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ABSTRACT

In today’s datacenters, compute and memory resources are tightly-coupled. This causes fleet-wide
resource underutilization and increases the total cost of ownership (TCO) for large-scale data-
centers. Modern datacenters are embracing a paradigm shift towards disaggregation, where each
resource type is decoupled and connected through a network fabric. As memory is the prime
resource for high-performance services, it has become an attractive target for disaggregation. Dis-
aggregating memory from compute enables flexibility to scale them independently and better re-
source utilization. As memory consumes 30-40% of the total rack power and operating cost, proper
utilization of stranded resources through disaggregation can save billions of dollars in TCO.

With the advent of ultra-fast networks and coherent interfaces like CXL, disaggregation has
become popular over the last few years. There are, however, many open challenges for its practical
adoption, including the latency gap between local and remote memory access, resilience, deploya-
bility in existing infrastructure, adaptation of heterogeneity in cluster resources, and isolation while
maintaining the quality of service. To make memory disaggregation widely adoptable, besides
hardware support, we need to provide performant software stacks considering all these challenges
so that such systems do not degrade application performance beyond a noticeable margin.

This dissertation proposes a comprehensive solution to address the host-level, network-level,
and end-to-end aspects of practical memory disaggregation. Existing memory disaggregation so-
lutions usually use data path components designed for slow disks. As a result, applications expe-
rience remote memory access latency significantly higher than that of the underlying low-latency
network. To bridge the still-sizeable latency gap between local vs. remote memory access, we
design Leap – a prefetching solution for remote memory accesses. At its core, Leap employs
an online, majority-based prefetching algorithm, which increases the page cache hit rate. Next,
comes the challenge of providing resilience. Relying on memory across multiple machines in a
disaggregated cluster makes applications susceptible to a wide variety of uncertainties, such as
independent and correlated failures of remote machines, evictions from and corruptions of remote
memory, network partitions, etc. Applications also suffer from stragglers or late-arriving remote
responses because of the latency variabilities in a large network due to congestion and background
traffic. Hydra addresses these issues by enabling a low-latency, low-overhead, and highly available
erasure-coded resilient remote memory datapath at single-digit µs tail latency.
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For widespread deployability, besides private clouds, we consider public clouds where prevail
a set of unique challenges for resource disaggregation across different tenants, including resource
harvesting, isolation, and matching. We design Memtrade to enable memory disaggregation on
public clouds even in the absence of the latest networking hardware and protocols (e.g., RDMA,
CXL). Memtrade allows producer virtual machines (VMs) to lease both their unallocated memory
and allocated-but-idle application memory to remote consumer VMs for a limited period of time.

Emerging coherent interfaces like CXL reduce the remote memory access latency to a few hun-
dred nanoseconds. It enables main memory expansion where different memory technologies with
varied characteristics can co-exist. Without efficient memory management, however, such hetero-
geneous tiered-memory systems can significantly degrade performance. We propose a novel OS-
level page placement mechanism, TPP, for tiered-memory systems. TPP employs a lightweight
mechanism to identify and place hot/cold pages to appropriate memory tiers.

Altogether, this dissertation presents how to enable practical memory disaggregation for next-
generation datacenters through performant, resilient, and easily deployable software stacks.
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CHAPTER 1

Introduction

Modern datacenter applications are becoming more and more memory intensive to meet their un-
yielding demand for low-latency and high throughput services. Emerging applications in different
service domains like graph processing [217, 162], stream processing [238, 116, 315], interactive
analysis [316, 64], SQL processing [64, 102, 195, 84], machine learning [160, 196, 228], deep
learning [74, 122, 174], etc. require high memory demand to avoid expensive disk accesses which
drastically degrades an application’s performance by orders of magnitude. For example, if one runs
an iterative machine learning algorithm such as logistic regression on Apache Spark, in-memory
configuration provides 100× better performance over a disk-based Apache Hadoop setup [14].

With the increase in data volume, total service queries, number of end-users, etc. factors, the
overall memory demand of these applications can increase over time. Because of a server’s physi-
cal memory capacity limit, if the memory requirement increases drastically, it becomes impossible
to serve the whole working set of an application by a single server. At that point, memory-intensive
applications experience disproportionate performance loss. Prior research [165] showed that, for a
suite of memory-intensive applications, if the available memory of a host server cannot serve half
of the application’s working set, the performance loss can vary by 8× to 25× (Figure 1.1).

Application developers often sidestep such disasters by over-allocating memory, but perva-
sive over-allocation inevitably leads to datacenter-scale memory underutilization. Indeed, memory
utilization at many hyperscalers hovers around 40%–60% [263, 4, 165, 202]. Service providers
running on public clouds, such as Snowflake, report 70%–80% underutilized memory on aver-
age [292]. Moreover, in many real-world deployments, workloads rarely use all of their allocated
memory all of the time. Often, an application allocates a large amount of memory but accesses it
infrequently during its remaining life cycle. For example, in Google’s datacenters, up to 61% of
allocated memory remains idle [202]. Since DRAM is a significant driver of infrastructure cost and
power consumption [146, 34, 147], excessive underutilization leads to high capital and operating
expenditures, as well as wasted energy (and carbon emissions).

At the same time, increasing the effective memory capacity and bandwidth of each server to
accommodate ever-larger working sets is challenging as well. More importantly, memory capacity
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comes at power-of-two granularity which limits finer grain memory capacity sizing. Even num-
bers of memory controllers need to be presented with memory DIMMs installed in pairs. All the
memory channels needs to run at the same speed and bandwidth. At the same time, as DRAM
continues to densify with newer generations, to increase the memory bandwidth of a platform,
one needs to increase a server’s memory capacity. For example, to increase memory bandwidth
by 3.6× in their datacenters, Meta had to increase capacity by 16× [225]. To provide sufficient
memory capacity and/or bandwidth to memory-intensive applications, computing and network-
ing resources become stranded in traditional server platforms, which eventually causes fleet-wide
resource underutilization and increases TCO.

1.1 Memory Disaggregation
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Figure 1.1: Memory-intensive applications suffer
disproportionate loss when working sets do not fit

Memory disaggregation addresses memory-
related rightsizing problems at both software
and hardware levels. Applications are able to
allocate memory as they need without being
constrained by server boundaries. Servers are
not forced to add more computing and net-
working resources when they only need addi-
tional memory capacity or bandwidth.

Simply put, memory disaggregation ex-
poses memory capacity available in remote lo-
cations as a pool of memory and shares it
across multiple servers over the network. It de-
couples the available compute and memory re-
sources, enabling independent resource alloca-
tion in the cluster. A server’s local and remote
memory together constitute its total physical memory. An application’s locality of memory ref-
erence allows the server to exploit its fast local memory to maintain high performance, while
remote memory provides expanded capacity with an increased access latency that is still orders-of-
magnitude faster than accessing persistent storage (e.g., HDD, SSD). The OS and/or application
runtime provides the necessary abstractions to expose all the available memory in the cluster, hid-
ing the complexity of setting up and accessing remote memory (e.g., connection setup, memory
access semantics, network packet scheduling, etc.) while providing resilience, isolation, security,
etc. guarantees.

By exposing all unused memory across all the servers as a memory pool to all memory-
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Figure 1.2: Physical vs. logical memory disaggregation architectures.

intensive applications, memory disaggregation can improve both application-level performance
and overall memory utilization. Multiple hardware vendors and hyperscalers have projected
[66, 73, 208, 225] up to 25% TCO savings without affecting application performance via (rack-
scale) memory disaggregation. While the idea of leveraging remote machines’ memory is decades
old [120, 145, 151, 210, 223, 241], only during the past few years, the latency and bandwidth gaps
between memory and communication technologies have come close enough to make it practical.
The first disaggregated memory1 solutions [93, 157, 165, 258] leveraged RDMA over InfiniBand
or Ethernet, but they are an order-of-magnitude slower than local memory. More recently, with the
rise of cache-coherent Compute Express Link (CXL) [27] interconnects and hardware protocols,
the latency and performance gap is decreasing even more. We are at the cusp of taking a leap
toward next-generation software-hardware co-designed disaggregated memory systems.

1.1.1 Memory Disaggregation Architectures

Memory disaggregation systems have two primary cluster memory architectures.

Physical Disaggregation. In a physically-disaggregated architecture, compute and memory
nodes are detached from each other where a cluster of compute blades are connected to one or
more memory blades through network (e.g., PCIe bridge) [214] (Figure 1.2a). A memory node

1Remote memory and far memory are often used interchangeably with the term disaggregated memory.
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can be a traditional monolithic server with low compute resource and large memory capacity, or it
can be network-attached DRAM. For better performance, the compute nodes are usually equipped
with a small amount of memory for caching purposes.

Logical Disaggregation. In a logically-disaggregated architecture, traditional monolithic servers
hosting both compute and memory resources are connected to each other through the network
(e.g., Infiniband, RoCEv2) (Figure 1.2b). This is a popular approach for building a disaggregated
memory system because one does not need to change existing hardware architecture; simply incor-
porating appropriate software to provide a remote memory interface is sufficient. In such a setup,
usually, each of the monolithic servers has their own OS. In some cases, the OS itself can be dis-
aggregated across multiple hosts [275]. Memory local to a host is usually prioritized for running
local jobs. Unutilized memory on remote machines can be pooled and exposed to the cluster as
remote [165, 224, 207, 226, 275, 267, 111].

Hybrid Approach. Cache-coherent interconnects like CXL provides the opportunity to build a
composable heterogeneous server memory systems that combine logical and physical disaggre-
gation approaches. Multiple monolithic servers, compute devices, memory nodes, or network
specialized devices can be connected through fabric or switches where software stacks can provide
the cache-line granular or traditional virtual memory-based disaggregated memory abstraction.

1.1.2 Abstractions and Interfaces

Interfaces to access disaggregated memory can either be transparent to the application or need
minor to complete re-write of applications (Table 1.1). The former has broader applicability, while
the latter might have better performance.

Application-Transparent Interface. Access to remote disaggregated memory without signifi-
cant application rewrites typically relies on two primary mechanisms: disaggregated Virtual File
System (VFS) [92], that exposes remote memory as files and disaggregated Virtual Memory Man-
ager (VMM) for remote memory paging [224, 165, 207, 275]. In both cases, data is communicated
in small chunks or pages (typically, 4KB). In case of remote memory as files, pages go through the
file system before they are written to/read from the remote memory. For remote memory paging
and distributed OS, page faults cause the VMM to write pages to and read them from the remote
memory. Remote memory paging is more suitable for traditional applications because it does not
require software or hardware modifications.
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Abstraction System
Hardware

Transparent
OS

Transparent
Application
Transparent

Virtual
Memory

Management
(VMM)

Global Memory [149] Yes No Yes
Memory Blade [214] No No Yes

Infiniswap [165] Yes Yes Yes
Leap [224] Yes No Yes

LegoOS [275] Yes No Yes
zSwap [202] Yes No Yes
Kona [111] Yes No Yes

Fastswap [98] Yes No Yes
Hydra [207] Yes Yes Yes

Virtual File
System (VFS)

Memory Pager [223] Yes Yes No
Remote Regions [92] Yes Yes No

Custom
API

FaRM [142] Yes Yes No
FaSST [180] Yes Yes No
LITE [288] Yes Yes No

Memtrade [226] Yes Yes No

Programming
Runtime

AIFM [267] Yes Yes No
Semeru [297] Yes Yes No

Nu [266] Yes Yes No

Table 1.1: Selected memory disaggregation proposals.

Non-Transparent Interface. Another approach is to directly expose remote memory through
custom API (KV-store, remote memory-aware library or system calls) and modify the applications
incorporating these specific APIs [267, 297, 180, 142, 266, 226]. All the memory (de)allocation,
transactions, synchronizations, etc. operations are handled by the underlying implementations of
these APIs. Performance optimizations like caching, local-vs-remote data placement, prefetching,
etc. are often the responsibility of the application.

1.2 Challenges in Practical Memory Disaggregation

Simply relying on fast networks or interconnects is not sufficient to make memory disaggregation
practical. A comprehensive solution must address challenges in multiple dimensions:

• High Performance. A disaggregated memory system involves the network in its remote
memory path, which is at least an order-of-magnitude slower than memory channels attached
to CPU and DRAM (80–140 nanoseconds vs. microseconds; see Figure 1.3). Hardware-
induced remote memory latency is significant and impacts application performance [165,
224, 225]. Depending on the abstraction, software stacks can also introduce significant
overheads. For example, remote memory paging over existing OS VMM can add tens of
microseconds latency for a 4KB page [224].
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Figure 1.3: Latency characteristics of different memory technologies.

• Performance Isolation. When multiple applications with different performance require-
ments (e.g., latency- vs. bandwidth-sensitive workloads) compete for remote memory, de-
pending on where the applications are running and remote memory location, they may be
contending for resources inside the server, on the NIC, in the network on the hardware side,
and variety of resources in the application runtimes and OSes. This is further exacerbated by
the presence of multiple tiers of memory with different latency-bandwidth characteristics.

• Resilience to Expanded Failure Domains. Applications relying on remote memory be-
come susceptible to new failure scenarios such as independent and correlated failures of
remote machines, evictions from and corruptions of remote memory, and network partitions.
They also suffer from stragglers or late-arriving remote responses due to network conges-
tion and background traffic [139]. These uncertainties can lead to catastrophic failures and
service-level objective (SLO) violations.

• Memory Heterogeneity. Memory hierarchy within a server is already heterogeneous (Fig-
ure 1.3). Disaggregated memory – both network-attached and emerging CXL-memory
[208, 163, 225] – further increases heterogeneity in terms of latency-bandwidth characteris-
tics. In such a heterogeneous setup, simply allocating memory to applications is not enough.
Instead, decisions like how much memory to allocate in which tier at what time is critical.

• Efficiency and Scalability. Disaggregated memory systems are inherently distributed. As
the number of memory servers, the total amount of disaggregated memory, and the number
of applications increase, the complexity of finding unallocated remote memory in a large
cluster, allocating them to applications without violating application-specific SLOs, and cor-
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in a logically disaggregated memory architecture.

responding meta-data overhead of memory management increase as well. Finding efficient
matching at scale is necessary to achieve high overall utilization.

• Security. Although security of disaggregated memory is often sidestepped within the con-
fines of a private datacenter, it is a major challenge for memory disaggregation in public
clouds. Since data residing in remote memory may be read by entities without proper ac-
cess, or corrupted from accidents or malicious behavior, the confidentiality and integrity of
remote memory must be protected. Additional concerns include side channel and remote
rowhammer attacks over the network [287, 286], distributed coordinated attacks, lack of
data confidentiality and integrity and client accountability during CPU bypass operations
(e.g., when using RDMA for memory disaggregation).

Thesis Statement. Practical realization of memory disaggregation can help bend the curve on

Moore’s law by enabling higher generation of memory technologies on general purpose proces-

sors. There are, however, many open challenges including the latency gap between local vs. re-

mote memory access, resilience, deployability, and heterogeneity in hardware infrastructure. This

dissertation presents a comprehensive application-transparent software solution for the practical

adaptation of memory disaggregation that will scale without losing efficiency down the line.

We propose a suit of software solutions (Figure 1.4) that augments the VMM of existing OSes
by incorporating remote memory awareness in the data path. We fasten the VMM’s access to
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remote memory through a prefetch-enabled leaner data path (Leap). To incorporate resilience, we
adopt erasure-coding during remote read/write operations (Hydra). For optimum performance,
we further enhance the VMM to identify the hot-warm-cold memory regions and put them to
appropriate memory tiers across a heterogeneous tiered-memory system (TPP). We also expand
the capacity of remote memory pool through an efficient idle memory harvesting mechanism and
exposing them to the global memory pool (Memtrade). For the widespread adaptability, we design
this framework so that it can operate even without any specialized hardware and OS modification.

1.3 Contribution

Leap The prime challenge for the practical realization of memory disaggregation is how to
bridge the latency gap. Application-transparent paging-based remote memory abstraction incurs
high latency overhead because Linux VMM is not optimized for microsecond-scale operations.
In this regard, an optimized remote memory data path is imperative. We design Leap that pro-
vides a lightweight and efficient data path in the kernel. Leap isolates each application’s data path
to the disaggregated memory and mitigates latency bottlenecks arising from legacy throughput-
optimizing operations. Even with the leanest data path, a reactive page fetching system must suffer
microsecond-scale network latency on the critical path. To address this, we complement Leap with
a remote memory prefetcher to proactively bring in the correct pages into a local cache to provide
sub-microsecond latency (comparable to that of a local page access) on cache hits.

