z, it should send at least di bits on link-j.

Examples of applications with correlated demands in-
clude optimal shuffle schedules [22, 23], long-running
services [19, 52], multi-tiered enterprise applications
[39], and realtime streaming applications [10, 69]. Con-
sider the example in Figure la with two independent

links and two tenants. The correlation vector ca} =(3.1)
means that (i) link-2 is tenant-A’s bottleneck, (ii) for ev-
ery M 4 rate tenant- A is allocated on the bottleneck link,
she requires at least M 4 /2 rate on link-1, resulting in a
progress of M 4, and (iii) except for the bottleneck link,
tenants’ demands are elastic, meaning tenant-A can use
more than M 4 /2 rate on link-1.1 Similarly, tenant-B re-
quires at least Mg /6 on link-2 for M g on link-1. If we
denote the rate allocated to tenant-k on link-i by a}, then

M = min, {Z—’“} the minimum demand-normalized
k
rate allocation over all links, captures her progress.
In this paper, we want to generalize max-min fairness
to tenants with correlated and elastic demands while
maintaining its desirable properties: optimal isolation

guarantee, high utilization, and strategy-proofness.

IWhile it does not improve the instantaneous progress of tenant- A,
it increases network utilization, which is desired by the operators.



Intuitively, we want to maximize the minimum
progress over all tenants, i.e., maximize ming My,
where ming M}, corresponds to the isolation guaran-
tee of an allocation algorithm. We make three observa-
tions. First, when there is a single link in the system,
this model trivially reduces to max-min fairness. Sec-
ond, getting more aggregate bandwidth is not always bet-
ter. For tenant- A in the example, (50Mbps, 100Mbps) is
better than (90Mbps, 90Mbps) or (25Mbps, 200Mbps),
even though the latter ones have more bandwidth in to-
tal. Third, simply applying max-min fairness to individ-
ual links is not enough. In our example, max-min fairness
allocates equal resources to both tenants on both links,
resulting in allocations (3, 3) on both links (Figure 1b).
Corresponding progress (M4 = Mp = %) result in a
suboptimal isolation guarantee (min{M 4, Mp} = ).

Dominant Resource Fairness (DRF) [33] extends max-
min fairness to multiple resources and prevents such sub-
optimality. It equalizes the shares of dominant resources
—link-2 (link-1) for tenant-A (tenant-B) — across all ten-
ants with correlated demands and maximizes the iso-
lation guarantee in a strategyproof manner. As shown
in Figure lc, using DRF, both tenants have the same
progress — M4 = Mp = 2, 50% higher than using
max-min fairness on individual links. Moreover, DRF’s
isolation guarantee (min{Ma, Mp} = 2) is optimal
across all possible allocations and is strategyproof.

However, DRF assumes inelastic demands [40], and it
is not work-conserving. For example, bandwidth on link-
2 in shades is not allocated to either tenant. In fact, we
show that DRF can result in arbitrarily low utilization
(Lemma 6). This is wasteful, because unused bandwidth
cannot be recovered.

We start by showing that strategy-proofness is a neces-
sary condition for providing the optimal isolation guar-
antee — i.e., to maximize ming M}, — in non-cooperative
environments (§2). Next, we prove that work conserva-
tion — i.e., when tenants are allowed to use unallocated
resources, such as the shaded area in Figure 1c, without
constraints — spurs a race to the bottom. It incentivizes
each tenant to continuously lie about her demand cor-
relations, and in the process, it decreases the amount of
useful work done by all tenants! Meaning, simply mak-
ing DRF work-conserving can do more harm than good.

We propose a two-stage algorithm, High Utilization
with Guarantees (HUG), to achieve our goals (§3). Fig-
ure 2 surveys the design space for cloud network shar-
ing and places HUG in context by following the thick
lines. At the highest level, unlike many alternatives
[13, 14, 37, 44], HUG is a dynamic allocation algo-
rithm. Next, HUG enforces its allocations at the tenant-
/network-level, because flow- or (virtual) machine-level
allocations [61, 62] do not provide isolation guarantee.

Due to the hard tradeoff between optimal isolation
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Figure 2: Design space for cloud network sharing.

guarantee and work conservation in non-cooperative en-
vironments, HUG ensures the highest utilization possi-
ble while maintaining the optimal isolation guarantee.
It incentivizes tenants to expose their true demands, en-
suring that they actually consume their allocations in-
stead of causing collateral damages. In cooperative en-
vironments, where strategy-proofness might be a non-
requirement, HUG simultaneously ensures both work
conservation and the optimal isolation guarantee. In
contrast, existing solutions [33, 45, 51, 58, 59] are sub-
optimal in both environments. Overall, HUG generalizes
single- [25, 43, 55] and multi-resource max-min fairness
[27, 33, 38, 56] and multi-tenant network sharing solu-
tions [45, 51, 58, 59, 61, 62] under a unifying framework.

HUG is easy to implement and scales well. Even with
100, 000 machines, new allocations can be centrally cal-
culated and distributed throughout the network in less
than a second — faster than that suggested in the litera-
ture [13]. Moreover, each machine can locally enforce
HUG-calculated allocations using existing traffic control
tools without any changes to the network (§4).

We demonstrate the effectiveness of our proposal us-
ing EC2 experiments and trace-driven simulations (§5).
In non-cooperative environments, HUG provides the op-
timal isolation guarantee, which is 7.4x higher than ex-
isting network sharing solutions like PS-P [45, 58, 59]
and 7000 x higher than traditional per-flow fairness, and
1.4 better utilization than DRF for production traces. In
cooperative environments, HUG outperforms PS-P and
per-flow fairness by 1.48x and 17.35% in terms of the
95th percentile slowdown of job communication stages,
and 70% jobs experience lower slowdown w.r.t. DRF.

We discuss current limitations and future research in
Section 6 and compare HUG to related work in Section 7.
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Figure 3: Two VMs from tenant-A (orange) and three from

tenant-B (dark blue) and their communication patterns over a

3 X 3 datacenter fabric. The network fabric has three uplinks

(L1—L3) and three downlinks (L4—Le) corresponding to the

three physical machines.

2 Motivation

In this section, we elaborate on the assumptions and no-
tations used in this paper and summarize the three de-
sirable requirements — optimal isolation guarantee, high
utilization, proportionality — for bandwidth allocation
across multiple tenants. Later, we show the tradeoff be-
tween optimal isolation guarantee and high utilization,
identifying work conservation as the root cause.

M;

2.1 Background

We consider Infrastructure-as-a-Service (e.g., EC2 [2],
Azure [8], and Google Compute [5]) and Container-as-
a-Service (e.g., Mesos [40] and Kubernetes [6]) models
where tenants pay per-hour flat rates for virtual machines
(VMs) and containers.?

We abstract out the datacenter network as a non-
blocking switch (i.e., the fabric/hose model [11, 12, 14,
23, 28, 45, 49]) with P physical machines connected to
it. Each machine has full-duplex links (i.e., 2P indepen-
dent links) and can host one or more VMs from different
tenants. Figure 3 shows an example. We assume that VM
placement and routing are implemented independently.
Not only does this model provide analytical simplicity,
it is mostly a reality today: recent EC2 and Google data-
centers have full bisection bandwidth networks [4, 7].

We denote the corrglation vector of the k-th tenant
(k € {1,...,M}) as dj, = (di,diw..d%’)), where d};
and df +i (1 < ¢ < P) respectively denote the uplink
and downlink demands normalized® by link capacities

2We use the terms VM and container interchangeably in this paper
because they are similar from the network’s perspective.

3Normalization helps us consider heterogeneous capacities. By de-
fault we normalize the correlation vector such that the largest compo-
nent equals to 1 unless otherwise specified.
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Table 1: Important notations and definitions.
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For the example in Figure 3, consider tenant correla-
tion vectors:

— 1 1

da=(=,1,0,1,=,0
A <277aa27>
— 1 1
dp = (1,-,0,0,1, >
B <7670a0576>

where di, = 0 indicates the absence of a VM and d}, = 1
indicates the bottleneck link(s) of a tenant.

Correlation vectors depend on tenant applications, that
can range from elastic-demand batch jobs [3, 24, 42, 68]
to long-running services [19, 52], multi-tiered enterprise
applications [39], and realtime streaming applications [9,
69] with inelastic demands. We focus on scenarios where
a tenant’s demand changes at the timescale of seconds or
longer [13, 18, 58], and she can use provider-allocated
resources in any way for her own workloads.

2.2 Inter-Tenant Network Sharing
Requirements

Given correlation vectors of M tenants, a cloud provider
must use an allocation algorithm A to determine the al-
locations of each tenant:

A({ds 3, ... dy}) = (@@, ...ah)
where @; = (ai,a?,...a3F) and ai is the fraction of
link-¢ guaranteed to the k-th tenant.

As identified in previous work [15, 58], any allocation
policy A must meet three requirements — (optimal) isola-
tion guarantee, high utilization, and proportionality — to
fairly share the cloud network:

1. Isolation Guarantee: VMs should receive minimum
bandwidth guarantees proportional to their correla-
tion vectors so that tenants can estimate worst-case
performance. Formally, progress of tenant-k (M)
is defined as her minimum demand satisfaction ratio
across the entire fabric:

al
M = min { =2
1<i<2P d}f
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Figure 4: Bandwidth consumptions of tenant-A (orange) and
tenant- B (dark blue) with correlation vectors da = (%, 1) and
CE; = (1, &) using PS-P [45, 58, 59]. Both tenants run elastic-
demand applications.

For example, progress of tenants A and B in Figure 4
are My = Mpg = %.4 Note that M, = ﬁ ifd_k> =
(1,1,...,1) for all tenants (generalizing PS-P [58]),
and M, = ﬁ for flows on a single link (generalizing
per-flow max-min fairness [43]).

Isolation guarantee is defined as the lowest progress
across all tenants, i.e., mkin M.

2. High Utilization: Spare network capacities should

be utilized by tenants with elastic demands to ensure
high utilization as long as it does not decrease any-
one’s progress.
A related concept is work conservation, which en-
sures that either a link is fully utilized or demands
from all flows traversing the link have been satisfied
[43, 58]. Although existing research conflates the two
[14, 15, 45, 51, 58, 59, 61, 62, 67], we show in the
next section why that is not the case.

3. Proportionality: A tenant’s bandwidth allocation
should be proportional to its payment similar to re-
sources like CPU and memory. We discuss this re-
quirement in more details in Section 3.3.1.

2.3 Challenges and Inefficiencies of
Existing Allocation Policies

Prior work also identified two tradeoffs: isolation guar-
antee vs. proportionality and high utilization vs. propor-
tionality. However, it has been implicitly assumed that
tenant-level optimal isolation guarantee’ and network-
level work conservation can coexist. Although optimal
isolation guarantee and network-level work conservation
can coexist for a single link — max-min fairness is an ex-
ample — optimal isolation guarantee and work conser-
vation can be at odds when we consider the network as
a whole. This has several implications on both isolation
guarantee and network utilization. In particular, we can
(1) either optimize utilization, then maximize the isola-

4We are continuing the example in Figure 3 but omitted the rest of
@, because there is either no contention or they are symmetric.
5Optimality means that the allocation maximizes the isolation guar-

antee across all tenants, i.e., maximize {mkin My }
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Figure 5: Bandwidth consumptions of tenant-A (orange) and
tenant-B (dark blue) with correlation vectors da = (3,1)
and cﬂ;} = (1, &), when both run elastic-demand applications.
(a) Optimal isolation guarantee in the absence of work con-
servation. With work conservation, (b) tenant-A increases her
progress at the expense of tenant-B, and (c) tenant-B can do
the same, which results in (d) a prisoner’s dilemma.

tion guarantee with best effort; or (2) optimize the iso-
lation guarantee, then maximize utilization with best ef-
fort.% Please refer to Appendix C for more details.

2.3.1 Full Utilization but Suboptimal Isolation
Guarantee

As shown in prior work [58, Section 2.5], flow-level
and VM-level mechanisms — e.g., per-flow, per source-
destination pair [58], and per-endpoint fairness [61, 62]
— can easily be manipulated by creating more flows or
by using denser communication patterns. To avoid such
manipulations, many allocation mechanisms [45, 58, 59]
equally divide link capacities at the tenant level and allow
work conservation for tenants with unmet demands. Fig-
ure 4 shows an allocation using PS-P [58] with isolation
guarantee % If both tenants have elastic-demand appli-
cations, they will consume entire allocations; i.e., c_A> =
Ch =ai =ap = (1, 1), where a = (ch,3,...a"
and cj, is the fraction of link-i consumed by tenant-k.
Recall that af, is the guaranteed allocation of link-i to
tenant-k.

However, PS-P and similar mechanisms are also sub-
optimal. For the ongoing example, Figure 5a shows the
optimal isolation guarantee of 2, which is higher than
that provided by PS-P. In short, full utilization does not
necessarily imply optimal isolation guarantee!

®Maximizing a combination of these two is also an interesting fu-
ture direction.
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Figure 6: Payoff matrix for the example in Section 2.3. Each
cell shows progress of tenant- A and tenant-B.

2.3.2 Optimal Isolation Guarantee but Low
Utilization

In contrast, optimal isolation guarantee does not neces-
sarily mean full utilization. In general, optimal isolation
guarantees can be calculated using DRF [33], which gen-
eralizes max-min fairness to multiple resources. In the
example of Figure 5a, each uplink and downlink of the
fabric is an independent resource — 2P in total.

Given this premise, it seems promising and straightfor-
ward to keep the DRF-component for optimal isolation
guarantee and strategy-proofness and try to ensure full
utilization by allocating all remaining resources.In the
following two subsections, we show that work conserva-
tion may render isolation guarantee no longer optimal,
and even worse, may reduce useful network utilization.

2.3.3 Naive Work Conservation Reduces Optimal
Isolation Guarantee

We first illustrate that even the optimal isolation guar-
antee allocation degenerates into the classic prisoner’s
dilemma problem [30] in the presence of work conser-
vation. In particular, we show that reporting a false cor-
relation vector (1,1) is the dominant strategy for each
tenant, i.e., her best option, no matter whether the other
tenants tell the truth or not. As a consequence, optimal
isolation guarantees decrease (Figure 6).

If tenant- A can use the spare bandwidth in link-2, she
can increase her progress at the expense of tenant-B by

changing her correlation vector to . = = (1,1). With an

unmodified CE; = <1 L) the new allocation would be
ai = (1,1) and ap = (1,L). However, work con-
servation would increase it to a4 = (1, 1) (Flgure 5b).
Overall, progress of tenant- A would increase to 2 12, while
decreasing it to 3 1 for tenant-B. As a result, the isolation
guarantee decreases from % to %

The same is true for tenant-B as well. Consider again

that only tenant-B reports a falsified correlation vector

d’ = (1, 1) to receive a favorable allocation: a4 =
<}1, ) and az i = <% ?1> Work conservation would in-

crease it to ap = (%, 3) (Figure 5c). Overall, progress
of tenant-B would increase to 2, while decreasing it to £
for tenant- A, resulting in the same suboptimal isolation
guarantee .