Hydra To tolerate remote failures, memory disaggregation frameworks often relies on local
disks, which results in slow failure recovery. Maintaining multiple in-memory replicas may not an
option either as it effectively halves the total capacity. We explore erasure coding as a memory-
efficient alternative. Specifically, we divide each page into k splits to generate r encoded parity
splits and spread the (k + r) splits to (k + r) failure domains – any k out of (k + r) splits would
then suffice to decode the original data. However, erasure coding is traditionally applied to large
objects [260]. In this regard, we design Hydra whose carefully designed data path can perform
online erasure coding within a single-digit microsecond tail latency. Hydra also introduce Cod-
ingSets, a new data placement scheme that balance availability and load balancing, while reducing
the probability of data loss by an order of magnitude even under large correlated failures.

Memtrade Memory disaggregation frameworks are designed mostly for cooperative private dat-
acenters; memory disaggregation in public clouds faces additional concerns. For the widespread
adaptation, we design Memtrade to harvest all the idle memory within virtual machines (VMs)
– be it unallocated, or allocated to an application but infrequently utilized, and expose them to a
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publicly accessible disaggregated memory marketplace. Memtrade allows producer VMs to lease
their idle application memory to remote consumer VMs for a limited period of time while ensuring
confidentiality and integrity. It employs a broker to match producers with consumers while satis-
fying performance constraints. Memtrade enables memory disaggregation on public clouds even
without any support from the cloud provider or any special hardware.

TPP Datacenter applications have diverse memory access latency and bandwidth requirements.
Sensitivity toward different memory page types can also vary across applications. Understanding
and characterizing such behaviors is critical to designing heterogeneous tiered-memory systems.
We build Chameleon, a lightweight user-space memory access behavior characterization tool that
can readily be deployed in production without disrupting running application(s) or modifying the
OS kernel. It generates a heat-map of memory usage for different page types and provides insights
into an application’s expected performance with multiple temperature tiers. Given applications’
page characterizations, TPP provides an OS-level transparent page placement mechanism, to ef-
ficiently place pages in a tiered-memory system. TPP has three components: (a) a lightweight
reclamation mechanism to demote colder pages to the slow tier; (b) decoupling the allocation
and reclamation logic for multi-NUMA systems to maintain a headroom of free pages on the fast
tier; and (c) a reactive page promotion mechanism that efficiently identifies hot pages trapped in
the slow memory tier and promote them to the fast memory tier to improve performance. It also
introduces support for page type-aware allocation across the memory tiers.

Our designed software systems together can provide near-memory performance for most
memory-intensive applications even when 75% and sometimes more of their working sets reside
in remote memory in an application- and hardware-transparent manner, in the presence of failures,
load imbalance, and multiple tenants. We believe, our solutions can play a vital role towards the
widespread adaptation of memory disaggregation.

1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we analyze the data path la-
tency overheads for disaggregated memory systems and present Leap to provide sub-microsecond
remote memory access. In Chapter 3, we discuss the performance vs efficiency tradeoff while
providing resilience and present Hydra – an erasure-coded drop-in resilience mechanism for disag-
gregated memory. In Chapter 4, we discuss the deployability challenge of memory disaggregation
frameworks in public clouds and present Memtrade as a solution to this issue. Chapter 5 discusses
TPP – a memory temperature-aware page placement mechanism for heterogeneous tiered-memory
systems. We finally conclude the dissertation and discuss future work in Chapter 6.
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CHAPTER 2

Effectively Prefetching Remote Memory with Leap

2.1 Introduction

Modern data-intensive applications [84, 56, 161, 162] experience significant performance loss
when their complete working sets do not fit into the main memory. At the same time, despite signif-
icant and disproportionate memory underutilization in large clusters [319, 264], memory cannot be
accessed beyond machine boundaries. Such unused, stranded memory can be leveraged by form-
ing a cluster-wide logical memory pool via memory disaggregation, improving application-level
performance and overall cluster resource utilization [215, 93, 203].

Two broad avenues have emerged in recent years to expose remote memory to memory-
intensive applications. The first requires redesigning applications from the ground up using RDMA
primitives [178, 142, 250, 265, 317, 218, 107]. Despite its efficiency, rewriting applications can
be cumbersome and may not even be possible for many applications [92]. Alternatives rely on
well-known abstractions to expose remote memory; e.g., distributed virtual file system (VFS) for
remote file access [92] and distributed virtual memory management (VMM) for remote memory

paging [165, 157, 211, 275, 203].
Because disaggregated remote memory is slower, keeping hot pages in the faster local mem-

ory ensures better performance. Colder pages are moved to the far/remote memory as needed
[88, 203, 165]. Subsequent accesses to those cold pages go through a slow data path inside the ker-
nel – for instance, our measurements show that an average 4KB remote page access takes close to
40 µs in state-of-the-art memory disaggregation systems like Infiniswap. Such high access latency
significantly affects performance because memory-intensive applications can tolerate at most sin-
gle µs latency [157, 203]. Note that the latency of existing systems is many times more than the 4.3
µs average latency of a 4KB RDMA operation, which itself can be too high for some applications.

In this paper, we take the following position: an ideal solution should minimize remote memory

accesses in its critical path as much as possible. In this case, a local page cache can reduce the
total number of remote memory accesses – a cache hit results in a sub-µs latency, comparable to
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that of a local page access. An effective prefetcher can proactively bring in correct pages into the
cache and increase the cache hit rate.

Unfortunately, existing prefetching algorithms fall short for several reasons. First, they are de-
signed to reduce disk access latency by prefetching sequential disk pages in large batches. Second,
they cannot distinguish accesses from different applications. Finally, they cannot quickly adapt to
temporal changes in page access patterns within the same process. As a result, being optimistic,
they pollute the cache with unnecessary pages. At the same time, due to their rigid pattern detection
technique, they often fail to prefetch the required pages into the cache before they are accessed.

In this study, we propose Leap, an online prefetching solution that minimizes the total number
of remote memory accesses in the critical path. Unlike existing prefetching algorithms that rely
on strict pattern detection, Leap relies on approximation. Specifically, it builds on the Boyer-
Moore majority vote algorithm [219] to efficiently identify remote memory access patterns for
each individual process. Relying on an approximate mechanism instead of looking for trends in
strictly consecutive accesses makes Leap resilient to short-term irregularities in access patterns
(e.g., due to multi-threading). It also allows Leap to perform well by detecting trends only from
remote page accesses instead of tracing the full virtual memory footprint of an application, which
demands continuous scanning and logging of the hardware access bits of the whole virtual address
space and results in high CPU and memory overhead. In addition to identifying the majority
access pattern, Leap determines how many pages to prefetch following that pattern to minimize
cache pollution.

While reducing cache pollution and increasing the cache hit rate, Leap also ensures that the host
machine faces minimal memory pressure due to the prefetched pages. To move pages from local to
remote memory, the kernel needs to scan through the entire memory address-space to find eviction
candidates – the more pages it has, the more time it takes to scan. This increases the memory
allocation time for new pages. Therefore, alongside a background LRU-based asynchronous page
eviction policy, Leap eagerly frees up a prefetched cache just after it gets hit and reduces page
allocation wait time.

We complement our algorithm with an efficient data path design for remote memory accesses
that is used in case of a cache miss. It isolates per-application remote traffic and cuts inessentials
in the end-host software stack (e.g., the block layer) to reduce host-side latency and handle a cache
miss with latency close to that of the underlying RDMA operations.

Contribution Overall, we make the following contributions:

• We analyze the data path latency overheads for disaggregated memory systems and find
that existing data path components can not consistently support single µs 4KB page access
latency (§4.2).
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Figure 2.1: High-level life cycle of page requests in Linux data path along with the average time
spent in each stage.

• We propose Leap, a novel online prefetching algorithm (§2.3) and an eager prefetch cache
eviction policy along with a leaner data path, to improve remote I/O latency.

• We implement Leap on Linux Kernel 4.4.125 as a separate data path for remote memory
access (§3.4). Applications can choose either Linux’s default data path for traditional usage
or Leap for going beyond the machine’s boundary using unmodified Linux ABIs.

• We evaluate Leap’s effectiveness for different memory disaggregation frameworks. Leap’s
faster data path and effective cache management improve the median and tail 4KB page
access latency by up to 104.04× and 22.62× for micro-benchmarks (§2.5.1) and by 1.27–
10.16× for real-world memory-intensive applications with production workloads (§2.5.3).

• We evaluate Leap’s prefetcher against practical real-time prefetching techniques (Next-K
Line, Stride, Linux Read-ahead) and show that simply replacing the default Linux prefetcher
with Leap’s prefetcher can provide application-level performance benefit (1.1–3.36× better)
even when they are paging to slower storage (e.g., HDD, SSD) (§2.5.2).
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2.2 Background and Motivation

2.2.1 Remote Memory

Memory disaggregation systems logically expose unused cluster memory as a global memory pool
that is used as the slower memory for machines with extreme memory demand. This improves the
performance of memory-intensive applications that have to frequently access slower memory in
memory-constrained settings. At the same time, the overall cluster memory usage gets balanced
across the machines, decreasing the need for memory over-provisioning per machine.

Access to remote memory over RDMA without significant application rewrites typically relies
on two primary mechanisms: disaggregated VFS [92], that exposes remote memory as files and
disaggregated VMM for remote memory paging [165, 275, 203]. In both cases, data is commu-
nicated in small chunks or pages. In case of remote memory as files, pages go through the file
system before they are written to/read from the remote memory. For remote memory paging and
distributed OS, page faults cause the virtual memory manager to write pages to and read them from
the remote memory.

2.2.2 Remote Memory Data Path

State-of-the-art memory disaggregation frameworks depend on the existing kernel data path that is
optimized for slow disks. Figure 2.1 depicts the major stages in the life cycle of a page request.
Due to slow disk access times – average latencies for HDDs and SSDs range between 4–5 ms and
80–160 µs, respectively – frequent disk accesses have a severe impact on application throughput
and latency. Although the recent rise of memory disaggregation is fueled by the hope that RDMA
can consistently provide single µs 4KB page access latency [93, 165, 157], this is often a wishful
thinking in practice [322]. Blocking on a page access – be it from HDD, SSD, or remote memory
– is often unacceptable.

To avoid blocking on I/O, race conditions, and synchronization issues (e.g., accessing a page
while the page out process is still in progress), the kernel uses a page cache. To access a page
from slower memory, it is first looked up in the appropriate cache location; a hit results in almost
memory-speed page access latency. However, when the page is not found in the cache (i.e., a miss),
it is accessed through a costly block device I/O operation that includes several queuing and batch-
ing stages to optimize disk throughput by merging multiple contiguous smaller disk I/O requests
into a single large request. On average, these batching and queuing operations cost around 34 µs
and over a few milliseconds at the tail. As a result, a cache miss leads to more than 100× slower
latency than a hit; it also introduces high latency variations. For microsecond-latency RDMA
environments, this unnecessary wait-time has a severe impact on application performance.
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Figure 2.2: Data path latencies for two access patterns. Memory disaggregation systems have some
constant implementation overheads that cap their minimum latency to around 1 µs.

2.2.3 Prefetching in Linux

Linux tries to store files on the disk in adjacent sectors to increase sequential disk accesses. The
same happens for paging. Naturally, existing prefetching mechanisms are designed assuming a
sequential data layout. The default Linux prefetcher relies on the last two page faults: if they are for
consecutive pages, it brings in several sequential pages into the page cache; otherwise, it assumes
that there are no patterns and reduces or stops prefetching. This has several drawbacks. First,
whenever it observes two consecutive paging requests for consecutive pages, it over-optimistically
brings in pages that may not even be useful. As a result, it wastes I/O bandwidth and causes cache

pollution by occupying valuable cache space. Second, simply assuming the absence of any pattern
based on the last two requests is over-pessimistic. Furthermore, all the applications share the same
swap space in Linux; hence, pages from two different processes can share consecutive places in
the swap area. An application can also have multiple, inter-leaved stride patterns – for example,
due to multiple concurrent threads. Overall, considering only the last two requests to prefetch a
batch of pages falter on both respects.

To illustrate this, we measure the page access latency for two memory access patterns: (a)
Sequential accesses memory pages sequentially, and (b) Stride-10 accesses memory in strides
of 10 pages. In both cases, we use a simple application with its working set size set to 2GB. For
disaggregated VMM, it is provided 1GB memory to ensure that 50% of its access cause paging. For
disaggregated VFS, it performs 1GB remote write and then another 1GB remote read operations.

Figure 2.2 shows the latency distributions for 4KB page accesses from disk and disaggregated
remote memory for both of the access patterns. For a prefetch size of 8 pages, both perform
well for the Sequential pattern; this is because 80% of the requests hit the cache. In contrast,

14



0
0.2
0.4
0.6
0.8

1

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Window-2 Window-4 Window-8 Window-8
Strict Pattern Majority-based

Pattern

%
 o

f P
at

te
rn

s

Sequential Stride Other

Figure 2.3: Fractions of sequential, stride, and other access patterns in page fault sequences of
length X (Window-X).

we observe significantly higher latency in the Stride-10 case because all the requests miss the
page cache due to the lack of consecutiveness in successive page accesses. By analyzing the
latency breakdown inside the data path for Stride-10 (as shown in Figure 2.1), we make two key
observations. First, although RDMA can provide significantly lower latency than disk (4.3µs vs.
91.5µs), RDMA-based solutions do not benefit as much from that (38.3µs vs. 125.5µs). This is
because of the significant data path overhead (on average 34µs) to prepare and batch a request
before dispatching it. Significant variations in the preparation and batching stages of the data path
cause the average to stray far from the median. Second, the existing sequential data layout-based
prefetching mechanism fails to serve the purpose in the presence of diverse remote page access
patterns. Solutions based on fixed stride sizes also fall short because stride sizes can vary over
time within the same application. Besides, there can be more complicated patterns beyond stride
or no repetitions at all.

Shortcoming of Strict Pattern Finding for Prefetching Figure 2.3 presents the remote page
access patterns of four memory-intensive applications during page faults when they are run with
50% of their working sets in memory (more details in Section 2.5.3). Here, we consider all page
fault sequences within a window of size X ∈ {2, 4, 8} in these applications. Therefore, we divide
the page fault scenarios into three categories: sequential when all pages within the window of X
are sequential pages, stride when the pages within the window of X have the same stride from the
first page, and other when it is neither sequential nor stride.

The default prefetcher in Linux finds strict sequential patterns in window size X = 2 and tunes
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Figure 2.4: Due to Linux’s lazy cache eviction policy, page caches waste the cache area for signif-
icant amount of time.

up its aggressiveness accordingly. For example, page faults in PowerGraph and VoltDB follow
67% and 27% sequential pattern within window size X = 2, respectively. Consequently, for these
two applications, Linux optimistically prefetches many pages into the cache. However, if we look
at the X = 8 case, the percentage of sequential pages within consecutive page faults goes down
to 53% and 7% for PowerGraph and VoltDB, respectively. Meaning, for these two applications,
14–20% of the prefetched pages are not consumed immediately. This creates unnecessary memory
pressure and might even lead to cache pollution. At the same time, all non-sequential patterns in the
X = 2 case fall under the stride category. Considering the low cache hit rate, Linux pessimistically
decreases/stops prefetching in those cases, which leads to a stale page cache.

Note that strictly expecting all X accesses to follow the same pattern results in not having
any patterns at all (e.g., when X = 8), because this cannot capture the transient interruptions in
sequence. In that case, following the major sequential and/or stride trend within a limited page
access history window is more resilient to short-term irregularities. Consecutively, when X = 8, a
majority-based pattern detection can detect 11.3%–29.7% more sequential accesses. Therefore, it
can successfully prefetch more accurate pages into the page cache. Besides sequential and stride
access patterns, it is also transparent to irregular access patterns; e.g., for Memcached, it can detect
96.4% of the irregularity.

Prefetch Cache Eviction Linux kernel maintains an asynchronous background thread
(kswapd) to monitor the machine’s memory consumption. If the overall memory consumption
goes beyond a critical memory pressure or a process’s memory usage hits its limit, it determines
the eviction candidates by scanning over the in-memory pages to find out the least-recently-used
(LRU) ones. Then, it frees up the selected pages from the main memory to allocate new pages. A
prefetched cache waits into the LRU list for its turn to get selected for eviction even though it has
already been used by a process (Figure 2.4). Unnecessary pages waiting for eviction in-memory
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Low Computational
Complexity

Low Memory
Overhead

Unmodified
Application

HW/SW
Independent

Temporal
Locality

Spatial
Locality

High Prefetch
Utilization

Next-N-Line [232] ✓ ✓ ✓ ✓ X ✓ X
Stride [106] ✓ ✓ ✓ ✓ X ✓ X
GHB PC [240] X X ✓ X ✓ ✓ ✓

Instruction Prefetch [152, 194] X X X X ✓ ✓ ✓

Linux Read-Ahead [302] ✓ ✓ ✓ ✓ ✓ ✓ X
Leap Prefetcher ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2.1: Comparison of prefetching techniques based on different objectives.

leads to extra scanning time. This extra wait-time due to lazy cache eviction policy adds to the
overall latency, especially in a high memory pressure scenario.

2.3 Remote Memory Prefetching

In this section, we first highlight the characteristics of an ideal prefetcher. Next, we present our
proposed online prefetcher along with its different components and the design principles behind
them. Finally, we discuss the complexity and correctness of our algorithm.

2.3.1 Properties of an Ideal Prefetcher

A prefetcher’s effectiveness is measured along three axes:

• Accuracy is the ratio of total cache hits and total pages added to the cache via prefetching.

• Coverage measures the ratio of the total cache hit from the prefetched pages and the total
number of requests (e.g., page faults in case of remote memory paging solutions).

• Timeliness of an accurately prefetched page is the time gap from when it was prefetched to
when it was first hit.

Trade-off An aggressive prefetcher can hide the slower memory access latency by bringing
pages well ahead of the access requests. This might increase the accuracy, but as prefetched pages
wait longer to get consumed, this wastes the effective cache and I/O bandwidth. On the other hand,
a conservative prefetcher has lower prefetch consumption time and reduces cache and bandwidth
contention. However, it has lower coverage and cannot hide memory access latency completely.
An effective prefetcher must balance all three.

An effective prefetcher must be adaptive to temporal changes in memory access patterns as
well. When there is a predictable access pattern, it should bring pages aggressively. In contrast,
during irregular accesses, the prefetch rate should be throttled down to avoid cache pollution.
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Prefetching algorithms use prior page access information to predict future access patterns. As
such, their effectiveness largely depends on how well they can detect patterns and predict. A real-
time prefetcher has to face a trade-off between pattern identification accuracy vs. computational
complexity and resource overhead. High CPU usage and memory consumption will negatively
impact application performance even though they may help in increasing accuracy.

Common Prefetching Techniques The most common and simple form of prefetching is spatial
pattern detection [227]. Some specific access patterns (i.e., stride, stream, etc.) can be detected
with the help of special hardware (HW) features [173, 177, 279, 330]. However, they are typically
applied to identify patterns in instruction access that are more regular; in contrast, data access pat-
terns are more irregular. Special prefetch instructions can also be injected into an application’s
source code, based on compiler or post-execution based analysis [253, 188, 256, 152, 194]. How-
ever, compiler-injected prefetching needs a static analysis of the cache miss behavior before the
application runs. Hence, they are not adaptive to dynamic cache behavior. Finally, HW- or soft-
ware (SW)-dependent prefetching techniques are limited to the availability of the special HW/SW
features and/or application modification.

Summary An ideal prefetcher should have low computational and memory overhead. It should
have high accuracy, coverage, and timeliness to reduce cache pollution; an adaptive prefetch win-
dow is imperative to fulfill this requirement. It should also be flexible to both spatial and temporal
locality in memory accesses. Finally, HW/SW independence and application transparency make it
more generic and robust.

Table 2.1 compares different prefetching methods.

2.3.2 Majority Trend-Based Prefetching

Leap has two main components: detecting trends and determining what to prefetch. The first
component looks for any approximate trend in earlier accesses. Based on the trend availability and
prefetch utilization information, the latter decides how many and which pages to prefetch.

2.3.2.1 Trend Detection

Existing prefetch solutions rely on strict pattern identification mechanisms (e.g., sequential or
stride of fixed size) and fail to ignore temporary irregularities. Instead, we consider a relaxed
approach that is robust to short-term irregularities. Specifically, we identify the majority ∆ values
in a fixed-size (Hsize) window of remote page accesses (ACCESSHISTORY) and ignore the rest.
For a window of size w, a ∆ value is said to be the major only if it appears at least ⌊w/2⌋ + 1
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Algorithm 1 Trend Detection
1: procedure FINDTREND(Nsplit)
2: Hsize ← SIZE(AccessHistory)
3: w ← Hsize/Nsplit ▷ Start with small detection window
4: ∆maj ← ∅
5: while true do
6: ∆maj ← Boyer-Moore on {Hhead, . . . , Hhead−w−1}
7: w ← w ∗ 2
8: if ∆maj ̸= major trend then
9: ∆maj ← ∅

10: if ∆maj ̸= ∅ or w >Hsize then
11: return ∆maj

12: return ∆maj

times within that window. To find the majority ∆, we use the Boyer-Moore majority vote algo-
rithm [219] (Algorithm 1), a linear-time and constant-memory algorithm, over ACCESSHISTORY

elements. Given a majority ∆, due to the temporal nature of remote page access events, it can be
hypothesized that subsequent ∆ values are more likely to be the same as the majority ∆.

Note that if two pages are accessed together, they will be aged and evicted together in the slower
memory space at contiguous or nearby addresses. Consequently, the temporal locality in virtual
memory accesses will also be observed in the slower page accesses and an approximate stride
should be enough to detect that.

Window Management If a memory access sequence follows a regular trend, then the majority
∆ is likely to be found in almost any part of that sequence. In that case, a smaller window
can be more effective as it reduces the total number of operations. So instead of considering
the entire ACCESSHISTORY, we start with a smaller window that starts from the head position
(Hhead) of ACCESSHISTORY. For a window of size w, we find the major ∆ appearing in the
Hhead, Hhead−1, ..., Hhead−w−1 elements.

However, in the presence of short-term irregularities, small windows may not detect a majority.
To address this, the prefetcher starts with a small detection window and doubles the window size
up to ACCESSHISTORY size until it finds a majority; otherwise, it determines the absence of a
majority. The smallest window size can be controlled by Nsplit.

Example Let us consider a ACCESSHISTORY with Hsize = 8 and Nsplit = 2. Say pages with
the following addresses: 0x48, 0x45, 0x42, 0x3F, 0x3C, 0x02, 0x04, 0x06, 0x08, 0x0A,
0x0C, 0x10, 0x39, 0x12, 0x14, 0x16, were requested in that order. Figure 2.5 shows the
corresponding ∆ values stored in ACCESSHISTORY, with t0 being the earliest and t15 being the
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(b) at time t7
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Figure 2.5: Content of ACCESSHISTORY at different time. Solid colored boxes indicate the head
position at time ti. Dashed boxes indicate detection windows. Here, time rolls over at t8.

latest request. At ti, Hhead stays at the ti-th slot.
FINDTREND in Algorithm 1 will initially try to detect a trend using a window size of 4. Upon

failure, it will look for a trend first within a window size of 8.
At time t3, FINDTREND successfully finds a trend of -3 within the t0–t3 window (Figure 2.5a).
At time t7, the trend starts to shift from -3 to +2. At that time, t4–t7 window does not have a

majority ∆, which doubles the window to consider t0–t7. This window does not have any majority
∆ either (Figure 2.5b). However, at t8, a majority ∆ of +2 within t5–t8 will be adopted as the new
trend (Figure 2.5c).

Similarly, at t15, we have a majority of +2 in the t8–t15, which will continue to the +2 trend
found at t8 while ignoring the short-term variations at t12 and t13 (Figure 2.5d).

2.3.2.2 Prefetch Candidate Generation

So far we have focused on identifying the presence of a trend. Algorithm 2 determines whether
and how to use that trend for prefetching for a request for page Pt.
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Algorithm 2 Prefetch Candidate Generation
1: procedure GETPREFETCHWINDOWSIZE(page Pt)
2: PWsizet ▷ Current prefetch window size
3: PWsizet−1 ▷ Last prefetch window size
4: Chit ▷ Prefetched cache hits after last prefetch
5: if Chit = 0 then
6: if Pt follows the current trend then
7: PWsizet ← 1 ▷ Prefetch a page along trend
8: else
9: PWsizet ← 0 ▷ Suspend prefetching

10: else ▷ Earlier prefetches had hits
11: PWsizet ← Round up Chit + 1 to closest power of 2
12: PWsizet ←min(PWsizet , PWsizemax)
13: if PWsizet <PWsizet−1/2 then ▷ Low cache hit
14: PWsizet ← PWsizet−1/2 ▷ Shrink window smoothly

15: Chits ← 0
16: PWsizet−1 ← PWsizet

17: return PWsizet

18: procedure DOPREFETCH(page Pt)
19: PWsizet ← GETPREFETCHWINDOWSIZE(Pt)
20: if PWsizet ̸= 0 then
21: ∆maj ← FINDTREND(N split)
22: if ∆maj ̸= ∅ then
23: Read PWsizet pages with ∆maj stride from Pt

24: else
25: Read PWsizet pages around Pt with latest ∆maj

26: else
27: Read only page Pt

We determine the prefetch window size (PWsizet) based on the accuracy of prefetches be-
tween two consecutive prefetch requests (see GETPREFETCHWINDOWSIZE). Any cache hit of
the prefetched data between two consecutive prefetch requests indicates the overall effectiveness
of the prefetch. In case of high effectiveness (i.e., a high cache hit), PWsizet is expanded until
it reaches maximum size (PWsizemax). On the other hand, low cache hit indicates low effective-
ness; in that case, the prefetch window size gets reduced. However, in the presence of drastic
drops, prefetching is not suspended immediately. The prefetch window is shrunk smoothly to
make the algorithm flexible to short-term irregularities. When prefetching is suspended, no ex-
tra pages are prefetched until a new trend is detected. This is to avoid cache pollution during
irregular/unpredictable accesses.
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Given a non-zero PWsize, the prefetcher brings in PWsize pages following the current trend, if
any (DOPREFETCH). If no majority trend exists, instead of giving up right away, it speculatively
brings PWsize pages around Pt’s offset following the previous trend. This is to ensure that short-
term irregularities cannot completely suspend prefetching.

Prefetching in the Presence of Irregularity FINDTREND can detect a trend within a window
of size w in the presence of at most ⌊w/2⌋ − 1 irregularities within it. If the window size is too
small or the window has multiple perfectly interleaved threads with different strides, FINDTREND

will consider it a random pattern. In that case, if the PWsize has a non-zero value then it performs
a speculative prefetch (line 25) with the previous ∆maj . If that ∆maj is one of the interleaved
strides, then this speculation will cause cache hit and continue. Otherwise, PWsize will eventually
be zero and the prefetcher will stop bringing unnecessary pages. In that case, the prefetcher cannot
be worse than the existing prefetch algorithms.

Prefetching During Constrained Bandwidth In Leap, faulted page read and prefetch are done
asynchronously. Here, prefetching has a lower priority. In extreme bandwidth constraints,
prefetched pages arrive late and result in fewer cache hits. This will eventually shrink down
PWsize. Thus, dynamic prefetch window sizing helps in bandwidth-constrained scenarios.

Effect of Huge Page Linux kernel splits a huge page into 4KB pages before swapping. When
transparent huge page is enabled, Leap will be applied on these splitted 4KB pages.

Using huge pages will result in high amplification for dirty data [112]. Besides, average RDMA
latencies for 4KB vs 2MB page are 3µs vs 330µs. If huge pages were never split, to maintain single
µs latency for 2MB pages, we need a significantly larger prefetch window size (PWsize ≥ 128),
demanding more bandwidth and cache space, and making mispredictions more expensive.

2.3.3 Analysis

Time Complexity The FINDTREND function in Algorithm 1 initially tries to detect trend ag-
gressively within a smaller window using the Boyer-Moor Majority Voting algorithm. If it fails,
then it expands the window size. The Boyer-Moor Majority Voting algorithm (line 6) detects a
majority element (if any) in O(w) time, where w is the size of the window. In the worst case, it
will invoke the Boyer-Moor Majority Voting algorithm for O(logHsize) times. However, as the
windows are continuous, searching in a new window does not need to start from the beginning
and the algorithm never access the same item twice. Hence, the worst-case time complexity of
the FINDTREND function is O(Hsize), where Hsize is the size of the ACCESSHISTORY queue.
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Figure 2.6: Leap has a faster data path for a cache miss.

For smaller Hsize the computational complexity is constant. Even for Hsize = 32, the prefetcher
provides significant performance gain (§2.5) that outweighs the slight extra computational cost.

Memory Complexity The Boyer-Moor Majority Voting algorithm operates on constant memory
space. FINDTREND just invokes the Boyer-Moor Majority Voting algorithm and does not require
any additional memory to execute. So, the Trend Detection algorithm needs O(1) space to operate.

Correctness of Trend Detection The correctness of FINDTREND depends on that of the Boyer-
Moor Majority Voting algorithm, which always provides the majority element, if one exists, in
linear time (see [219] for the formal proof).

2.4 System Design

We have implemented our prefetching algorithm as a data path replacement for memory disaggre-
gation frameworks (we refer to this design as Leap data path) alongside the traditional data path
in Linux kernel v4.4.125. Leap has three primary components: a page access tracker to isolate
processes, a majority-based prefetching algorithm, and an eager cache eviction mechanism. All of
them work together in the kernel space to provide a faster data path. Figure 4.4 shows the basic
architecture of Leap’s remote memory access mechanism. It takes only around 400 lines of code
to implement the page access tracker, prefetcher, and the eager eviction mechanism.
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2.4.1 Page Access Tracker

Leap isolates each process’s page access data paths. The page access tracker monitors page ac-
cesses inside the kernel that enables the prefetcher to detect application-specific page access trends.
Leap does not monitor in-memory pages (hot pages) because continuously scanning and recording
the hardware access bits of a large number of pages causes significant computational overhead
and memory consumption. Instead, it monitors only the cache look-ups and records the access
sequence of the pages after I/O requests or page faults, trading off a small loss in access pattern
detection accuracy for low resource overhead. As temporal locality in the virtual memory space
results in a spatial locality in the remote address space, just monitoring the remote page accesses
is often enough.

The page access tracker is added as a separate control unit inside the kernel. Upon a
page fault, during the page-in operation (do swap page() under mm/memory.c), we notify
(log access history()) Leap’s page access tracker about the page fault and the process in-
volved. Leap maintains process-specific fixed-size (Hsize) FIFO ACCESSHISTORY circular queues
to record the page access history. Instead of recording exact page addresses, however, we only store
the difference between two consecutive requests (∆). For example, if page faults happen for ad-
dresses 0x2, 0x5, 0x4, 0x6, 0x1, 0x9, then ACCESSHISTORY will store the corresponding ∆

values: 0, +3, -1, +2, -5, +8. This reduces the storage space and computation overhead during
trend detection (§2.3.2.1).

2.4.2 The Prefetcher

To increase the probability of cache hit, Leap incorporates the majority trend-based prefetching al-
gorithm (§2.3.2). Here, the prefetcher considers each process’s earlier remote page access histories
available in the respective ACCESSHISTORY to efficiently identify the access behavior of differ-
ent processes. Because threads of the same process share memory with each other, we choose
process-level detection over thread-based. Thread-based pattern detection may result in requesting
the same page for prefetch multiple times for different threads.

Two consecutive page access requests are temporally correlated in the sense that they may
happen together in the future. The ∆ values stored in the ACCESSHISTORY records the spatial
locality in the temporally correlated page accesses. Therefore, the prefetcher utilizes both temporal
and spatial localities of page accesses to predict future page demand.

The prefetcher is added as a separate control unit inside the kernel. While
paging-in, instead of going through the default swapin readahead(), we re-route
it through the prefetcher’s do prefetch() function. Whenever the prefetcher gener-
ates the prefetch candidates, Leap bypasses the expensive request scheduling and batch-
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ing operations of the block layer (swap readpage()/swap writepage() for paging
and generic file read()/generic file write() for the file systems) and invokes
leap remote io request() to re-direct the request through Leap’s asynchronous remote
I/O interface over RDMA (§2.4.4).