Since both tenants gain by lying, they would both si-

100% 1/3 2/3 100% 1124 [i12
50% | 50% |
0% L, L, 0% L, L,

(a) Optimal isolation guarantee (b) Tenant-A lies

100% 1/4 12 100 %
50% Q% 50%
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(c) Tenant-B lies

(d) Both lie

Figure 7: Bandwidth consumptions of tenant-A (orange) and
tenant-B (dark blue) with correlation vectors d_A> = (3,1)
and (E: = (1, é) when neither runs elastic-demand applica-
tions. (a) Optimal isolation guarantee allocation is not work-
conserving. With work conservation, (b) utilization can in-
crease or (c) decrease, based on which tenant lies. (d) However,
ultimately it lowers utilization. Shaded means unallocated.

- =
multaneously lie: d’ 4= = dz = (1,1), resulting in a lower
isolation guarantee 3 L (Figure 5d). Both are worse off!

In this example, the inefficiency arises due to allocat-
ing all spare resources to the tenant who demands more.
We show in Appendix B that intuitive allocation poli-
cies of all spare resources — e.g., allocating all to who
demands the least, allocating equally to all tenants with
non-zero demands, and allocating proportionally to ten-
ants’ demands — do not work as well.

2.3.4 Naive Work Conservation can Even Decrease
Utilization

Now consider that neither tenant has elastic-demand ap-
plications; i.e., they can only consume bandwidth pro-
portional to their correlation vectors. A similar prisoner’s
dilemma unfolds (Figure 6), but this time, network uti-
lization decreases as well.

Given the optimal isolation guarantee allocation, af =
A = (3,2) and ap =cp = (2, l) both tenants have
the same optimal isolation guarantee: 2 and f—th of link-
2 remain unused (Figure 7a). One would expect work
conservation to utilize this spare capacity.

Same as before, if tenant-A changes her correlation

vector to d’y = (1,1), she can receive an allocation
ai = (1,4 and consume A = (1%, 41). This in-
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creases her isolation guarantee to 5 and total network

utilization increases (Figure 7b).

Similarly, tenant-B can receive an allocation ap =
(2,1) and consume B = (3, 1) to increase her isola-
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Figure 8: Optimal allocations with maximum achievable uti-
lizations and maximum isolation guarantees for tenant-A (or-
ange) and tenant- B (dark blue).

tion guarantee to %. Utilization decreases (Figure 7¢).
Consequently, both tenants lie and consume A =

(3,3yand ¢g = (3, L) (Figure 7d). Instead of increas-

ing, work conservation decreases network utilization!

2.4 Summary

The primary takeaways of this section are the following:

e Existing mechanisms provide either suboptimal iso-
lation guarantees or low network utilization.

e There exists a strong tradeoff between optimal isola-
tion guarantee and high utilization in a multi-tenant
network. The key lies in strategy-proofness: optimal
isolation guarantee requires it, while work conserva-
tion nullifies it. We provide a formal result about this
(Corollary 2) in the next section.

e Unlike single links, work conservation can decrease
network utilization instead of increasing it.

3 HUG: Analytical Results

In this section, we show that despite the tradeoff between
optimal isolation guarantee and work conservation, it is
possible to increase utilization to some extent. Moreover,
we present HUG, the optimal algorithm to ensure max-
imum achievable utilization without sacrificing optimal
isolation guarantees and strategy-proofness of DRF.

We defer the proofs from this section to Appendix A.

3.1 Root Cause Behind the Tradeoff:
Unrestricted Sharing of Spare
Resources

Going back to Figure 5, both tenants were incentivized to

lie because they were receiving spare resources without

any restriction due to the pursuit of work conservation.
After tenant-A lied in Figure 5b, both M 4 and Mp

decreased to % However, by cheating, tenant-A managed
to increase her allocation in link-1 to 3 from %. Next,
indiscriminate work conservation increased her alloca-
tion in link-2 to % from the initial % effectively increas-
ing M4 to % Similarly in Figure Sc, tenant-B first in-
creased her allocation in link-2 to § from § and then

work conservation increased her allocation in link-1 to
% from the initial %

Algorithm 1 High Utilization with Guarantees (HUG)

%
Input: {dy}: reported correlation vector of tenant-k, Vk
Output: {a_;g}: guaranteed resource allocated to tenant-%, Vk

Stage 1: Calculate the optimal isolation guarantee (M™)
and minimum allocations aj, = M*dy,, Vk

Stage 2: Restrict maximum utilization for each of
the 2P links, such that ¢, < M*, Vi, Vk

Consequently, we must eliminate a tenant’s incentive
to gain too much spare resources by lying; i.e., a ten-
ant should never be able to manipulate and increase her
progress due to work conservation.

Lemma 1 Any allocation policy with the following two
characteristics is not strategyproof:

1. it first uses DRF to ensure the optimal isolation guar-
antee and then assigns the spare, DRF-unallocated
resources for work conservation;

2. there exists at least one tenant whose allocation (in-
cluding spare) on some link is more than her progress
under DRF based on her reported correlation vector.

Corollary 2 (of Lemma 1) Optimal isolation guaran-
tee allocations cannot always be work-conserving even
in the presence of elastic-demand applications. (|

3.2 The Optimal Algorithm: HUG

Given the tradeoff, our goal is to design an allocation
algorithm that can achieve the highest utilization while
keeping the optimal isolation guarantee and strategy-
proofness. Formally, we want to design an algorithm to

Maximize Z Z ch
i€[1,2P] ke[1,M)] (1)

min My = M*,

subject to
ke([1,M]

where ¢}, is the actual consumption’ of tenant-k on link-i
for allocation a}, and M* is the optimal isolation guar-
antee.

We observe that an optimal algorithm would have re-
stricted tenant- A’s progress in Figure 5b and tenant-B’s
progress in Figure 5c to % Consequently, they would not
have been incentivized to lie and the prisoner’s dilemma
could have been avoided. Algorithm 1 — referred to as
High Utilization with Guarantees (HUG) — is such a
two-stage allocation mechanism that guarantees maxi-
mum utilization while maximizing the isolation guaran-
tees across tenants and is strategyproof.

In the first stage, HUG allocates resources to maxi-
mize isolation guarantees across tenants. To achieve this,
we pose our problem as a 2 P-resource fair sharing prob-
lem and use DRF [33, 56] to calculate M*. By reserving

7Consumptions can differ from allocations when tenants are lying.



these allocations, HUG ensures isolation. Moreover, be-
cause DREF is strategy-proof, tenants are guaranteed to
use these allocations (i.e., ¢}, > a}).

While DRF maximizes the isolation guarantees (a.k.a.
dominant shares), it results in low network utilization.
In some cases, DRF may even have utilization arbitrar-
ily close to zero, and HUG can increase that to 100%
(Lemma 6).

To achieve this, the second stage of HUG maxi-
mizes utilization while still keeping the allocation strat-
egyproof. In this stage, we calculate upper bounds to re-
strict how much of the spare capacity a tenant can use in
each link, with the constraint that the largest share across
all links cannot increase (Lemma 1). As a result, Algo-
rithm | remains strategy-proofness across both stages.
Because spare usage restrictions can be applied locally,
HUG can be enforced in individual machines.