2.4.3 Eager Cache Eviction

Leap maintains a circular linked list of prefetched caches (PREFETCHFIFOLRULIST). Whenever
a page is fetched from remote memory, besides the kernel’s global LRU lists, Leap adds it at
the tail of the linked list. After the prefetch cache gets hit and the page table is updated, Leap
marks the page as an eviction candidate. A separate background process continuously removes
eviction candidates from PREFETCHFIFOLRULIST and frees up those pages to the buddy list. As
an accurate prefetcher is timely in using the prefetched data, in Leap, prefetched caches do not
wait long to be freed up. For workloads where repeated access to paged-in data is not so common,
this eager eviction of prefetched pages reduces the wait time to find and allocate new pages - on
average, page allocation time is reduced by 750ns (36% less than the usual). Thus, new pages
can be brought to the memory more quickly leading to a reduction in the overall data path latency.
For workloads where paged-in data is repeatedly used, Leap considers the frequency of access for
prefetched pages and exempt them from eager eviction.

However, if the prefetched pages need to be evicted even before they get consumed (e.g., at se-
vere global memory pressure or extreme constrained prefetch cache size scenario), due to the lack
of any access history, prefetched pages will follow a FIFO eviction order among themselves from
the PREFETCHFIFOLRULIST. Reclamation of other memory (file-backed or anonymous page) fol-
lows the existing LRU-based eviction technique by kswapd in the kernel. We modify the kernel’s
Memory Management Unit (mm/swap state.c) to add the prefetch eviction related functions.

2.4.4 Remote I/O Interface

Similar to existing works [165, 92], Leap uses an agent in each host machine to expose a remote
I/O interface to the VFS/VMM over RDMA. The host machine’s agent communicates to another
remote agent with its resource demand and performs remote memory mapping. The whole remote
memory space is logically divided into fixed-size memory slabs. A host agent can map slabs
across one or more remote machine(s) according to its resource demand, load balancing, and fault
tolerance policies.

The host agent maintains a per CPU core RDMA connection to the remote agent. We use the
multi-queue IO queuing mechanism where each CPU core is configured with an individual RDMA
dispatch queue for staging remote read/write requests. Upon receiving a remote I/O request, the
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host generates/retrieves a slot identifier, extracts the remote memory address for the page within
that slab, and forwards the request to the RDMA dispatch queue to perform read/write over the
RDMA NIC. During the whole process, Leap completely bypasses block layer operations.

Resilience, Scalability, & Load Balancing One can use existing memory disaggregation frame-
works [165, 275, 92] with respective scalability and fault tolerance characteristics and still have the
performance benefits of Leap. We do not claim any innovation here. In our implementation, the
host agent leverages the power of two choices [233] to minimize memory imbalance across remote
machines. Remote in-memory replication is the default fault tolerance mechanism in Leap.

2.5 Evaluation

We evaluate Leap on a 56 Gbps InfiniBand cluster on CloudLab [25]. Our key results are as
follows:

• Leap provides a faster data path to remote memory. Latency for 4KB remote page accesses
improves by up to 104.04× (24.96×) at the median and 22.06× (17.32×) at the tail in case
of Disaggregated VMM (VFS) (§2.5.1).

• While paging to disk, our prefetcher outperforms its counterparts (Next-K, Stride, and Read-
Ahead) by up to 1.62× for cache pollution and up to 10.47× for cache miss. It improves
prefetch coverage by up to 37.51% (§2.5.2).

• Leap improves the end-to-end application completion times of PowerGraph, NumPy,
VoltDB, and Memcached by up to 9.84× and their throughput by up to 10.16× over ex-
isting memory disaggregation solutions (§2.5.3).

Methodology We integrate Leap inside the Linux kernel, both in its VMM and VFS data paths.
As a result, we evaluate its impact on three primary mediums.

• Local disks: Here, Linux swaps to a local HDD and SSD.

• Disaggregated VMM (D-VMM): To evaluate Leap’s benefit for disaggregated VMM system,
we integrate Leap with the latest commit of Infiniswap on GitHub [47].

• Disaggregated VFS (D-VFS): To evaluate Leap’s benefit for a disaggregated VFS system,
we add Leap to our implementation of Remote Regions [92], which is not open-source.
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For both of the memory disaggregation systems, we use respective load balancing and fault toler-
ance mechanisms. Unless otherwise specified, we use ACCESSHISTORY buffer size Hsize = 32,
and maximum prefetch window size PWsizemax = 8.

Each machine in our evaluation has 64 GB of DRAM and 2× Intel Xeon E5-2650v2 with 16
cores (32 hyperthreads).

2.5.1 Microbenchmark

We start by analyzing Leap’s latency characteristics with the two simple access patterns described
in Section 4.2.

During sequential access, due to prefetching, 80% of the total page requests hit the cache in the
default mechanism. On the other hand, during stride access, all prefetched pages brought in by the
Linux prefetcher are unused and every page access request experiences a cache miss.

Due to Leap’s faster data path, for Sequential, it improves the median by 4.07× and 99th

percentile by 5.48× for disaggregated VMM (Figure 2.7a). For Stride-10, as the prefetcher can
detect strides efficiently, Leap performs almost as good as it does during the sequential accesses.
As a result, in terms of 4KB page access latency, Leap improves disaggregated VMM by 104.04×
at the median and 22.06× at the tail (Figure 2.7b).

Leap provides similar performance benefits during memory disaggregation through the file ab-
straction as well. During sequential access, Leap improves 4KB page access latency by 1.99× at
the median and 3.42× at the 99th percentile. During stride access, the median and 99th percentile
latency improves by 24.96× and 17.32×, respectively.

Performance Benefit Breakdown For disaggregated VMM (VFS), the prefetcher improves the
99th percentile latency by 25.4% (23.1%) over the optimized data path where Leap’s eager cache
eviction contributes another 9.7% (8.5%) improvement.

As the idea of using far/remote memory for storing cold data is getting more popular these days
[88, 203, 165], throughout the rest of the evaluation, we focus only on remote paging through a
disaggregated VMM system.

2.5.2 Performance Benefit of the Prefetcher

Here, we focus on the effectiveness of the prefetcher itself. We use four real-world memory-
intensive applications and workload combinations (Figure 2.3) used in prior works[165, 92].

• TunkRank[2] on PowerGraph[161] to measure the influence of a Twitter user from the fol-
lower graph [199]. This workload has a significant amount of stride, sequential, and random
access patterns.
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Figure 2.7: Leap provides lower 4KB page access latency for both sequential and stride access
patterns.

• Matrix multiplication on NumPy[246] over matrices of floating points. This has mostly
sequential patterns.

• TPC-C benchmark[79] on VoltDB [84] to simulate an order-entry environment. We set 256
warehouses and 8 sites and run 2 million transactions. This has mostly random with a few
amount of sequential patterns.

• Facebook’s ETC workload[103] on Memcached[56]. We use 10 million SET operations to
populate the Memcached server. Then we perform another 10 million queries (5%SETs,
95%GETs). This has mostly random patterns.

The peak memory usage of these applications varies from 9–38.2 GB. To prompt remote paging,
we limit an application’s memory usage through cgroups [23]. To separate the benefit of the
prefetcher, we run all of the applications on disk (with existing block layer-based data path) with
50% memory limit.

2.5.2.1 Prefetch Utilization

We find Leap’s prefetcher’s benefit over following practical and realtime prefetching techniques:

• Next-N-Line Prefetcher [232] aggressively brings N pages sequentially mapped to the page
with the cache miss if they are not in the cache.
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PowerGraph NumPy VoltDB Memcached
Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap

Cache Add (millions) 4.88 3.88 3.85 3.01 10.75 10.52 10.61 10.08 6.50 6.23 5.91 5.20 4.65 4.14 4.06 3.25
Cache Miss (millions) 1.11 1.61 0.26 0.15 0.13 0.16 0.14 0.12 1.53 2.24 0.96 0.90 1.44 1.39 1.36 0.96
Completion Time (s) 683.92 885.86 462.54 263.90 1410.30 1380.10 1332.40 1240.60 2017.47 2454.72 2064.60 1799.84 382.54 374.60 366.91 302.43
Accuracy (%) 55.30 45.60 45.10 44.60 89.60 89.40 89.20 88.90 40.20 39.50 39.90 37.60 41.80 42.10 41.90 39.40
Coverage (%) 70.90 52.30 86.80 89.80 95.80 96.30 96.80 98.60 61.20 47.40 68.50 71.00 51.70 52.40 56.90 57.60
Timeliness (ms) - 95th Percentile 19.10 0.03 0.39 0.07 10.34 0.02 0.24 0.06 22125.14 34.32 64314.96 776.68 32417.89 466.64 46679.77 886.67

Table 2.2: Leap’s prefetcher reduces cache pollution and cache miss events. With higher coverage,
better timeliness and almost similar accuracy, the prefetcher outperforms its counterparts in terms
of application level performance. Here, shaded numbers indicate the best performances.

• Stride Prefetcher [106] brings pages following a stride pattern relative to the current page
upon a cache miss. The aggressiveness of this prefetcher depends on the accuracy of the past
prefetch.

• Linux Read-Ahead prefetches an aligned block of pages containing the faulted page [302].
Linux uses prefetch hit count and an access history of size 2 to control the aggressiveness of
the prefetcher.

Impact on the Cache As the volume of data fetched into the cache increases, the prefetch hit rate
increases as well. However, thrashing begins as soon as the working set exceeds the cache capacity.
As a result, useful demand-fetched pages are evicted. Table 2.2 shows that Leap’s prefetcher uses
fewer page caches (4.37–62.13%) than the other prefetchers for every workload.

A successful prefetcher reduces the number of cache misses by bringing the most accurate pages
into the cache. Leap’s prefetcher experiences fewer cache miss events (1.1–10.47×) and enhances
the effective usage of the cache space.

Application Performance Due to the improvement in cache pollution and reduction of cache
miss, using Leap’s prefetcher, all of the applications experience the lowest completion time. Based
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Figure 2.9: Leap provides lower completion times and higher throughput over Infiniswap’s default
data path for different memory limits. Note that lower is better for completion time, while higher
is better for throughput. Disk refers to HDD in this figure.

on the access pattern, Leap’s prefetcher improves the application completion time by 7.4–75.3%
over Linux’s default Read-Ahead prefetching technique (Table 2.2).

Effectiveness If a prefetcher brings every possible page in the page cache, then it will be 100%
accurate. However, in reality, one cannot have an infinite cache space due to large data volumes
and/or multiple applications running on the same machine. Besides, optimistically bringing pages
may create cache contention, which reduces the overall performance.

Leap’s prefetcher trades off cache pollution with comparatively lower accuracy. In comparison
to other prefetchers, it shows 0.3–10.8% lower accuracy (Table 2.2). This accuracy loss is linear
to the number of cache adds done by the prefetchers. Because the rest of the prefetchers bring in
too many pages, their chances of getting lucky hits increase too. Although Leap has the lowest
accuracy, its high coverage (0.7–37.5%) allows it to serve with accurate prefetches with a lower
cache pollution cost. At the same time, it has an improved timeliness over Read-Ahead (4–52.6×)
at the 95th percentile. Due to the higher coverage, better timeliness, and almost similar accuracy,
Leap’s prefetcher thus outperforms others in terms of application-level performance. Note that
despite having the best timeliness, Stride has the worst coverage and completion time that impedes
its overall performance.

2.5.2.2 Performance Benefit Breakdown

Figure 2.8a shows the performance benefit breakdown for each of the components of Leap’s data
path. For PowerGraph at 50% memory limit, due to data path optimizations, Leap provides with
single µs latency for 4KB page accesses up to the 95th percentile. Inclusion of the prefetcher
ensures sub-µs 4KB page access latency up to the 85th percentile and improves the 99th percentile
latency by 11.4% over Leap’s optimized data path. The eager eviction policy reduces the page
cache allocation time and improves the tail latency by another 22.2%.
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2.5.2.3 Performance Benefit for HDD and SSD

To observe the usefulness of the prefetcher for different slow storage systems, we incorporate it
into Linux’s default data path while paging to SSD. For PowerGraph, Leap’s prefetcher improves
the overall application run time by 1.45× (1.61×) for SSD (HDD) over Linux’s default prefetcher
(Figure 2.8b).

2.5.3 Leap’s Overall Impact on Applications

Finally, we evaluate the overall benefit of Leap (including all of its components) for the applications
mentioned in Section 2.5.2. We limit an application’s memory usage to fit 100%, 50%, 25% of its
peak memory usage. Here, we considered the extreme memory constrain (e.g., 25%) to validate
the applicability of Leap to recent resource (memory) disaggregation frameworks that operate on
a minimal amount of local memory [275].

PowerGraph PowerGraph suffers significantly for cache misses in Infiniswap (Figure 2.9a). In
contrast, Leap increases the cache hit rate by detecting 19.03% more remote page access patterns
over Read-Ahead. The faster the prefetch cache hit happens, the faster the eager cache eviction
mechanism frees up page caches and eventually helps in faster page allocations for a new prefetch.
Besides, due to more accurate prefetching, Leap reduces the wastage in both cache space and
RDMA bandwidth. This improves 4KB remote page access time by 8.17× and 2.19× at the 99th

percentile for 50% and 25% cases, respectively. Overall, the integration of Leap to Infiniswap
improves the completion time by 1.56× and 2.38× at 50% and 25% cases, respectively.

NumPy Leap can detect most of the remote page access patterns (10.4% better than Linux’s
default prefetcher). As a result, similar to PowerGraph, for NumPy, Leap improves the completion
time by 1.27× and 1.4× for Infiniswap at 50% and 25% memory limit, respectively (Figure 2.9b).
The 4KB page access time improves by 5.28× and 2.88× at the 99th percentile at 50% and 25%
cases, respectively.

VoltDB Latency-sensitive applications like VoltDB suffer significantly due to paging. During
paging, due to Linux’s slower data path, Infiniswap suffers 65.12% and 95.72% lower through-
put than local memory behavior at 50% and 25% cases, respectively. In contrast, Leap’s better
prefetching (11.6% better than Read-Ahead) and instant cache eviction improves the 4KB page
access time – 2.51× and 2.7× better 99th percentile at 50% and 25% cases, respectively. However,
while executing short random transactions, VoltDB has irregular page access patterns (69% of the
total remote page accesses). At that time, our prefetcher’s adaptive throttling helps the most by
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Figure 2.10: Leap has minimal performance drop for Infiniswap even in the presence of O(1) MB
cache size.

not congesting the RDMA. Overall, Leap faces smaller throughput loss (3.78% and 57.97% lower
than local memory behavior at 50% and 25% cases, respectively). Leap improves Infiniswap’s
throughput by 2.76× and 10.16× at 50% and 25% cases, respectively (Figure 2.9c).

Memcached This workload has a mostly random remote page access pattern. Leap’s prefetcher
can detect most of them and avoids prefetching in the presence of randomness. This results in
fewer remote requests and less cache pollution. As a result, Leap provides Memcached with
almost the local memory level behavior at 50% memory limit while the default data path of
Infiniswap faces 10.1% throughput loss (Figure 2.9d). At 25% memory limit, Leap deviates from
the local memory throughput behavior by only 1.7%. Here, the default data path of Infiniswap
faces 18.49% throughput loss. In this phase, Leap improves Infiniswap’s throughput by 1.11× and
1.21× at 50% and 25% memory limits, respectively. Here, Leap provides with 5.94× and 1.08×
better 99th percentile 4KB page access time at 50% and 25% cases, respectively.

Performance Under Constrained Cache Size To observe Leap’s performance benefit in the
presence of limited cache size, we run the four applications in 50% memory limit configuration at
different cache limits (Figure 2.10).

For Memcached, as most of the accesses are of random patterns, most of the performance
benefit comes from Leap’s faster slow path. For the rest of the applications, as the prefetcher has
better timeliness, most of the prefetched caches get used and evicted before the cache size hits the
limit. Hence, during O(1) MB cache size, all of these applications face minimal performance drop
(11.87–13.05%) compared to the unlimited cache space scenario. Note that, for NumPy, 3.2 MB
cache size is only 0.02% of its total remote memory usage.
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Figure 2.11: Leap improves application-level performance when all four applications access re-
mote memory concurrently.

Multiple Applications Running Together We run all four applications on a single host machine
simultaneously with their 50% memory limit and observe the performance benefit of Leap for
Infiniswap when multiple throughput- (PowerGraph, NumPy) and latency-sensitive applications
(VoltDB, Memcached) concurrently request for remote memory access (Figure 2.11). As Leap
isolates each application’s page access path, its prefetcher can consider individual access patterns
while making prefetch decisions. Therefore, it brings more accurate remote pages for each of the
applications and reduces the contention over the network. As a result, overall application-level per-
formance improves by 1.1–2.4× over Infiniswap. To enable aggregate performance comparison,
here, we present the end-to-end completion time of application-workload combinations defined
earlier; application-specific metrics improve as well.

2.6 Discussion and Future Work

Thread-specific Prefetching Linux kernels today manage memory address space at the process
level. Thread-specific page access tracking requires a significant change in the whole virtual mem-
ory subsystem. However, this would help efficiently identify multiple concurrent streams from
different threads. Low-overhead, thread-specific page access tracking and prefetching can be an
interesting research direction.

Concurrent Disk and Remote I/O Leap’s prefetcher can be used for both disaggregated and
existing Linux Kernels. Currently, Leap runs as a single memory management module on the host
server where paging is allowed through either existing block layers or Leap’s remote memory data
path. The current implementation does not allow the concurrent use of both block layer and remote
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memory. Exploring this direction can lead to further benefits for systems using Leap.

Optimized Remote I/O Interface In this work, we focused on augmenting existing memory
disaggregation frameworks with a leaner and efficient data path. This allowed us to keep Leap
transparent to the remote I/O interface. We believe that exploring the effects of load balancing,
fault-tolerance, data locality, and application-specific isolation in remote memory as well as an
optimized remote I/O interface are all potential future research directions.

2.7 Related Work

Remote Memory Solutions A large number of software systems have been proposed over the
years to access remote machine’s memory for paging [151, 223, 241, 120, 145, 211, 3, 270, 165,
275, 203], global virtual machine abstraction [150, 75, 198], and distributed data stores and file
systems [248, 142, 212, 197, 92]. Hardware-based remote access using PCIe interconnects [215]
or extended NUMA memory fabric [245] are also proposed to disaggregate memory. Leap is
complementary to these works.

Kernel Data Path Optimizations With the emergence of faster storage devices, several opti-
mization techniques, and design principles have been proposed to fully utilize faster hardware.
Considering the overhead of the block layer, different service level optimizations and system re-
designs have been proposed – examples include parallelism in batching and queuing mechanism
[110, 309], avoiding interrupts and context switching during I/O scheduling [313, 307, 117, 95],
better buffer cache management [175], etc. During remote memory access, optimization in data
path has been proposed through request batching [180, 288, 179], eliminating page migration bot-
tleneck [306], reducing remote I/O bandwidth through compression [203], and network-level block
devices [211]. Leap’s data path optimizations are inspired by many of them.

Prefetching Algorithms Many prefetching techniques exist to utilize hardware features [173,
177, 279, 330], compiler-injected instructions [253, 188, 256, 152, 194], and memory-side access
pattern [240, 283, 280, 148, 281] for cache line prefetching. They are often limited to specific
access patterns, application behavior, or require specified hardware design. More importantly, they
are designed for a lower level memory stack.

A large number of entirely kernel-based prefetching techniques have also been proposed to
hide the latency overhead of file accesses and page faults [184, 148, 164, 113, 302]. Among them,
Linux Read-Ahead [302] is the most widely used. However, it does not consider the access history
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to make prefetch decisions. It was also designed for hiding disk seek time. Therefore, its optimistic
looking around approach often results in lower cache utilization for remote memory access.

To the best of our knowledge, Leap is the first to consider a fully software-based, kernel-level
prefetching technique for DRAM with remote memory as a backing storage over fast RDMA-
capable networks.

2.8 Conclusion

The study presents Leap, a remote page prefetching algorithm that relies on majority-based pattern
detection instead of strict detection. As a result, Leap is resilient to short-term irregularities in page
access patterns of multi-threaded applications. We implement Leap in a leaner and faster data path
in the Linux kernel for remote memory access over RDMA without any application or hardware
modifications.

Our integrations of Leap with two major memory disaggregation systems (namely, Infiniswap
and Remote Regions) show that the median and tail remote page access latencies improves by up to
104.04× and 22.62×, respectively, over the state-of-the-art. This, in turn, leads to application-level
performance improvements of 1.27–10.16×. Finally, Leap’s benefits extend beyond disaggregated
memory – applying it to HDD and SSD leads to considerable performance benefits as well.

Leap is available at https://github.com/SymbioticLab/leap.
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CHAPTER 3

Hydra : Resilient and Highly Available Remote
Memory

3.1 Introduction

Modern datacenters are embracing a paradigm shift toward disaggregation, where each resource
is decoupled and connected through a high-speed network fabric [49, 35, 61, 275, 203, 134, 135,
215, 213, 44]. In such disaggregated datacenters, each server node is specialized for specific
purposes – some are specialized for computing, while others for memory, storage, and so on.
Memory, being the prime resource for high-performance services, is becoming an attractive target
for disaggregation [215, 93, 165, 92, 157, 203, 131, 265, 111].

Recent remote-memory frameworks allow an unmodified application to access remote memory
in an implicit manner via well-known abstractions such as distributed virtual file system (VFS) and
distributed virtual memory manager (VMM) [92, 165, 157, 224, 275, 203, 321]. With the advent of
RDMA, remote-memory solutions are now close to meeting the single-digit µs latency required to
support acceptable application-level performance [157, 203]. However, realizing remote memory
for heterogeneous workloads running in a large-scale cluster faces considerable challenges [93,
115] stemming from two root causes:

1. Expanded failure domains: As applications rely on memory across multiple machines in
a remote-memory cluster, they become susceptible to a wide variety of failure scenarios.
Potential failures include independent and correlated failures of remote machines, evictions
from and corruptions of remote memory, and network partitions.

2. Tail at scale: Applications also suffer from stragglers or late-arriving remote responses.
Stragglers can arise from many sources including latency variabilities in a large network due
to congestion and background traffic [139].
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While one leads to catastrophic failures and the other manifests as service-level objective (SLO)
violations, both are unacceptable in production [203, 235]. Existing solutions take three primary
approaches to address them: (i) local disk backup [165, 275], (ii) remote in-memory replication
[223, 153, 180, 142], and (iii) remote in-memory erasure coding [271, 259, 310, 119] and com-
pression [203]. Unfortunately, they suffer from some combinations of the following problems.

High latency: Disk backup has no additional memory overhead, but the access latency is in-
tolerably high under any correlated failures. Systems that take the third approach do not meet the
single-digit µs latency requirement of remote memory even when paired with RDMA (Figure 3.1).

High cost: Replication has low latency, but it doubles memory consumption and network
bandwidth requirements. Disk backup and replication represent the two extreme points in the
performance-vs-efficiency tradeoff space (Figure 3.1).

Low availability: All three approaches lose availability to low latency memory when even a
very small number of servers become unavailable. With the first approach, if a single server fails
its data needs to be reconstituted from disk, which is a slow process. In the second and third
approach, when even a small number of servers (e.g., three) fail simultaneously, some users will
lose access to data. This is due to the fact that replication and erasure coding assign replicas and
coding groups to random servers. Random data placement is susceptible to data loss when a small
number of servers fail at the same time [128, 127] (Figure 3.2).

In this study, we consider how to mitigate these problems and present Hydra, a low-latency, low-
overhead, and highly available resilience mechanism for remote memory. While erasure codes are
known for reducing storage overhead and for better load balancing, it is challenging for remote
memory with µs-scale access requirements (preferably, 3-5µs) [157]. We demonstrate how to
achieve resilient erasure-coded cluster memory with single-digit µs latency even under simultane-
ous failures at a reduced data amplification overhead.

We explore the challenges and tradeoffs for resilient remote memory without sacrificing
application-level performance or incurring high overhead in the presence of correlated failures
(§4.2). We also explore the trade-off between load balancing and high availability in the presence
of simultaneous server failures. Our solution, Hydra, is a configurable resilience mechanism that
applies online erasure coding to individual remote memory pages while maintaining high availabil-
ity (§3.3). Hydra’s carefully designed data path enables it to access remote memory pages within
a single-digit µs median and tail latency (§3.4). Furthermore, we develop CodingSets, a novel
coding group placement algorithm for erasure codes that provides load balancing while reducing
the probability of data loss under correlated failures (§3.5).

We develop Hydra as a drop-in resilience mechanism that can be applied to existing remote
memory frameworks [92, 165, 224, 275, 111]. We integrate Hydra with the two major remote
memory approaches widely embraced today: disaggregated VMM (used by Infiniswap [165], and
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Figure 3.1: Performance-vs-efficiency tradeoff in the resilient cluster memory design space. Here,
the Y-axis is in log scale.

Leap [224]) and disaggregated VFS (used by Remote Regions [92]) (§3.6). Our evaluation using
production workloads shows that Hydra achieves the best of both worlds (§5.6). Hydra closely
matches the performance of replication-based resilience with 1.6× lower memory overhead with
or without the presence of failures. At the same time, it improves latency and throughput of
the benchmark applications by up to 64.78× and 20.61×, respectively, over SSD backup-based
resilience with only 1.25× higher memory overhead. While providing resiliency, Hydra also im-
proves the application-level performance by up to 4.35× over its counterparts. CodingSets reduces
the probability of data loss under simultaneous server failures by about 10×. Hydra is available at
https://github.com/SymbioticLab/hydra.

Contributions In this study, we make the following contributions:

• Hydra is the first in-memory erasure coding scheme that achieves single-digit µs tail memory
access latency.

• Novel analysis of load balancing and availability trade-off for distributed erasure codes.

• CodingSets is a new data placement scheme that balances availability and load balancing,
while reducing probability of data loss by an order of magnitude during failures.
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3.2 Background and Motivation

3.2.1 Remote Memory

Remote memory exposes memory available in remote machines as a pool of memory shared by
many machines. It is often implemented logically by leveraging stranded memory in remote
machines via well-known abstractions, such as the file abstraction [92], remote memory paging
[165, 157, 211, 224, 111], and virtual memory management for distributed OS [275]. In the
past, specialized memory appliances for physical memory disaggregation were proposed as well
[215, 216].

All existing remote-memory solutions use the 4KB page granularity. While some applications
use huge pages for performance enhancement [201], the Linux kernel still performs paging at
the basic 4KB level by splitting individual huge pages because huge pages can result in high
amplification for dirty data tracking [112]. Existing remote-memory systems use disk backup
[165, 275] and in-memory replication [223, 153] to provide availability during failures.
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Figure 3.3: TPC-C throughput over time on VoltDB when 50% of the working set fits in memory.
Arrows point to uncertainty injection time.

3.2.2 Failures in Remote Memory

The probability of failure or temporary unavailability is higher in a large remote-memory cluster,
since memory is being accessed remotely. To illustrate possible performance penalties in the pres-
ence of such unpredictable events, we consider a resilience solution from the existing literature
[165], where each page is asynchronously backed up to a local SSD. We run TPC-C [79] on an
in-memory database system, VoltDB [84]. We set VoltDB’s available memory to 50% of its peak
memory to force remote paging for up to 50% of its working set.

1. Remote Failures and Evictions Machine failures are the norm in large-scale clusters where
thousands of machines crash over a year due to a variety of reasons, including software and hard-
ware failures [319, 136, 132, 154]. Concurrent failures within a rack or network segments are quite
common and typically occur dozens of times a year. Even cluster-wide power outage is not un-
common – occurs once or twice per year in a datacenter. For example, during a recent cluster-wide
power outage in Google Cloud, around 23% of the machines were unavailable for hours [40].

Without redundancy, applications relying on remote memory may fail when a remote machine
fails or remote memory pages are evicted. As disk operations are significantly slower than the
latency requirement of remote memory, disk-based fault-tolerance is far from being practical. In
the presence of a remote failure, VoltDB experiences almost 90% throughput loss (Figure 3.3a);
throughput recovery takes a long time after the failure happens.

2. Background Network Load Network load throughout a large cluster can experience signif-
icant fluctuations [182, 139], which can inflate RDMA latency and application-level stragglers,
causing unpredictable performance issues [323, 324]. In the presence of an induced bandwidth-
intensive background load, VoltDB throughput drops by about 50% (Figure 3.3b).

3. Request Bursts Applications can have bursty memory access patterns. Existing solutions
maintain an in-memory buffer to absorb temporary bursts [250, 92, 165]. However, as the buffer
ties remote access latency to disk latency when it is full, the buffer can become the bottleneck when
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a workload experiences a prolonged burst. While a page read from remote memory is still fast,
backup page writes to the local disk become the bottleneck after the 100th second in Figure 3.3c.
As a result, throughput drops by about 60%.

4. Memory Corruption During remote memory access, if any one of the remote servers expe-
riences a corruption, or if the memory gets corrupted over the network a memory corruption event
will occur. In such case, disk access causes failure-like performance loss (Figure 3.3d).

Performance vs. Efficiency Tradeoff for Resilience In all of these scenarios, the obvious al-
ternative – in-memory 2× or 3× replication [223, 153] – is effective in mitigating a small-scale
failure, such as the loss of a single server (Figure 3.3a). When an in-memory copy becomes un-
available, we can switch to an alternative. Unfortunately, replication incurs high memory overhead
in proportion to the number of replicas. This defeats the purpose of remote memory. Hedging
requests to avoid stragglers [139] in a replicated system doubles its bandwidth requirement.

This leads to an impasse: one has to either settle for high latency in the presence of a failure
or incur high memory overhead. Figure 3.1 depicts this performance-vs-efficiency tradeoff under
failures and memory usage overhead to provide resilience. Beyond the two extremes in the tradeoff
space, there are two primary alternatives to achieve high resilience with low overhead. The first
is replicating pages to remote memory after compressing them (e.g., using zswap) [203], which
improves the tradeoff in both dimensions. However, its latency can be more than 10µs when data
is in remote memory. Especially, during resource scarcity, the presence of a prolonged burst in
accessing remote compressed pages can even lead to orders of magnitude higher latency due to
the demand spike in both CPU and local DRAM consumption for decompression. Besides, this
approach faces similar issues as replication such as latency inflation due to stragglers.

The alternative is erasure coding, which has recently made its way from disk-based storage to
in-memory cluster caching to reduce storage overhead and improve load balancing [91, 118, 300,
119, 310, 259]. Typically, an object is divided into k data splits and encoded to create r equal-
sized parity splits (k > r), which are then distributed across (k + r) failure domains. Existing
erasure-coded memory solutions deal with large objects (e.g., larger than 1 MB [259]), where
hundreds-of-µs latency of the TCP/IP stack can be ignored. Simply replacing TCP with RDMA is
not enough either. For example, the EC-Cache with RDMA (Figure 3.1) provides a lower storage
overhead than compression but with a latency around 20µs.

Last but not least, all of these approaches experience high unavailability in the presence of
correlated failures [128].
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3.2.3 Challenges in Erasure-Coded Memory

High Latency Individually erasure coding 4 KB pages that are already small lead to even smaller
data chunks ( 4

k
KB), which contributes to the higher latency of erasure-coded remote memory over

RDMA due to following primary reasons:

1. Non-negligible coding overhead: When using erasure codes with on-disk data or over
slower networks that have hundreds-of-µs latency, its 0.7µs encoding and 1.5µs decoding
overheads can be ignored. However, they become non-negligible when dealing with DRAM
and RDMA.

2. Stragglers and errors: As erasure codes require k splits before the original data can be
constructed, any straggler can slow down a remote read. To detect and correct an error,
erasure codes require additional splits; an extra read adds another round-trip to double the
overall read latency.

3. Interruption overhead: Splitting data also increases the total number of RDMA operations
for each request. Any context switch in between can further add to the latency.

4. Data copy overhead: In a latency-sensitive system, additional data movement can limit the
lowest possible latency. During erasure coding, additional data copy into different buffers
for data and parity splits can quickly add up.

Availability Under Simultaneous Failures Existing erasure coding schemes can handle a small-
scale failure without interruptions. However, when a relatively modest number of servers fail or
become unavailable at the same time (e.g., due to a network partition or a correlated failure event),
they are highly susceptible to losing availability to some of the data.

This is due to the fact that existing erasure coding schemes generate coding groups on random
sets of servers [259]. In a coding scheme with k data and r parity splits, an individual coding
group, will fail to decode the data if r + 1 servers fail simultaneously. Now in a large cluster
with r + 1 failures, the probability that those r + 1 servers will fail for a specific coding group is
low. However, when coding groups are generated randomly (i.e., each one of them compromises
a random set of k + r servers), and there are a large number of coding groups per server, then
the probability that those r + 1 servers will affect any coding group in the cluster is much higher.
Therefore, state-of-the-art erasure coding schemes, such as EC-Cache, will experience a very high
probability of unavailability even when a very small number of servers fail simultaneously.
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3.3 Hydra Architecture

Hydra is an erasure-coded resilience mechanism for existing remote-memory techniques to pro-
vide better performance-efficiency tradeoff under remote failures while ensuring high availability
under simultaneous failures. It has two main components (Figure 3.4): (i) Resilience Manager
coordinates erasure-coded resilience operations during remote read/write; (ii) Resource Monitor
handles the memory management in a remote machine. Both can be present in every machine and
work together without central coordination.