Illustrated in Figure 8, the bound is set at % for both
tenants, and tenant- B can use its elastic demand on link-
2’s spare resource, while tenant-A cannot as she has
reached its bound on link-2.

3.3 HUG Properties
We list the main properties of HUG in the following.

1. In non-cooperative cloud environments, HUG is
strategyproof (Theorem 3), maximizes isolation
guarantees (Corollary 4), and ensures the highest
utilization possible for an optimal isolation guaran-
tee allocation (Theorem 5). In particular, Lemma 6
shows that under some cases, DRF may have utiliza-
tion arbitrarily close to 0, and HUG improves it to
100%. We defer the proofs of properties in the Sec-
tion to Appendix A.

2. In cooperative environments like private datacenters,
HUG maximizes isolation guarantees and is work-
conserving. Work conservation is achievable because
strategy-proofness is a non-requirement in this case.

3. Because HUG provides optimal isolation guarantee,
it provides min-cut proportionality (§ 3.3.1) in both
non-cooperative and cooperative environments.

Regardless of resource types, the identified tradeoff
exists in general multi-resource allocation problems and
HUG can directly be applied.

3.3.1 Min-Cut Proportionality

Prior work promoted the notion of proportionality [58],
where tenants would expect to receive total allocations
proportional to their number of VMs regardless of com-
munication patterns. Meaning, two tenants, each with
N VMs, should receive equal bandwidth even if tenant-
X has an all-to-all communication pattern (i.e., J; =
(1,1,...,1)) and tenant-Y has an N-to-1 pattern (i.e.,

exactly one 1 in dy and the rest are zeros). Figure 9
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Figure 9: Communication patterns of tenant-X and tenant-Y
with (a) two minimum cuts of size P, where P is the number
of fabric ports, and (b) one minimum cut of size 1. The size
of the minimum cut of a communication pattern determines its
effective bandwidth even if it were placed alone.

shows an example. Clearly, tenant-Y will be bottle-
necked at her only receiver; trying to equalize them will
only result in low utilization. As expected, FairCloud
proved that such proportionality is not achievable as it
decreases both isolation guarantee and utilization [58].
None of the existing algorithms provide proportionality.

Instead, we consider a relaxed notion of proportional-
ity, called min-cut proportionality, that depends on com-
munication patterns and ties proportionality with a ten-
ant’s progress. Specifically, each tenant receives mini-
mum bandwidth proportional to the size of the minimum
cut [31] of their communication patterns. Meaning, in the
earlier example, tenant-X would receive P times more
total bandwidth than tenant-Y, but they would have the
optimal isolation guarantee (M x = My = %).

Min-cut proportionality and optimal isolation guaran-
tee can coexist, but they both have tradeoffs with work
conservation.

4 Design Details

This section discusses how a cloud operator can imple-
ment, enforce, and expose HUG to the tenants (§4.1),
how to exploit placement to further improve HUG’s per-
formance (§4.2), and how HUG can handle weighted,
heterogeneous scenarios (§4.3).

4.1 Architectural Overview

HUG can easily be implemented atop existing moni-
toring infrastructure of cloud operators (e.g., Amazon
CloudWatch [1]). Tenants would periodically update
their correlation vectors through a public API, and the
operator would compute new allocations and update en-
forcing agents within milliseconds.

HUG API The tenant-facing API simply transfers a
tenant’s correlation vector (dy) to the operator. c?;z =
(1,1,...,1) is used as the default correlation vector. By
design, HUG incentivizes tenants to report and maintain
accurate correlation vectors. This is because the more ac-
curate it is — instead of the default d, = (1,1,...,1) -



the higher are her progress and performance.

Many applications already know their long-term pro-
files (e.g., multi-tier online services [19, 52]) and others
can calculate on the fly (e.g., bulk communication data-
intensive applications [22, 23]). Moreover, existing tech-
niques in traffic engineering can provide good accuracy
in estimating and predicting demand matrices for coarse
time granularities [17, 18, 20, 47, 48].

Centralized Computation For any update, the oper-
ator must run Algorithm 1. Although Stage-1 requires
solving a linear program to determine the optimal isola-
tion guarantee (i.e., the DRF allocation) [33], it can also
be rewritten as a closed-form equation [56] when tenants
can scale up and down following their normalized corre-
lation vectors. The progress of all tenants after Stage-1
of Algorithm 1 — the optimal isolation guarantee — is:
1
L @)

max dt
1<i<2P k; k

M =

Equation (2) is computationally inexpensive. For our
100-machine cluster, calculating M* takes about 5 mi-
croseconds. Communicating the decision to all 100 ma-
chines takes just 8 milliseconds and to 100,000 (emu-
lated) machines takes less than 1 second (§5.1.2).

The guaranteed minimum allocations of tenant-k can
then be calculated as afC = M*d}; forall 1 <3 <2P.

Local Enforcement Enforcement in Stage-2 of Algo-
rithm 1 is simple as well. After reserving the minimum
uplink and downlink allocations for each tenant, each
machine needs to ensure that no tenant can consume
more than M* fraction of the machine’s up or down link
capacities (C’) to the network; ie., af < ¢ < M*.
The spare is allocated among tenants using local max-
min fairness subject to tenant-specific upper-bounds.

Because we only care about inter-tenant behavior — not
how a tenant performs internal sharing — stock Linux
tc is sufficient (§5). A tenant has the flexibility to
choose from traditional per-flow fairness, shortest-first
flow scheduling [12, 41], or explicit rate-based flow con-
trol [29].

4.2 VM Placement and
Re-Placement/Migration

While M* is optimal for a given placement, it can be im-
proved by changing the placement of tenant VMs based
on their correlation vectors. One must perform load bal-
ancing across all machines to minimize the denominator
of Equation (2). Cloud operators can employ optimiza-
tion frameworks like [19] to perform initial VM place-
ment and periodic migrations with an additional load
balancing constraint. However, VM placement is a noto-
riously difficult problem because of often-incompatible

constraints like fault-tolerance and collocation [19], and
we consider its detailed study an important future work.
It is worth noting that with any VM placement, HUG pro-
vides the highest attainable utilization without sacrificing
optimal isolation guarantee and strategy-proofness.

4.3 Additional Constraints

Weighted Tenants
tenants is simple. Just using wydy, instead of d_;i in Equa-
tion (2) would account for tenant weights (wy, for tenant-
k) in calculating M*.

Giving preferential treatment to

Heterogeneous Capacities Because allocations are
calculated independently in each machine based on M*
and local capacities (C*), HUG supports heterogeneous
link capacities.

Bounded Demands So far we have considered only
elastic tenants. If tenant-k£ has bounded demands, i.e.,
di < 1foralli € [1,2P], calculating a common M*
and corresponding aj, in one round using Equation (2)
will be inefficient. This is because tenant-k might require
less than the calculated allocation, and being bounded,
she cannot elastically scale up to use it. Instead, we must
use the multi-round DRF algorithm [56, Algorithm 1] in
Stage-1 of HUG; Stage-2 will remain the same. Note that
this is similar to max-min fairness in a single link when
a flow has a smaller demand than its %—th share.

5 Evaluation

We evaluated HUG using trace-driven simulations and
EC2 deployments. Our results show the following:

e HUG isolates multiple tenants across the entire net-
work, and it can scale up to 100, 000 machines with
less than one second overhead (§5.1).

e HUG ensures the optimal isolation guarantee — al-
most 7000x more than per-flow fairness and about
7.4x more than PS-P in production traces — while
providing 1.4 higher utilization than DRF (§5.2).

e HUG outperforms per-flow fairness (PS-P) by
17.35% (1.48x) in terms of the 95th percentile slow-
down and by 1.49x (1.14x) in minimizing the aver-
age shuffle completion time (§5.3).

e HUG outperforms Varys [23] in terms of the maxi-
mum shuffle completion time by 1.77 %, even though
Varys is 1.45x better in minimizing the average shuf-
fle completion time and 1.33x better in terms of the
95th percentile slowdown (§5.3).

We present our results in three parts. First, we mi-
crobenchmark HUG on 100-machine EC2 clusters to
evaluate HUG’s guarantees and overheads (§5.1). Sec-
ond, we leverage traces collected from a 3200-machine
Facebook cluster by Popa et al. [58] to compare HUG’s
instantaneous allocation characteristics with that of per-
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Figure 10: [EC2] Bandwidth consumptions of three tenants arriving over time in a 100-machine EC2 cluster. Each tenant has 100
VMs, but each uses a different communication pattern (§5.1.1). We observe that (a) using TCP, tenant- B dominates the network by
creating more flows; (b) HUG isolates tenants A and C' from tenant B.

flow fairness, PS-P [58], and DRF [33] (§5.2). Finally,
we evaluate HUG’s long-term impact on application per-
formance using a 3000-machine Facebook cluster trace
used by Chowdhury et al. [23] and compare against per-
flow fairness, PS-P, DRF, as well as Varys, which focuses
only on improving performance (§5.3).

5.1 Testbed Experiments

Methodology We performed our experiments on 100
m2.4xlarge Amazon EC2 [2] instances running on
Linux kernel 3.4.37 and used the default htb and tc im-
plementations. While there exist proposals for more ac-
curate qdisc implementations [45, 57], the default htb
worked sufficiently well for our purposes. Each of the
machines had 1 Gbps NICs, and we could use close to
full 100 Gbps bandwidth simultaneously.

5.1.1 Network-Wide Isolation

We consider a cluster with 100 EC2 machines, divided
between three tenants A, B, and C that arrive over time.
Each tenant has 100 VMs; i.e., VMs A;, B;, and C;
are collocated on the ¢-th physical machine. However,
they have different communication patterns: tenants A
and C' have pairwise one-to-one communication patterns
(100 VM-VM flows each), whereas tenant-B follows
an all-to-all pattern using 10, 000 flows. Specifically, A;
communicates with A; 50y%100, Cj communicates with
C(j+25)%100, and any By communicates with all By,
where 4, j, k,l € {1,...,100}. Each tenant demands the
entire capacity at each machine; hence, the entire capac-
ity of the cluster should be equally divided among the
active tenants to maximize isolation guarantees.

Figure 10a shows that as soon as tenant-B arrives, she
takes up the entire capacity in the absence of isolation
guarantee. Tenant-C' receives only marginal share as she
arrives after tenant-B and leaves before her. Note that
tenant-A (when alone) uses only about 80% of the avail-
able capacity; this is simply because just one TCP flow
per VM-VM pair often cannot saturate the link.

Figure 10b presents the allocation using HUG. As ten-
ants arrive and depart, allocations are dynamically calcu-

lated, propagated, and enforced in each machine of the
cluster. As before, tenants A and C' use marginally less
than their allocations because of creating only one flow
between each VM-VM pair.

5.1.2 Scalability

The key challenge in scaling HUG is its centralized re-
source allocator, which must recalculate tenant shares
and redistribute them across the entire cluster whenever
any tenant changes her correlation vector.

We found that the time to calculate new allocations us-
ing HUG is less than 5 microseconds in our 100 machine
cluster. Furthermore, a recomputation due to a tenant’s
arrival, departure, or change of correlation vector would
take about 8.6 milliseconds on average for a 100, 000-
machine datacenter.

Communicating a new allocation takes less than 10
milliseconds to 100 machines and around 1 second for
100, 000 emulated machines (i.e., sending the same mes-
sage 1000 times to each of the 100 machines).

5.2 Instantaneous Fairness

While Section 5.1 evaluated HUG in controlled, syn-
thetic scenarios, this section focuses on HUG’s instanta-
neous allocation characteristics in the context of a large-
scale cluster.

Methodology We use a one-hour snapshot with 100
concurrent jobs from a production MapReduce trace,
which was extracted from a 3200-machine Facebook
cluster by Popa et al. [58, Section 5.3]. Machines are con-
nected to the network using 1 Gbps NICs. In the trace, a
job with M mappers and R reducers — hence, the corre-
sponding M x R shuffle — is described as a matrix with
the amount of data to transfer between each M-R pair.
We calculated the correlation vectors of individual shuf-
fles from their communication matrices ourselves using
the optimal rate allocation algorithm for a single shuffle
[22, 23], ensuring all the flows of each shuffle to finish
simultaneously.

Given the workload, we calculate progress of each
job/shuffle using different allocation mechanisms and
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Figure 11: [Simulation] HUG ensures higher isolation guarantee than high-utilization schemes like per-flow fairness and PS-P, and
provides higher utilization than multi-resource fairness schemes like DRF.

cross-examine characteristics like isolation guarantee, Bin ‘ 1 (SN) ‘ 2 (LN) ‘ 3 (SW) ‘ 4 (LW)
utilization, and proportionality. % of Shuffles ‘ 52% ‘ 16% ‘ 15% ‘ 17%

5.2.1 Impact on Progress

Table 2: Shuffles binned by their lengths (Short and Long) and
Figure 11a presents the distribution of progress of each widths (Narrow and Wide).

shuffle. Recall that the progress of a shuffle — we con-
sider each shuffle an individual tenant in this section — is
the amount of bandwidth it is receiving in its bottleneck
up or downlink (i.e., progress can be at most 1 Gbps).
Both HUG and DRF (overlapping vertical lines in Fig- 5.2.3 Impact on Proportionality

ure 11a) ensure the same progress (0.74 Gbps) for all
shuffles. Note that despite same progress, shuffles will A collateral benefit of HUG is that tenants receive allo-

finish at different times based on how much data each cations proportional to their bottleneck demands. Con-
one has to send (§5.3). Per-flow fairness and PS-P pro- sequently, despite the same progress across all shuffles
vide very wide ranges: 112 Kbps to 1 Gbps for the former ~ (Figure 11a), their total allocations vary (Figure 11c)
and 0.1 Gbps to 1 Gbps for the latter. Shuffles with many bas.ed on the size of minimum cuts in their communi-
flows crowd out the ones with fewer flows under per-flow ~ cation patterns.

fairness, and PS-P suffers by ignoring correlation vectors
and through indiscriminate work conservation.

width than they do under HUG, while the other 90%
receive less than they do using HUG. PS-P crosses
over at the 76-th percentile.

5.3 Long-Term Characteristics

We have shown in Section 5.2 that HUG provides opti-
mal isolation guarantee in the instantaneous case. How-
By favoring heavy tenants, per-flow fairness and PS-P do ever, similar to all instantaneous solutions [33, 43, 58],
succeed in their goals of increasing network utilization HUG does not provide any long-term isolation or fair-
(Figure 11b). Given the communication patterns of the ness guarantees. Consequently, in this section, we eval-
workload, the former utilizes 69% of 3.2 Tbps total ca- uate HUG’s long-term impact on performance using a
pacity across all machines and the latter utilizes 68.6%. production trace through simulations.
In contrast, DRF utilizes only 45%. HUG provides a
common ground by extending utilization to 62.4% with-
out breaking strategy-proofness and providing optimal
isolation guarantee.