3.3.1 Resilience Manager

Hydra Resilience Manager provides remote memory abstraction to a client machine. When an un-
modified application accesses remote memory through different state-of-the-art remote-memory
solutions (e.g., via VFS or VMM), the Resilience Manager transparently handles all aspects of
RDMA communication and erasure coding. Each client has its own Resilience Manager that
handles slab placement through CodingSets, maintains remote slab-address mapping, performs
erasure-coded RDMA read/write. Resilience Manager communicates to Resource Monitor(s) run-
ning on remote memory host machines, performs remote data placement, and ensures resilience.
As a client’s Resilience Manager is responsible for the resiliency of its remote data, the Resilience
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(k + r) memory slabs in remote machines; i.e., k for data and r for parity (here, k=2 and r=1).

Managers do not need to coordinate with each other.
Following the typical (k, r) erasure coding construction, the Resilience Manager divides its

remote address space into fixed-size address ranges. Each address range resides in (k + r) remote
slabs: k slabs for page data and r slabs for parity (Figure 3.5). Each of the (k + r) slabs of
an address range are distributed across (k + r) independent failure domains using CodingSets
(§3.5). Page accesses are directed to the designated (k+r) machines according to the address–slab
mapping. Although remote I/O happens at the page level, the Resilience Manager coordinates with
remote Resource Monitors to manage coarse-grained memory slabs to reduce metadata overhead
and connection management complexity.

3.3.2 Resource Monitor

Resource Monitor manages a machine’s local memory and exposes them to the remote Resilience
Manager in terms of fixed-size (SlabSize) memory slabs. Different slabs can belong to different
machines’ Resilience Manager. During each control period (ControlPeriod), the Resource Mon-
itor tracks the available memory in its local machine and proactively allocates (reclaims) slabs
to (from) remote mapping when memory usage is low (high). It also performs slab regeneration
during remote failures or corruptions.

Fragmentation in Remote Memory During the registration of Resource Monitor(s), Resilience
Manager registers the RDMA memory regions and allocates slabs on the remote machines based on
its memory demand. Memory regions are usually large (by default, 1GB) and the whole address
space is homogeneously splitted. Moreover, RDMA drivers guarantee the memory regions are
generated in a contiguous physical address space to ensure faster remote-memory access. Hydra
introduces no additional fragmentation in remote machines.
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3.3.3 Failure Model

Assumptions In a large remote-memory cluster, (a) remote servers may crash or networks may
become partitioned; (b) remote servers may experience memory corruption; (c) the network may
become congested due to background traffic; and (d) workloads may have bursty access patterns.
These events can lead to catastrophic application-failures, high tail latencies, or unpredictable per-
formance. Hydra addresses all of these uncertainties in its failure domain. Although Hydra with-
stands a remote-network partition, as there is no local-disk backup, it cannot handle local-network
failure. In such cases, the application is anyways inaccessible.

Single vs. Simultaneous Failure A single node failure means the unavailability of slabs in a
remote machine. In such an event, all the data or parity allocated on the slab(s) become unavailable.
As we spread the data and parity splits for a page across multiple remote machines (§3.5), during a
single node failure, we assume that only a single data or parity split for that page is being affected.

Simultaneous host failures typically occur due to large-scale failures, such as power or network
outage that cause multiple machines to become unreachable. In such a case, we assume multiple
data and/or parity splits for a page become unavailable. Note that in both cases, the data is unavail-
able, but not compromised. Resilience Manager can detect the unreachability and communicate to
other available Resource Monitor(s) on to regenerate specific slab(s).

3.4 Resilient Data Path

Hydra can operate on different resilient modes based on a client’s need – (a) Failure Recovery:
provides resiliency in the presence of any remote failure or eviction; (b) Corruption Detection:
only detects the presence of corruption in remote memory; (c) Corruption Correction: detects and
corrects remote memory corruption; and (d) EC-only mode: provides erasure-coded faster remote-
memory data path without any resiliency guarantee. Note that both of the corruption modes by
default inherit the Failure Recovery mode.

Before initiating the Resilience Manager, one needs to configure Hydra to a specific mode
according to the resilience requirements and memory overhead concerns (Table 3.1). Multiple
resilience modes cannot act simultaneously, and the modes do not switch dynamically during run-
time. In this section, we present Hydra’s data path design to address the resilience challenges
mentioned in §4.2.3.
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3.4.1 Hydra Remote Memory Data Path

To minimize erasure coding’s latency overheads, Resilience Manager’s data path incorporate fol-
lowing design principles.

3.4.1.1 Asynchronously Encoded Write

To hide the erasure coding latency, existing systems usually perform batch coding where multiple
pages are encoded together. The encoder waits until a certain number of pages are available.
This idle waiting time can be insignificant compared to disk or slow network (e.g., TCP) access.
However, to maintain the tail latency of a remote I/O within the single-digit µs range, this “batch
waiting” time needs to be avoided.

During a remote write, Resilience Manager applies erasure coding within each individual page
by dividing it into k splits (for a 4 KB page, each split size is 4

k
KB), encodes these splits using

Reed-Solomon (RS) codes [262] to generate r parity splits. Then, it writes these (k + r) splits to
different (k+ r) slabs that have already been mapped to unique remote machines. Each Resilience
Manager can have their own choice of k and r. This individual page-based coding decreases
latency by avoiding the “batch waiting” time. Moreover, the Resilience Manager does not have
to read unnecessary pages within the same batch during remote reads, which reduces bandwidth
overhead. Distributing remote I/O across many remote machines increases I/O parallelism too.

Resilience Manager sends the data splits first, then it encodes and sends the parity splits asyn-
chronously. Decoupling the two hides encoding latency and subsequent write latency for the pari-
ties without affecting the resilience guarantee. In the absence of failure, any k successful writes of
the (k + r) allow the page to be recovered. However, to ensure resilience guarantee for r failures,
all (k + r) must be written. In the failure recovery mode, a write is considered complete after all
(k + r) have been written. In the corruption correction (detection) mode, to correct (detect) ∆
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Resilience Mode
# of
Errors

Minimum
# of Splits

Memory
Overhead

Failure Recovery r k 1 + r
k

Corruption Detection ∆ k +∆ 1 + ∆
k

Corruption Correction ∆ k + 2∆+ 1 1 + 2∆+1
k

EC-only – k 1 + r
k

Table 3.1: Minimum number of splits needs to be written to/read from remote machines for re-
silience during a remote I/O.

corruptions, a write waits for k + 2∆ + 1 (k + ∆) to be written. If the acknowledgement fails
to reach the Resilience Manager due to a failure in the remote machine, the write for that split is
considered failed. Resilience Manager tries to write that specific split(s) after a timeout period to
another remote machine. Figure 3.6a depicts the timeline of a page write in the failure recovery

mode.

3.4.1.2 Late-Binding Resilient Read

During read, any k out of the k+r splits suffice to reconstruct a page. However, in failure recovery

mode, to be resilient in the presence of ∆ failures, during a remote read, Hydra Resilience Manager
reads from k+∆ randomly chosen splits in parallel. A page can be decoded as soon as any k splits
arrive out of k+∆. The additional ∆ reads mitigate the impact of stragglers on tail latency as well.
Figure 3.6b provides an example of a read operation in the failure recovery mode with k = 2 and
∆ = 1, where one of the data slabs (Data Slab 2) is a straggler. ∆ = 1 is often enough in practice.

If simply “detect and discard corrupted memory” is enough for any application, one can con-
figure Hydra with corruption detection mode and avoid the extra memory overhead of corruption

correction mode. In corruption detection mode, before decoding a page, the Resilience Manager
waits for k + ∆ splits to arrive to detect ∆ corruptions. After a certain amount of corruptions,
Resilience Manager marks the machine(s) with corrupted splits as probable erroneous machines,
initiates a background slab recovery operation, and avoids them during future remote I/O.

To correct the error, in corruption correction mode, when an error is detected, it requests addi-
tional ∆ + 1 reads from the rest of the k + r machines. Otherwise, the read completes just after
the arrival of the k+∆ splits. If the error rate for a remote machine exceeds a user-defined thresh-
old (ErrorCorrectionLimit), subsequent read requests involved with that machine initiates with
k + 2∆ + 1 split requests as there is a high probability to reach an erroneous machine. This will
reduce the wait time for additional ∆ + 1 reads. This continues until the error rate for the in-
volved machine gets lower than the ErrorCorrectionLimit. If this continues for long and/or the
error rate goes beyond another threshold (SlabRegenerationLimit), Resilience Manager initiates
a slab regeneration request for that machine.
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One can configure Hydra with EC-only mode to access erasure-coded remote memory and ben-
efit from the fast data path without any resiliency guarantee. In this mode, a remote I/O completes
just after writing/reading any k splits. Table 3.1 summarizes the minimum number of splits the
Resilience Manager requires to write/read during a remote I/O operation to provide resiliency in
different modes.

Overhead of Replication To remain operational after r failures, in-memory replication requires
at least r+1 copies of an entire 4 KB page, and hence the memory overhead is (r+1)×. However,
a remote I/O operation can complete just after the confirmation from one of the r + 1 machines.
To detect and fix ∆ corruptions, replication needs ∆ + 1 and 2∆ + 1 copies of the entire page,
respectively. Thus, to provide the correctness guarantee over ∆ corruptions, replication needs to
wait until it writes to or reads from at least 2∆ + 1 of the replicas along with a memory overhead
of (2∆ + 1)×.

3.4.1.3 Run-to-Completion

As Resilience Manager divides a 4 KB page into k smaller pieces, RDMA messages become
smaller. In fact, their network latency decrease to the point that run-to-completion becomes more
beneficial than a context switch. Hence, to avoid interruption-related overheads, the remote I/O
request thread waits until the RDMA operations are done.

3.4.1.4 In-Place Coding

To reduce the number of data copies, Hydra Resilience Manager uses in-place coding with an
extra buffer of r splits. During a write, the data splits are always kept in-page while the encoded r

parities are put into the buffer (Figure 3.7a). Likewise, during a read, the data splits arrive at the
page address, and the parity splits find their way into the buffer (Figure 3.7b).

In the failure recovery mode, a read can complete as soon as any k valid splits arrive. Cor-
rupted/straggler data split(s) can arrive late and overwrite valid page data. To address this, as soon
as Hydra detects the arrival of k valid splits, it deregisters relevant RDMA memory regions. It
then performs decoding and directly places the decoded data in the page destination. Because the
memory region has already been deregistered, any late data split cannot access the page. During all
remote I/O, requests are forwarded directly to RDMA dispatch queues without additional copying.

3.4.2 Handling Uncertainties

Remote Failure Hydra uses reliable connections (RC) for all RDMA communication. Hence,
we consider unreachability due to machine failures/reboots or network partition as the primary
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Figure 3.7: Hydra performs in-place coding with a buffer of r splits to reduce the data-copy latency.

cause of failure. When a remote machine becomes unreachable, the Resilience Manager is notified
by the RDMA connection manager. Upon disconnection, it processes all the in-flight requests
in order first. For ongoing I/O operations, it resends the I/O request to other available machines.
Since RDMA guarantees strict ordering, in the read-after-write case, read requests will arrive at the
same RDMA dispatch queue after write requests; hence, read requests will not be served with stale
data. Finally, Hydra marks the failed slabs and future requests are directed to the available ones.
If the Resource Monitor in the failed machine revives and communicates later, Hydra reconsiders
the machine for further remote I/O.

Adaptive Slab Allocation/Eviction Resource Monitor allocates memory slabs for Resilience
Managers as well as proactively frees/evicts them to avoid local performance impacts (Figure 3.8).
It periodically monitors local memory usage and maintains a headroom to provide enough memory
for local applications. When the amount of free memory shrinks below the headroom (Figure 3.8a),
the Resource Monitor first proactively frees/evicts slabs to ensure local applications are unaffected.
To find the eviction candidates, we avoid random selection as it has a higher likelihood of evicting
a busy slab. Rather, we uses the decentralized batch eviction algorithm [165] to select the least
active slabs. To evict E slabs, we contact (E + E ′) slabs (where E ′ ≤ E) and find the least-
frequently-accessed slabs among them. This doesn’t require to maintain a global knowledge or
search across all the slabs.

When the amount of free memory grows above the headroom (Figure 3.8b), the Resource Mon-
itor first attempts to make the local Resilience Manager to reclaim its pages from remote memory
and unmap corresponding remote slabs. Furthermore, it proactively allocates new, unmapped slabs
that can be readily mapped and used by remote Resilience Managers.

Background Slab Regeneration The Resource Monitor also regenerates unavailable slabs –
marked by the Resilience Manager – in the background. During regeneration, writes to the slab
are disabled to prevent overwriting new pages with stale ones; reads can still be served without
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interruption.
Hydra Resilience Manager uses the placement algorithm to find a new regeneration slab in a

remote Resource Monitor with a lower memory usage. It then hands over the task of slab regen-
eration to that Resource Monitor. The selected Resource Monitor decodes the unavailable slab
by directly reading the k randomly-selected remaining valid slab for that address region. Once
regeneration completes, it contacts the Resilience Manager to mark the slab as available. Requests
thereafter go to the regenerated slab.

3.5 CodingSets for High Availability

Hydra uses CodingSets, a novel coding group placement scheme to perform load-balancing while
reducing the probability of data loss. Prior works show orders-of-magnitude more frequent data
loss due to events causing multiple nodes to fail simultaneously than data loss due to independent
node failures [154, 127]. Several scenarios can cause multiple servers to fail or become unavailable
simultaneously, such as network partitions, partial power outages, and software bugs. For example,
a power outage can cause 0.5%-1% machines to fail or go offline concurrently [128]. In case of
Hydra, data loss will happen if a concurrent failure kills more than r+1 of (k+ r) machines for a
particular coding group.

We are inspired by copysets, a scheme for preventing data loss under correlated failures in
replication [128, 127], which constraints the number of replication groups, in order to reduce the

frequency of data loss events. Using the same terminology as prior work, we define each unique
set of (k + r) servers within a coding group as a copyset. The number of copysets in a single
coding group will be:

(
k+r
r+1

)
. For example, in an (8+2) configuration, where nodes are numbered

1, 2, . . . , 10, the 3 nodes that will cause failure if they fail at the same time (i.e., copysets) will
be every 3 combinations of 10 nodes: (1, 2, 3), (1, 2, 4), . . . , (8, 9, 10), and the total number of
copysets will be

(
10
3

)
= 120.

For a data loss event impacting exactly r + 1 random nodes simultaneously, the probability of

losing data of a single specific coding group: P[Group] = Num. of Copysets in Coding Group
Total Copysets = (k+r

r+1)
( N
r+1)

, where
N is the total number of servers.

In a cluster with more than (k + r) servers, we need to use more than one coding group.
However, if each server is a member of a single coding group, hot spots can occur if one or more
members of that group are overloaded. Therefore, for load-balancing purposes, a simple solution
is to allow each server to be a member of multiple coding groups, in case some members of a
particular coding group are over-loaded at the time of online coding.

Assuming we have G disjoint coding groups, and the correlated failure rate is f%, the total
probability of data loss is: 1 − (1 − P[Group] · G)(

N·f
r+1). We define disjoint coding groups where
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Figure 3.8: Resource Monitor proactively allocates memory for remote machines and frees local
memory pressure.

the groups do not share any copysets; or in other words, they do not overlap by more than r nodes.

Strawman: Multiple Coding Groups per Server In order to equalize load, we consider a
scheme where each slab forms a coding group with the least-loaded nodes in the cluster at coding
time. We assume the nodes that are least loaded at a given time are distributed randomly, and the
number of slabs per server is S. When S · (r + k)≪ N , the coding groups are highly likely to be

disjoint [128], and the number of groups is equal to: G =
N · S
k + r

.
We call this placement strategy the EC-Cache scheme, as it produces a random coding group

placement used by the prior state-of-the-art in-memory erasure coding system, EC-Cache [259]. In
this scheme, with even a modest number of slabs per server, a high number of combinations of r+1

machines will be a copyset. In other words, even a small number of simultaneous node failures
in the cluster will result in data loss. When the number of slabs per server is high, almost every
combination of only r + 1 failures across the cluster will cause data loss. Therefore, to reduce the
probability of data loss, we need to minimize the number of copysets, while achieving sufficient
load balancing.