Figure 11c breaks down total allocations of each shuf-
fle and demonstrates two high-level points:

5.2.2 Impact on Utilization

Methodology For these simulations, we use a MapRe-
duce/Hive trace from a 3000-machine production Face-
book cluster. The trace includes the arrival times, com-
munication matrices, and placements of tasks of over
10, 000 shuffle during one day. Shuffles in this trace have
diverse length (i.e., size of the longest flow) and width
(i.e., the number of flows) characteristics and roughly
follow the same distribution of the original trace (Ta-
ble 2). We consider a shuffle to be short if its longest
flow is less than 5 MB and narrow if it has at most 50
flows; we use the same categorization. We calculated the

2. Per-flow fairness crosses HUG at the 90-th per- correlation vector of each shuffle as we did before (§ 5.2).
centile; i.e., the top 10% shuffles receive more band-

1. HUG ensures overall higher utilization (1.4Xx on
average) than DRF by ensuring equal progress for
smaller shuffles and by using up additional band-
width for larger shuffles. It does so while ensuring
the same optimal isolation guarantee as DRF.

10
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Figure 13: [Simulation] Average shuffle completion times nor-
malized by HUG’s average completion time. 95-th percentile
plots are similar.

Metrics We consider two metrics: 95th percentile
slowdown and average shuffle completion time to respec-
tively measure long-term progress and performance char-
acteristics.

We define the slowdown of a shuffle as its completion
time due to a scheme normalized by its minimum com-
pletion time if it were running alone; i.e.,

Slowdown — Compared Duration

Minimum Duration

The minimum value of slowdown is one.
We measure performance as the shuffle completion
time of a scheme normalized by that using HUG; i.e.,

Compared Duration

Normalized Comp. Time =
ormalized Comp. Time HUG’s Duration

If the normalized completion time of a scheme is greater
(smaller) than one, HUG is faster (slower).
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5.3.1 Improvements Over Per-Flow Fairness

HUG improves over per-flow fairness both in terms of
slowdown and performance. The 95th percentile slow-
down using HUG is 17.35X better than that of per-flow
fairness (Table 12b). Overall, HUG provides better slow-
down across the board (Figure 12a) — 61% shuffles are
better off using HUG and the rest remain the same.

HUG improves the average completion time of shuf-
fles by 1.49x (Figure 13). The biggest wins comes from
bin-1 (4.8 x) and bin-2 (6.15 x) that include the so-called
narrow shuffles with less than 50 flows. This reinforces
the fact that HUG isolates tenants with fewer flows from
those with many flows. Overall, HUG performs well
across all bins.

5.3.2 Improvements Over PS-P

HUG improves over PS-P in terms of the 95th percentile
slowdown by 1.48x, and 45% shuffles are better off
using HUG. HUG also providers better average shuf-
fle completion times than PS-P for an overall improve-
ment of 1.14x. Large improvements again come in bin-
1 (1.19x%) and bin-2 (1.27x) because PS-P also favors
tenants with more flows.

Note that instantaneous high utilization of per-flow
fairness and PS-P (§5.2) does not help in the long run
due to lower isolation guarantee.

5.3.3 Improvements Over DRF

While HUG and DRF has the same worst-case slow-
down, 70% shuffles are better off using HUG. HUG also
provides better average shuffle completion times than
DREF for an overall improvement of 1.14x.

5.3.4 Comparison to Varys

Varys outperforms HUG by 1.33x in terms of the 95th
percentile slowdown and by 1.45x in terms of aver-
age shuffle completion time. However, because Varys at-
tempts to improve the average completion time by pri-
oritization, it risks in terms of the maximum completion
time. More precisely, HUG outperforms Varys by 1.77 %
in terms of the maximum shuffle completion time (not
shown).

6 Discussion

Payment Model Similar to many existing proposals
[32, 33, 45, 46, 58, 59, 61, 62], we assume that tenants
pay per-hour flat rates for individual VMs, but there is no
pricing model associated with their network usage. This
is also the prevalent model of resource pricing in cloud
computing [2, 5, 8]. Exploring whether and how a net-
work pricing model would change our solution and what
that model would look like requires further attention.

Determining Correlation Vectors Unlike long-term
correlation vectors, e.g., over the course of an hour or for



an entire shuffle, accurately capturing short-term changes
can be difficult. How fast tenants should update their vec-
tors and whether that is faster than centralized HUG can
react to requires additional analysis.

Decentralized HUG HUG’s centralized design makes
it easier to analyze its properties and simplifies its im-
plementation. We believe that designing a decentralized
version of HUG is an important future work, which will
be especially relevant for sharing wide-area networks in
the context of geo-distributed analytics [60, 66].

7 Related Work

Single-Resource Fairness Max-min fairness was first
proposed by Jaffe [43] to ensure at least %—th of a link’s
capacity to each flow. Thereafter, many mechanisms
have been proposed to achieve it, including weighted fair
queueing (WFQ) [25, 55] and those similar to or extend-
ing WFQ [16, 34, 35, 63, 64]. We generalize max-min
fairness to parallel communication observed in scale-out
applications, showing that unlike in the single-link sce-
nario, optimal isolation guarantee, strategy-proofness,
and work conservation cannot coexist.

Multi-Resource Fairness Dominant Resource Fair-
ness (DRF) [33] maximizes the dominant share of each
user in a strategyproof manner. Solutions that have at-
tempted to improve the system-level efficiency of multi-
resource allocation — both before [54, 65] and after
[27, 38, 56] DRF — sacrifice strategy-proofness. We have
proven that work-conserving allocation without strategy-
proofness can hurt utilization instead of improving it.
Dominant Resource Fair Queueing (DRFQ) [32] ap-
proximates DRF over time in individual middleboxes.
In contrast, HUG generalizes DRF to environments with
elastic demands to increase utilization across the entire
network and focuses only on instantaneous fairness.
Joe-Wong et al. [46] have presented a unifying frame-
work to capture fairness-efficiency tradeoffs in multi-
resource environments. They assume a cooperative envi-
ronment, where tenants never lie. HUG falls under their
FDS family of mechanisms. In non-cooperative environ-
ments, however, we have shown that the interplay be-
tween work conservation and strategy-proofness is criti-
cal, and our work complements the framework of [46].

Network-Wide / Tenant-Level Fairness Proposals for
sharing cloud networks range from static allocation [13,
14, 44] and VM-level guarantees [61, 62] to variations of
network-wide sharing mechanisms [45, 51, 58, 59, 67].
We refer the reader to the survey by Mogul and Popa [53]
for an overview. FairCloud [58] stands out by systemati-
cally discussing the tradeoffs and addresses several lim-
itations of other approaches. Our work generalizes Fair-
Cloud [58] and many proposals similar to FairCloud’s
PS-P policy [45, 59, 61]. When all tenants have elastic
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demands, i.e., all correlation vectors have all elements as
1, we give the same allocation; for all other cases, we
provide higher isolation guarantee and utilization.

Efficient Schedulers Researchers have also focused
on efficient scheduling and/or packing of datacenter re-
sources to minimize job and communication completion
times [12, 21-23, 26, 36, 41]. Our work is orthogonal and
complementary to these work focusing on application-
level efficiency within each tenant. We guarantee iso-
lation across tenants, so that each tenant can internally
perform whatever efficiency or fairness optimizations
among her own applications.