CodingSets: Reducing Copysets for Erasure Coding To this end, we propose CodingSets, a
novel load-balancing scheme, which reduces the number of copysets for distributed erasure coding.
Instead of having each node participate in several coding groups like in EC-Cache, in our scheme,
each server belongs to a single, extended coding group. At time of coding, (k + r) slabs will still
be considered together, but the nodes participating in the coding group are chosen from a set of
(k+r+ l) nodes, where l is the load-balancing factor. The nodes chosen within the extended group
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are the least loaded ones. While extending the coding group increases the number of copysets
(instead of

(
k+r
r+1

)
copysets, now each extended coding group creates

(
k+r+l
r+1

)
copysets, while the

number of groups is G =
N

k + r + l
), it still has a significantly lower probability of data loss than

having each node belong to multiple coding groups. Hydra uses CodingSets as its load balancing
and slab placement policy. We evaluate it in Section 3.7.2.

Tradeoff Note that while CodingSets reduces the probability of data loss, it does not reduce the
expected amount of data lost over time. In other words, it reduces the number of data loss events,
but each one of these events will have a proportionally higher magnitude of data loss (i.e., more
slabs will be affected) [128]. Given that our goal with Hydra is high availability, we believe this is
a favorable trade off. For example, providers often provide an availability SLA, that is measured by
the service available time (e.g., the service is available 99.9999% of the time). CodingSets would
optimize for such an SLA, by minimizing the frequency of unavailability events.

3.6 Implementation

Resilience Manager is implemented as a loadable kernel module for Linux kernel 4.11 or later.
Kernel-level implementation facilitates its deployment as an underlying block device for different
remote-memory systems [92, 165, 275]. We integrated Hydra with two remote-memory systems:
Infiniswap, a disaggregated VMM and Remote Regions, a disaggregated VFS. All I/O operations
(e.g., slab mapping, memory registration, RDMA posting/polling, erasure coding) are independent
across threads and processed without synchronization. All RDMA operations use RC and one-
sided RDMA verbs (RDMA WRITE/READ). Each Resilience Manager maintains one connection
for each active remote machine. For erasure coding, we use x86 AVX instructions and the ISA
library [48] that achieves over 4 GB/s encoding throughput per core for (8+2) configuration in our
evaluation platform.

Resource Monitor is implemented as a user-space program. It uses RDMA SEND/RECV for
all control messages.

3.7 Evaluation

We evaluate Hydra on a 50-machine 56 Gbps InfiniBand CloudLab cluster against Infiniswap
[165], Leap [224] (disaggregated VMM) and Remote Regions [92] (disaggregated VFS). Our eval-
uation addresses the following questions:

• Does it improve the resilience of cluster memory? (§3.7.1)
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• Does it improve the availability? (§3.7.2)

• What is its overhead and sensitivity to parameters? (§3.7.3)

• How much TCO savings can we expect? (§3.7.4)

• What is its benefit over a persistent memory setup? (§3.7.5)

Methodology Unless otherwise specified, we use k=8, r=2, and ∆=1, targeting 1.25× memory
and bandwidth overhead. We select r=2 because late binding is still possible even when one of the
remote slab fails. The additional read ∆=1 incurs 1.125× bandwidth overhead during reads. We
use 1GB SlabSize, The additional number of choices for eviction E ′ = 2. Free memory headroom
is set to 25%, and the control period is set to 1 second. Each machine has 64 GB of DRAM and
2× Intel Xeon E5-2650v2 with 32 virtual cores.

We compare Hydra against the following alternatives:

• SSD Backup: Each page is backed up in a local SSD for the minimum 1× remote memory
overhead. We consider both disaggregated VMM and VFS systems.

• Replication: We directly write each page over RDMA to two remote machines’ memory for
a 2× overhead.

• EC-Cache w/ RDMA: Implementation of the erasure coding scheme in EC-Cache [259],
but implemented on RDMA.

Workload Characterization Our evaluation consists of both micro-benchmarks and cluster-
scale evaluations with real-world applications and workload combinations.

• We use TPC-C [79] on VoltDB [84]. We perform 5 different types of transactions to sim-
ulate an order-entry environment. We set 256 warehouses and 8 sites and run 2 million
transactions. Here, the peak memory usage is 11.5 GB.

• We use Facebook’s ETC, SYS workloads [104] on Memcached [56]. First, we use 10 million
SETs to populate the Memcached server. Then we perform another 10 million operations
(for ETC: 5% SETs, 95% GETs, for SYS: 25% SETs, 75% GETs). The key size is 16 bytes
and 90% of the values are evenly distributed between 16–512 bytes. Peak memory usages
are 9 GB for ETC and 15 GB for SYS.

• We use PageRank on PowerGraph [161] and Apache Spark/GraphX [162] to measure the
influence of Twitter users on followers on a graph with 11 million vertices [200]. Peak
memory usages are 9.5 GB and 14 GB, respectively.
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Figure 3.9: Hydra provides better latency characteristics during both disaggregated VMM and VFS
operations.
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Figure 3.10: Hydra latency breakdown through CCDF.

3.7.1 Resilience Evaluation

We evaluate Hydra both in the presence and absence of failures with microbenchmarks and real-
world applications.

3.7.1.1 Latency Characteristics

First, we measure Hydra’s latency characteristics with micro-benchmarks in the absence of failures.
Then we analyze the impact of its design components.

Disaggregated VMM Latency We use a simple application with its working set size set to 2GB.
It is provided 1GB memory to ensure that 50% of its memory accesses cause paging. While using
disaggregated memory for remote page-in, Hydra improves page-in latency over Infiniswap with
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SSD backup by 1.79× at median and 1.93× at the 99th percentile. Page-out latency is improved by
1.9× and 2.2× over Infiniswap at median and 99th percentile, respectively. Replication provides
at most 1.1× improved latency over Hydra, while incurring 2× memory and bandwidth overhead
(Figure 3.9a).

Disaggregated VFS Latency We use fio [36] to generate one million random read/write re-
quests of 4 KB block I/O. During reads, Hydra provides improved latency over Remote Regions
by 2.13× at median and 2.04× at the 99th percentile. During writes, Hydra also improves the
latency over Remote Regions by 2.22× at median and 1.74× at the 99th percentile. Replication
has a minor latency gain over Hydra, improving latency by at most 1.18× (Figure 3.9b).

Benefit of Data Path Components Erasure coding over RDMA (i.e., EC-Cache with RDMA)
performs worse than disk backup due to its coding overhead. Figure 3.10 shows the benefit of
Hydra’s data path components to reduce the latency.

1. Run-to-completion avoids interruptions during remote I/O, reducing the median read and
write latency by 51%.

2. In-place coding saves additional time for data copying, which substantially adds up in
remote-memory systems, reducing 28% of the read and write latency.

3. Late binding specifically improves the tail latency during remote read by 61% by avoiding
stragglers. The additional read request increases the median latency only by 6%.

4. Asynchronous encoding hides erasure coding overhead during writes, reducing the median
write latency by 38%.

Tail Latency Breakdown The latency of Hydra consists of the time for (i) RDMA Memory
Registration (MR), (ii) actual RDMA read/write, and (iii) erasure coding. Even though decoding a
page takes about 1.5µs, late binding effectively improves the tail latency by 1.55× (Figure 3.11a).
During writes, asynchronous encoding hides encoding latency and latency impacts of straggling
splits, improving tail latency by 1.34×w.r.t. synchronous encoding (Figure 3.11b). At the presence
of corruption (r = 3), accessing extra splits increases the tail latency by 1.51× and 1.09× for reads
and writes, respectively.
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Figure 3.11: Hydra latency breakdown at the 99th percentile.
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Figure 3.12: Latency in the presence of uncertainty events.

3.7.1.2 Latency Under Failures

Background Flows We generate RDMA flows on the remote machine constantly sending 1 GB
messages. Unlike SSD backup and replication, Hydra ensures consistent latency due to late binding
(Figure 3.12a). Hydra’s latency improvement over SSD backup is 1.97–2.56×. It even outperforms
replication at the tail read (write) latency by 1.33× (1.50×).

Remote Failures Both read and write latency are disk-bound when it’s necessary to access the
backup SSD (Figure 3.12b). Hydra reduces latency over SSD backup by 8.37–13.6× and 4.79–
7.30× during remote read and write, respectively. Furthermore, it matches the performance of
replication.
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TPS/OPS
(thousands) Latency (ms)

50th 99th
HYD REP HYD REP HYD REP

VoltDB
100% 39.4 39.4 52.8 52.8 134.0 134.0

75% 36.1 35.3 56.3 56.1 142.0 143.0
50% 32.3 34.0 57.8 59.0 161.0 168.0

ETC
100% 123.0 123.0 123.0 123.0 257.0 257.0

75% 119.0 125.0 120.0 121.0 255.0 257.0
50% 119.0 119.0 118.0 122.0 254.0 264.0

SYS
100% 108.0 108.0 125.0 125.0 267.0 267.0

75% 100.0 104.0 120.0 125.0 262.0 305.0
50% 101.0 102.0 117.0 123.0 257.5 430.0

Table 3.2: Hydra (HYD) provides similar performance to replication (REP) for VoltDB and Mem-
cached workloads (ETC and SYS). Higher is better for throughput; Lower is better for latency.

Apache Spark/GraphX
Completion Time (s)

PowerGraph
Completion Time (s)

100% 75% 50% 100% 75% 50%
Hydra 77.91 105.41 191.93 73.10 66.90 68.00

Replication 77.91 91.89 195.54 73.10 73.30 73.70

Table 3.3: Hydra also provides similar completion time to replication for graph analytic applica-
tions.

3.7.1.3 Application-Level Performance

We now focus on Hydra’s benefits for real-world memory-intensive applications and compare it
with that of SSD backup and replication. We consider container-based application deployment
[290] and run each application in an lxc container with a memory limit to fit 100%, 75%, 50% of
the peak memory usage for each application. For 100%, applications run completely in memory.
For 75% and 50%, applications hit their memory limits and performs remote I/O via Hydra.

We present Hydra’s application-level performance against replication (Table 3.2 and Table 3.3)
to show that it can achieve similar performance with a lower memory overhead even in the absence
of any failures. For brevity, we omit the results for SSD backup, which performs much worse than
both Hydra and replication – albeit with no memory overhead.

For VoltDB, when half of its data is in remote memory, Hydra achieves 0.82× throughput and
almost transparent latency characteristics compared to the fully in-memory case.

For Memcached, at 50% case, Hydra achieves 0.97× throughput with read-dominant ETC
workloads and 0.93× throughput with write-intensive SYS workloads compared to the 100% sce-
nario. Here, latency overhead is almost zero.

For graph analytics, Hydra could achieve almost transparent application performance for Pow-
erGraph; thanks to its optimized heap management. However, it suffers from increased job com-
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Figure 3.13: Hydra throughput with the same setup in Figure 3.3.
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Figure 3.14: Hydra provides transparent completions in the presence of failure. Note that the Y-
axis is in log scale.

pletion time for GraphX due to massive thrashing of in-memory and remote memory data – the 14
GB working set oscillates between paging-in and paging-out. This causes bursts of RDMA reads
and writes. Even then, Hydra outperforms Infiniswap with SSD backup by 8.1×. Replication does
not have significant gains over Hydra.

Performance with Leap Hydra’s drop-in resilience mechanism is orthogonal to the function-
alities of remote-memory frameworks. To observe Hydra’s benefit even with faster in-kernel
lightweight remote-memory data path, we integrate it to Leap [224] and run VoltDB and Pow-
erGraph with 50% remote-memory configurations.

Leap waits for an interrupt during a 4KB remote I/O, whereas Hydra splits a 4KB page into
smaller chunks and performs asynchronous remote I/O. Note that RDMA read for 4KB-vs-512B
is 4µs-vs-1.5µs. With self-coding and run-to-completion, Hydra provides competitive performance
guarantees as Leap for both VoltDB (0.99× throughput) and PowerGraph (1.02× completion time)
in the absence of failures.
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3.7.1.4 Application Performance Under Failures

Now we analyze Hydra’s performance in the presence of failures and compare against the alter-
natives. In terms of impact on applications, we first go back to the scenarios discussed in Sec-
tion 3.2.2 regarding to VoltDB running with 50% memory constraint. Except for the corruption
scenario where we set r=3, we use Hydra’s default parameters. At a high level, we observe that
Hydra performs similar to replication with 1.6× lower memory overhead (Figure 3.13).

Next, we start each benchmark application in 50% settings and introduce one remote failure
while it is running. We select a Resource Monitor with highest slab activities and kill it. We
measure the application’s performance while the Resilience Manager initiates the regeneration of
affected slabs.

Hydra’s application-level performance is transparent to the presence of remote failure. Fig-
ure 3.14 shows Hydra provides almost similar completion times to that of replication at a lower
memory overhead in the presence of remote failure. In comparison to SSD backup, workloads
experience 1.3–5.75× lower completion times using Hydra. Hydra provides similar performance
at the presence of memory corruption. Completion time gets improved by 1.2–4.9× w.r.t. SSD
backup.

3.7.2 Availability Evaluation

In this section, we evaluate Hydra’s availability and load balancing characteristics in large clusters.

3.7.2.1 Analysis of CodingSets

We compare the availability and load balancing of Hydra with EC-Cache and power-of-two-
choices [233]. In CodingSets, each server is attached to a disjoint coding group. During encoded
write, the (k+ r) least loaded nodes are chosen from a subset of the (k+ r+ l) coding group at the
time of replication. EC-Cache simply assigns slabs to coding groups comprising of random nodes.
Power-of-two-choices finds two candidate nodes at random for each slab, and picks the less loaded
one.

Probability of Data Loss Under Simultaneous Failures To evaluate the probability of data loss
of Hydra under different scenarios in a large cluster setting, we compute the probability of data
loss under the three schemes. Note that, in terms of data loss probability, we assume EC-Cache and
power of two choices select random servers, and are therefore equivalent. Figure 3.15 compares the
probabilities of loss for different parameters on a 1000-machine cluster. Our baseline comparison
is against the best case scenario for EC-Cache and power-of-two-choices, where the number of
slabs per server is low (1 GB slabs, with 16 GB of memory per server).
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Figure 3.15: Probability of data loss at different scenarios (base parameters k=8, r=2, l=2, S=16,
f=1%) on a 1000-machine cluster.

Even for a small number of slabs per server, Hydra reduces the probability of data loss by an

order of magnitude. With a large number of slabs per server (e.g., 100) the probability of failure for
EC-Cache becomes very high during correlated failure. Figure 3.15 shows that there is an inherent
trade-off between the load-balancing factor (l) and the probability of data loss under correlated
failures.

Load Balancing of CodingSets Figure 3.16 compares the load balancing of the three policies.
EC-Cache’s random selection of (k + r) nodes causes a higher load imbalance, since some nodes
will randomly be overloaded more than others. As a result, CodingSets improves load balancing
over EC-Cache scheme by 1.1× even when l = 0, since CodingSets’ coding groups are non-
overlapping. For l = 4, CodingSets provides with 1.5× better load balancing over EC-Cache at 1M
machines. The power of two choices improves load balancing by 0%-20% compared CodingSets
with l = 2, because it has more degrees of freedom in choosing nodes, but suffers from an order
of magnitude higher failure rate (Figure 3.15).
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Figure 3.16: CodingSets enhances Hydra with better load balancing across the cluster (base pa-
rameters k=8, r=2).

62
260563

66 80 9795
405

616

96
466

2000

155159

3254

1

10

100

1000

10000

1
0

0
%

7
5

%

5
0

%

1
0

0
%

7
5

%

5
0

%

1
0

0
%

7
5

%

5
0

%

1
0

0
%

7
5

%

5
0

%

1
0

0
%

7
5

%

5
0

%

VoltDB Memcached

ETC/SYS

Power

Graph

GraphX

C
o
m

p
le

ti
o
n

 t
im

e
 (

s)

(a) SSD Backup

65 79 84 69 71 7085 83 83 90 99 97 136139
286

1

10

100

1000

10000

1
0

0
%

7
5
%

5
0
%

1
0

0
%

7
5
%

5
0
%

1
0

0
%

7
5
%

5
0
%

1
0

0
%

7
5
%

5
0
%

1
0

0
%

7
5
%

5
0
%

VoltDB Memcached

ETC/SYS

Power

Graph

GraphX

C
o

m
p

le
ti

o
n

 t
im

e 
(s

)

(b) Hydra

ETC/SYS Graph

58 82103 70 75 7386 80 94 92 90112 124
188

393

1

10

100

1000

10000

1
0
0
%

7
5
%

5
0
%

1
0
0
%

7
5
%

5
0
%

1
0
0
%

7
5
%

5
0
%

1
0
0
%

7
5
%

5
0
%

1
0
0
%

7
5
%

5
0
%

VoltDB Memcached

ETC/SYS

Power

Graph

GraphX

C
o
m

p
le

ti
o
n

 t
im

e
 (

s)

(c) Replication

Figure 3.17: Median completion times (i.e., throughput) of 250 containers on a 50-machine cluster.