8 Conclusion

In this paper, we have proved that there is a strong trade-
off between optimal isolation guarantees and high uti-
lization in non-cooperative public clouds. We have also
proved that work conservation can decrease utilization
instead of improving it, because no network sharing al-
gorithm remains strategyproof in its presence.

To this end, we have proposed HUG to restrict band-
width utilization of each tenant to ensure highest uti-
lization with optimal isolation guarantee across multi-
ple tenants in non-cooperative environments. In cooper-
ative environments, where strategy-proofness might be
a non-requirement, HUG simultaneously ensures both
work conservation and the optimal isolation guarantee.

HUG generalizes single-resource max-min fairness to
multi-resource environments where a tenant’s demand on
different resources are correlated and elastic. In particu-
lar, it provides optimal isolation guarantee, which is sig-
nificantly higher than that provided by existing multi-
tenant network sharing algorithms. HUG also comple-
ments DRF with provably highest utilization without sac-
rificing other useful properties of DRF. Regardless of
resource types, the identified tradeoff exists in general
multi-resource allocation problems, and all those scenar-
ios can take advantage of HUG.
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A Proofs from Section 3

Proof Sketch (of Lemma 1) Consider tenant-A from
the example in Figure 5. Assume that instead of report-

. . -

ing her true correlation vector d4 = (%, 1), she reports

—
[A—
=

(3 + €, 1), where € > 0. As a result, her alloca-
-)
tion will change to a/y = (

1/24¢ 1
3/2+€’ 3/2+€

). Her allocation
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in link-1 (335

the work conservation policy allocates the spare resource
in link-2 by 0 (§ may be small but a positive value),

) is already larger than before (%) It

71 ’2
her progress will change to M/, = min (“ a2 A) =
A A

min (525, 57 +6). Aslongas e < 5725 (if 6 > 2,

we have no constraint on €), her progress will be better
than when she was telling the truth, which makes the pol-
icy not strategyproof. The operator cannot prevent this
because she knows neither a tenant’s true correlation vec-
tor nor ¢, the extent of the tenant’s lie. O

Theorem 3 Algorithm 1 is strategyproof.

Proof Sketch (of Theorem 3) Because DRF is strate-
gyproof, the first stage of Algorithm 1 is strategyproof
as well. We show that adding the second stage does not
violate strategy-proofness of the combination.

Assume that link-b is a system bottleneck — the link

DREF saturated to maximize isolation guarantee in the
M

first stage. Meaning, b = arg max Z di. We use Db =

¢ k=1
M

Z dz to denote the total demand in link-b (Db >1),and
k=1
Mb =1 / D" for corresponding progress for all tenant-k
(k € {1,..., M}) when link-b is the system bottleneck.
In Figure 5, b = 1. The following arguments hold even
for multiple bottlenecks.

Any tenant-k can attempt to increase her progress

(M) only by lying about her correlation vector (dy).
Formally, her action space consists of all possible cor-
relation vectors. It includes increasing and/or decreasing
demands of individual resources to report a different vec-

tor, dz and obtain a new progress, M (> My,). Tenant-
k can attempt one of the two alternatives when report-

ing dz : either keep link-b still the system bottleneck or
change it. We show that Algorithm 1 is strategyproof in
both cases; i.e., M} < Mj.

Case 1: link-b is still the system bottleneck.

Her progress cannot improve because

e if d)® < d%, her share on the system bottleneck will
decrease in the first stage; so will her progress. There is
no spare resource to allocate in link-b.

For example, if tenant-A changes d’}i = %
dy = % in Figure 5, her allocation will decrease to

th of link-1; hence, M/, = 2 instead of M 4 = 2.

o if d;cb > d?, her share on the system bottleneck
will increase. However, because D'* > D as d;f > db,
everyone’s progress including her own will decrease in
the first stage (M}? < M?). The second stage will en-
sure that her maximum consumption in any link-i ¢} <

instead of
1
i

max; {ag } Therefore her progress will be smaller than



that when she tells the truth (M < M?).

For example, if tenant-A changes d’} 1 instead of
d% = % in Figure 5, her allocation will increase to % of
link-1. However, progress of both tenants will decrease:

My =Mp = %1 The second stage will restrict her us-
age in link-2 to 5 as well; hence, M’A = % instead of
Mgy =2,

Case 2: link-b is no longer a system bottleneck; in-
stead, link-b' (# b) is now one of the system bottlenecks.
We need to consider the following two sub-cases.

o If D < DP, the progress in the first stage will
increase; i.e., M;Cbl > MZ. However, tenant-k’s alloca-
tion in link-b will be no larger than if she had told the
truth, making her progress no better. To see this, con-
sider the allocations of all other tenants in link-b before
and after she lies. Denote by c® , and ¢’®, the resource
consumption of all other tenants in link-b when tenant-
k was telling the truth and lying, respectively. We also
have cb_,C = ab_k and ab_k + az = 1 because link-b
was the bottleneck, and there was no spare resource to
allocate for this link. When tenant-k lies, a’®, > a®,
because /\/l;cb/ > Mz. We also have c’fk > a’f,c and
¢’ +c? < 1. Thisimplies ¢ <1-¢?, <1-a", <
1 —a’, = a’ = cb. Meaning, tenant-k’s progress is no
larger than that when she was telling the truth.

o If D' > DP, everyone’s progress including her
own decreases in the first stage (Mﬁ’, < M?). Similar
to the second scenario in Case 1, the second stage will
restrict tenant-k to the lowered progress.

Regardless of tenant-k’s approaches — keeping the
same system bottleneck or not — her progress using Al-
gorithm 1 will not increase. (]

Corollary 4 (of Theorem 3) Algorithm [ maximizes
isolation guarantee, i.e., the minimum progress across
tenants. O

Theorem 5 Algorithm 1 achieves the highest resource
utilization among all strategyproof algorithms that pro-
vide optimal isolation guarantee among tenants.

Proof Sketch (of Theorem 5) Follows from Lemma 1
and Theorem 3. (]

Lemma 6 Under some cases, DRF may have utilization
arbitrarily close to 0, and HUG helps improve the uti-
lization to 1.

Proof Sketch (of Lemma 6) Construct the cases with
K links and NN tenants, and each tenant has demand 1
on link-1 and € on other links.

DRF will allocate to each tenant % on link-1 and
ﬁ on all other links, resulting in a total utilization of

#_)Owhen[(—njo,e—ﬂ)forany]\f.
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(b) HUG

Figure 14: Hard tradeoff between work conservation and
strategy-proofness. Adding one more tenant (tenant-C' in black)
to Figure 5 with correlation vector (1, 0) makes simultaneously
achieving work conservation and optimal isolation guarantee
impossible, even when all three have elastic demands.

HUG will allocate to each tenant % on every link and
achieve 100% utilization. ]

B Tradeoff Between Work Conser-
vation and Strategy-proofness

We demonstrate the tradeoff between work conservation
and strategy-proofness (thus isolation guarantee) by ex-
tending our running example from Section 2.

Consider another tenant (tenant-C') with correlation
vector dc = (1,0) in addition to the two tenants present
earlier. The key distinction between tenant-C' and either
of the earlier two is that she does not demand any band-
width on link-2. Given the three correlation vectors, we
can use DRF to calculate the optimal isolation guaran-
tee (Figure 14a), where tenant-k has M, = %, link-1 is
completely utilized, and 1—75—th of link-2 is proportionally
divided between tenant- A and tenant-B.

This leaves us with two questions:

1. How do we completely allocate the remaining %-th

bandwidth of link-2?

2. Is it even possible without sacrificing optimal isola-
tion guarantee and strategy-proofness?

We show in the following that it is indeed not possible
to allocate more than %-th of link-2 (Figure 14b) without
sacrificing the optimal isolation guarantee.

Let us consider three primary categories of work-
conserving spare allocation policies: demand-agnostic,
unfair, and locally fair. All three will result in lower iso-
lation guarantee, lower utilization, or both.

B.1 Demand-Agnostic Policies

Demand-agnostic policies equally divide the resource
between the number of tenants independently in each
link, irrespective of tenant demands, and provide isola-
tion. Although strategyproof, this allocation (Figure 15a)
has lower isolation guarantee (M4 = % and Mp
Me = %, therefore isolation guarantee is %) than the op-



100 % 100%

50% 50%

0% 0%
(b) Most-demanding gets all

100 % 100%

50% 50%

0% 0%

(¢) Equal spare division (d) Prop. spare division

Figure 15: Allocations after applying different work-
conserving policies to divide spare capacities in link-2 for the
example in Figure 14.

timal isolation guarantee allocation shown in Figure 14a
My =Mp=Mc= % therefore isolation guarantee
is 2). PS-P [45, 58, 59] fall in this category.

Worse, when tenants do not have elastic-demand ap-
plications, demand-agnostic policies are not even work-
conserving (similar to the example in §2.3.4).

Lemma 7 When tenants do not have elastic demands,
per-resource equal sharing is not work-conserving.

Proof Sketch Only 13-th of link-1 and 2-th of link-2
will be consumed; i.e., none of the links will be satu-
rated! U

To make it work-conserving, PS-P suggests dividing
spare resources based on whoever wants it.

Lemma 8 When tenants do not have elastic demands,
PS-P is not work-conserving.

Proof Sketch If tenant-B gives up her spare allocation
2

in link-2, tenant- A can increase her progressto M 4 = 3
and saturate link-1; however, tenant-B and tenant-C' will
remain at Mp = M¢ % If tenant-A gives up her
spare allocation in link-1, tenant- B and tenant-C' can in-
crease their progress to Mp = M¢ % and saturate
link-1, but tenant-A will remain at M4 = 1. Because
both tenant-A and tenant-B have chances of increas-
ing their progress, both will hold off to their allocations
even with useless traffic — another instance of Prisoner’s

dilemma. O

B.2 Unfair Policies

Instead of demand-agnostic policies, one can also con-
sider simpler, unfair policies; e.g., allocating all the re-
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sources to the tenant with the least or the most demand.

Lemma 9 Allocating spare resource to the tenant with
the least demand can result in zero spare allocation.

Proof Sketch Although this strategy provides the opti-
mal allocation for Figure 5, when at least one tenant in
a link has zero demand, it can trivially result in no addi-
tional utilization; e.g., tenant-C' in Figure 14. O

Lemma 10 Allocating spare resource to the tenant with
the least demand is not strategyproof.

Proof Sketch Consider tenant-A lied and changed her

correlation vector to d’; = (1, 75). The new optimal iso-

lation guarantee allocation for unchanged tenant-B and
tenant-C' correlation vectors would be: ai = (3, %),
ap = (%, %> and ac = (%, 0). Now the spare resource
in link-2 will be allocated to tenant- A because she asked

for the least amount, and her final allocation would be

ay = (%, %> As a result, her progress improved from
My = % to M/, = % while the others’ decreased to
Mp =My = % O

Corollary 11 (of Lemma 10) In presence of work con-
servation, tenants can lie both by increasing and de-
creasing their demands, or a combination of both. O

Lemma 12 Allocating spare resource to the tenant with
the highest demand is not strategyproof.

Proof Sketch If tenant- A changes her correlation vector

to d.’> = (1, 1), the eventual allocation (Figure 15b) will
again result in lower progress (Mp = Mg = %). Be-
cause tenant-B is still receiving more than %-th of her
allocation in link-1 in link-2, she does not need to lie. [J

Corollary 13 (of Lemmas 10, 12) Allocating spare re-
source randomly to tenants is not strategyproof. O

B.3 Locally Fair Policies

Finally, one can also consider equally or proportionally
dividing the spare resource on link-2 between tenant-
A and tenant-B. Unfortunately, these strategies are not
strategyproof either.

Lemma 14 Allocating spare resource equally to tenants
is not strategyproof.

Proof Sketch If the remaining %-th of link-2 is equally
divided, the share of tenant-A will increase to %-rd and
incentivize her to lie. Again, the isolation guarantee will
be smaller (Figure 15¢). U

Lemma 15 Allocating spare resource proportionally to
tenants’ demands is not strategyproof.

Proof Sketch If one divides the spare in proportion to
tenant demands, the allocation is different (Figure 15d)
than equal division. However, tenant-A can again in-
crease her progress at the expense of others. O



C Dual Objectives of Network
Sharing

The two conflicting requirements of the network sharing
problem can be defined as follows.
1. Utilization: 3, (1 2p) 2 ope(1,a) Ch
2. Isolation guarantee: minge (1, pr) Mg
Given the tradeoff between the two, one can consider
one of the two possible optimizations:®
O1 Ensure highest utilization, then maximize the isola-
tion guarantee with best effort;

02 Ensure optimal isolation guarantee, then maximize
utilization with best effort.

O1: Utilization-First In this case, the optimization at-
tempts to maximize the isolation guarantee across all ten-
ants while keeping the highest network utilization.

Maximize min My,
ke1,M]
st S Y g=v, @

i€[1,2P] ke[1,M)]

where U* = max Z Z ¢} is the highest uti-
i€[1,2P] ke[1,M]

lization possible. Although this ensures maximum net-
work utilization, isolation guarantee to individual tenants
can be arbitrarily low. This formulation can still be useful
in private datacenters [36].

To ensure some isolation guarantee, existing cloud
network sharing approaches [14, 45, 51, 58, 59, 61, 62,
67] use a similar formulation:

Maximize Z Z %
1<i<2P ke[1,M] 4)
1
subjectto My > a ke 1, M]

The objective here is to maximize utilization while en-
suring at least %-th of each link to tenant-k£. However,
this approach has two primary drawbacks (§ 2.3):

1. suboptimal isolation guarantee, and
2. lower utilization.

02: Isolation-Guarantee-First Instead, in this paper,
we have formulated the network sharing problem as fol-

lows:
Maximize Z Z ci
i€[1,2P] k€([1,M)]
subjectto  min M;, = M;, (%)
ke1,M]

ci >al, i€[1,2P], k€ [1,M]

8Maximizing a combination of these two is also an interesting fu-
ture direction.
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Here, we maximize resource consumption while keep-
ing the optimal isolation guarantee across all tenants, de-
noted by M7. Meanwhile, the constraint on consump-
tion being at least guaranteed minimum allocation en-
sures strategy-proofness; thus, guaranteeing that guaran-
teed allocated resources will be utilized.

Because ci, values have no upper bounds except for
physical capacity constraints, optimization O2 may re-
sult in suboptimal isolation guarantee in non-cooperative
environments (§2.3.3). HUG introduces the following
additional constraint to avoid this issue only in non-
cooperative environments:

ci < M* i e[1,2P] k € [1,M]

This constraint is not necessary when strategy-proofness
is a non-requirement — e.g., in private datacenters.
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