3.7.2.2 Cluster Deployment

We run 250 containerized applications across 50 machines. For each application and workload,
we create a container and randomly distribute it across the cluster. Here, total memory footprint is
2.76 TB; our cluster has 3.20 TB of total memory. Half of the containers use 100% configuration;
about 30% use the 75% configuration; and the rest use the 50% configuration. There are at most
two simultaneous failures.

Application Performance We compare application performance in terms of completion time
(Figure 3.17) and latency (Table 3.4) that demonstrate Hydra’s performance benefits in the presence
of cluster dynamics. Hydra’s improvements increase with decreasing local memory ratio. Its
throughput improvements w.r.t. SSD backup were up to 4.87× for 75% and up to 20.61× for
50%. Its latency improvements were up to 64.78× for 75% and up to 51.47× for 50%. Hydra’s
performance benefits are similar to replication (Figure 3.17c), but with lower memory overhead.

Impact on Memory Imbalance and Stranding Figure 3.18 shows that Hydra reduces mem-
ory usage imbalance w.r.t. coarser-grained memory management systems: in comparison to SSD
backup-based (replication-based) systems, memory usage variation decreased from 18.5% (12.9%)
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Latency (ms) 50th 99th
SSD HYD REP SSD HYD REP

VoltDB
100% 55 60 48 179 173 177

75% 60 57 48 217 185 225
50% 78 61 48 305 243 225

ETC
100% 138 119 118 260 245 247

75% 148 113 120 9912 240 263
50% 167 117 111 10175 244 259

SYS
100% 145 127 125 249 269 267

75% 154 119 113 17557 271 321
50% 124 111 117 22828 452 356

Table 3.4: VoltDB and Memcached (ETC, SYS) latencies for SSD backup, Hydra (HYD) and
replication (REP) in cluster setup.
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Figure 3.18: Average memory usage across 50 servers.

to 5.9% and the maximum-to-minimum utilization ratio decreased from 6.92× (2.77×) to 1.74×.
Hydra better exploits unused memory in under-utilized machines, increasing the minimum mem-
ory utilization of any individual machine by 46%. Hydra incurs about 5% additional total memory
usage compared to disk backup, whereas replication incurs 20% overhead.

3.7.3 Sensitivity Evaluation

Impact of (k, r, ∆) Choices Figure 3.19a shows read latency characteristics for varying k. In-
creasing from k=1 to k=2 reduces median latency by parallelizing data transfers. Further increasing
k improves space efficiency (measured as r

k+r
) and load balancing, but latency deteriorates as well.

Figure 3.19b shows read latency for varying values of ∆. Although just one additional read
(from ∆=0 to ∆=1) helps tail latency, more additional reads have diminishing returns; instead, it
hurts latency due to proportionally increasing communication overheads. Figure 3.19c shows write
latency variations for different r values. Increasing r does not affect the median write latency.
However, the tail latency increases from r = 3 due to the increase in overall communication
overheads.
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Figure 3.19: Impact of page splits (k), additional reads (∆) on read latency, and parity splits (r) on
write latency.

Monthly Pricing Google Amazon Microsoft
Standard machine $1,553 $2,304 $1,572
1% memory $5.18 $9.21 $5.92
Hydra 6.3% 8.4% 7.3%
Replication 3.3% 4.8% 3.9%
PM Backup 3.5% 7.6% 4.9%

Table 3.5: Revenue model and TCO savings over three years for each machine with 30% unused
memory on average.

Resource Overhead We measure average CPU utilization of Hydra components during remote
I/O. Resilience Manager uses event-driven I/O and consumes only 0.001% CPU cycles in each
core. Erasure coding causes 0.09% extra CPU usage per core. As Hydra uses one-sided RDMA,
remote Resource Monitors do not have CPU overhead in the data path.

In cluster deployment, Hydra increases CPU utilization by 2.2% on average and generates 291
Mbps RDMA traffic per machine, which is only 0.5% of its 56 Gbps bandwidth. Replication has
negligible CPU usage but generates more than 1 Gbps traffic per machine.

Background Slab Regeneration To observe the overall latency to regenerate a slab, we manu-
ally evict one of the remote slabs. When it is evicted, Resilience Manager places a new slab and
provides the evicted slab information to the corresponding Resource Monitor, which takes 54 ms.
Then the Resource Monitor randomly selects k out of remaining remote slabs and read the page
data, which takes 170 ms for a 1 GB slab. Finally, it decodes the page data to the local memory
slab within 50 ms. Therefore, the total regeneration time for a 1 GB size slab is 274 ms, as opposed
to taking several minutes to restart a server after failure.

To observe the impact of slab regeneration on disaggregated VMM, we run the micro-
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System Year Deployability Fault Tolerance Load Balancing Latency Tolerance
Memory Blade [215] ’09 HW Change Reprovision None None

RamCloud [248] ’10 App. Change Remote Disks Power of Choices None
FaRM [142] ’14 App. Change Replication Central Coordinator None

EC-Cache [259] ’16 App. Change Erasure Coding Multiple Coding Groups Late Binding
Infiniswap [165] ’17 Unmodified Local Disk Power of Choices None

Remote Regions [92] ’18 App. Change None Central Manager None
LegoOS [275] ’18 OS Change Remote Disk None None
Compressed

Far Memory [203]
’19 OS Change None None None

Leap [224] ’20 OS Change None None None
Kona [111] ’21 HW Change Replication None None

Hydra Unmodified Erasure Coding CodingSets Late Binding

Table 3.6: Selected proposals on remote memory in recent years.

benchmark mentioned in §3.7.1. At the half-way of the application’s runtime, we evict one of
the remote slabs. Background slab regeneration has a minimal impact on the remote read – remote
read latency increases by 1.09×. However, as remote writes to the victim slab halts until it gets
regenerated, write latency increases by 1.31×.

3.7.4 TCO Savings

We limit our TCO analysis only to memory provisioning. The TCO savings of Hydra is the rev-
enue from leveraged unused memory after deducting the TCO of RDMA hardware. We consider
capital expenditure (CAPEX) of acquiring RDMA hardware and operational expenditure (OPEX)
including their power usage over 3 years. An RDMA adapter costs $600 [54], RDMA switch
costs $318 [55] per machine, and the operating cost is $52 over 3 years [165] – overall, the 3-year
TCO is $970 for each machine. We consider the standard machine configuration and pricing from
Google Cloud Compute [42], Amazon EC2 [7], and Microsoft Azure [7] to build revenue models
and calculate the TCO savings for 30% of leveraged memory for each machine (Table 3.5). For ex-
ample, in Google, the savings of disaggregation over 3 years using Hydra is (($5.18*30*36)/1.25-
$970)/($1553*36)*100% = 6.3%.

3.7.5 Disaggregation with Persistent Memory Backup

To observe the impact of persistent memory (PM), we run all the micro-benchmarks and real-world
applications mentioned earlier over Infiniswap with local PM backup. Unfortunately, at the time
of writing, we cannot get hold of a real Intel Optane DC. We emulate PM using DRAM with the
latency characteristics mentioned in prior work [133].
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Replacing SSD with local PM can significantly improve Infiniswap’s performance in a disag-
gregated cluster. However, for the micro-benchmark mentioned in §3.7.1, Hydra still provides
1.06× and 1.09× better 99th percentile latency over Infiniswap with PM backup during page-in
and page-out, respectively. Even for real-world applications mentioned in §3.7.1.3, Hydra almost
matches the performance of local PM backup – application-level performance varies within 0.94–
1.09× of that with PM backup. Note that replacing SSD with PM throughout the cluster does not
improve the availability guarantee in the presence of cluster-wide uncertainties. Moreover, while
resiliency through unused remote DRAM is free, PM backup costs $11.13/GB [65]. In case of
Google, the additional cost of $2671.2 per machine for PM reduces the savings of disaggregation
over 3 years from 6.3% to (($5.18*30*36)-$970-$2671.2)/($1553*36)*100% = 3.5% (Table 3.5).

3.8 Related Work

Remote-Memory Systems Many software systems tried leveraging remote machines’ memory
for paging [151, 223, 241, 120, 145, 211, 3, 270, 165, 203, 224, 111], global virtual memory
abstraction [150, 75, 198], and to create distributed data stores [248, 142, 212, 197, 289, 26, 180,
267]. Hardware-based remote access to memory using PCIe interconnects [215] and extended
NUMA fabric [245] are also proposed. Table 3.6 compares a selected few.

Cluster Memory Solutions With the advent of RDMA, there has been a renewed interest in
cluster memory solutions. The primary way of leveraging cluster memory is through key-value
interfaces [231, 181, 142, 248], distributed shared memory [254, 239], or distributed lock [311].
However, these solutions are either limited by their interface or replication overheads. Hydra, on
the contrary, is a transparent, memory-efficient, and load-balanced mechanism for resilient remote
memory.

Erasure Coding in Storage Erasure coding has been widely employed in RAID systems to
achieve space-efficient fault tolerance [325, 271]. Recent large-scale clusters leverage erasure
coding for storing cold data in a space-efficient manner to achieve fault-tolerance [300, 171, 237].
EC-Cache [259] is an erasure-coded in-memory cache for 1MB or larger objects, but it is highly
susceptible to data loss under correlated failures, and its scalability is limited due to communication
overhead. In contrast, Hydra achieves resilient erasure-coded remote memory with single-digit µs
page access latency.
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3.9 Conclusion

Hydra leverages online erasure coding to achieve single-digit µs latency under failures, while judi-
ciously placing erasure-coded data using CodingSets to improve availability and load balancing. It
matches the resilience of replication with 1.6× lower memory overhead and significantly improves
latency and throughput of real-world memory-intensive applications over SSD backup-based re-
silience. Furthermore, CodingSets allows Hydra to reduce the probability of data loss under simul-
taneous failures by about 10×. Overall, Hydra makes resilient remote memory practical.
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CHAPTER 4

Memtrade: Marketplace for Disaggregated Memory
Clouds

4.1 Introduction

Cloud resources are increasingly being offered in an elastic and disaggregated manner. Examples
include serverless computing [15, 20] and disaggregated storage [9, 190, 292, 191, 158] that scale
rapidly and adapt to highly dynamic workloads [236, 193, 204, 192, 5]. Memory, however, is
still largely provisioned statically, especially in public cloud environments. In public clouds, a
user launching a new VM typically selects from a set of static, pre-configured instance types, each
with a fixed number of cores and a fixed amount of DRAM [8, 83, 53]. Although some platforms
allow users to customize the amount of virtual CPU and DRAM [29], the amount remains static
throughout the lifetime of the instance. Even in serverless frameworks, which offer elasticity and
auto-scaling, a function has a static limit on its allocation of CPU and memory [16].

At the same time, long-running applications deployed on both public and private clouds are
commonly highly over-provisioned relative to their typical memory usage. For example, cluster-
wide memory utilization in Google, Alibaba, and Meta datacenters hovers around 40%–60%
[263, 275, 165, 268]. Large-scale analytics service providers that run on public clouds, such as
Snowflake, fare even worse – on average 70%–80% of their memory remains unutilized [292].
Moreover, in many real-world deployments, workloads rarely use all of their allocated memory all
of the time. Often, an application allocates a large amount of memory but accesses it infrequently
(§4.2.2). For example, in Google’s datacenters, up to 61% of allocated memory remains idle [202].
In Meta’s private datacenters, within a 10-minutes window, applications use only 30–60% of the
allocated memory [225]. Since DRAM is a significant driver of infrastructure cost and power
consumption [146, 34, 147, 225], excessive underutilization leads to high capital and operating
expenditures, as well as wasted energy (and carbon emissions). Although recent remote memory
systems address this by satisfying an application’s excess memory demand from an underutilized
server [165, 202, 92, 224, 267, 99, 111], existing frameworks are designed for private datacenters.
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Furthermore, with the emergence of coherent interfaces like Compute Express Link (CXL) [27],
next-generation datacenter designs are moving towards tiered-memory subsystems [225, 208].
Servers within a rack can be connected through CXL switches and access each other memory.
In such a system, CPUs of one server will have access to heterogeneous memory types with varied
latency, bandwidth, and performance characteristics (Figure 1.3). While running multiple applica-
tions in such a rack-scale system, system-wide application-level performance will highly depend
on an application’s share to different memory tiers. Efficiently rightsizing different memory tiers,
moving cold pages from faster to slower memory tiers, and matching harvested memories on dif-
ferent tiers to appropriate applications with a view to ensuring performance is challenging in such
a disaggregated system.

In this paper, we harvest both unallocated and allocated-but-idle application memory to enable
remote memory in public clouds. We propose a new memory consumption model that allows over-
provisioned and/or idle applications (producers) to offer excess idle memory to memory-intensive
applications (consumers) that are willing to pay for additional memory for a limited period of time
at an attractive price, via a trusted third-party (broker). Participation is voluntary, and either party
can leave at any time. Practical realization of this vision must address following challenges:

• Immediately Deployable. Our goal is that Memtrade is immediately deployable on existing
public or private clouds. Prior frameworks depend on host kernel or hypervisor modifica-
tions [165, 275, 202, 92, 224, 99]. In many cases (e.g., public cloud setting, server configu-
ration restrictions), a tenant cannot modify host-level system software which would require
the operator to manage the remote memory service. In addition, prior work assumes the
latest networking hardware and protocols (e.g., RDMA) [165, 275, 202, 92, 224, 267, 111];
availability of these features in public clouds is limited, restricting adoption. Memtrade be-
ing an ubiquitous solution, allows users hop on any existing machine and readily deploy it
without disrupting the running application(s) and modifying the underline kernel.

• Efficient Harvesting. Memory harvesting needs to be lightweight, transparent and easily
deployable without impacting performance. Most prior work includes only a VM’s unal-

located memory in the remote memory pool. Leveraging idle application-level memory –
allocated to an application but later unused or accessed infrequently – significantly enhances
remote memory capacity. This is especially challenging in public clouds, where a third-
party provider has limited visibility of tenant workloads, and workloads may shift at any
time. Existing cold page detection-based [202, 88] proactive page reclamation techniques
need significant CPU and memory resources, along with host kernel or hypervisor modifica-
tions [225].

• Performant Consumption. To ensure producer-side performance, Memtrade must return
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a producer’s harvested memory seamlessly when needed. Memory offered to consumers
may also disappear due to a sudden burst in the producer’s own memory demand, or if a
producer leaves unexpectedly. Memtrade needs to manage this unavailability to provide a
high-performance memory interface. Besides, modern datacenters are going to observe an
architectural paradigm shift towards memory pooling and disaggregation where efficiently
migrating hot/cold memories to appropriate memory tiers will be a major concern [225, 208].
Memtrade harvester needs to be aware of the impact of different memory tiers. Effectively
harvesting free spaces on the faster memory tiers while moving colder pages to the slower
tiers can help tiered-memory subsystems.

• Incentivization and Resource Matching. Unlike prior work, which assumes cooperative ap-
plications, in a public cloud setting, we need to create a market where producers and con-
sumers have monetary incentives to participate. Producers must be compensated for leasing
memory, and the price must be attractive to consumers compared to alternatives (e.g., ex-
isting in-memory caching services or spot instances). In addition, producers have varied
availability and bursty workload demands, while consumers may have their own preferences
regarding remote memory availability, fragmentation, network overhead, and application-
level performance, all which must be considered when matching producers to consumers.

We design and develop Memtrade, an immediately-deployable realization of remote memory on
public clouds that addresses these challenges without any host kernel or hypervisor modifications.
Memtrade employs a harvester in each producer VM to monitor its application-level performance
and adaptively control resource consumption.The harvester uses an adaptive control loop that de-
cides when to harvest from and when to return memory to the producer.

To prevent performance degradation in memory-sensitive applications, we design a novel in-
memory swap space, Silo, which serves as a temporary victim cache for harvested pages. In the
case of a sudden loss of performance, the harvester proactively prefetches previously-harvested
pages back into memory. The combination of these mechanisms allows Memtrade to harvest idle
pages with low impact to producer workload performance and offer them to consumers. Con-
sumers of Memtrade can access the harvested memory through a key-value (KV) cache or a swap
interface. For public cloud adaptation or secure memory consumption, Memtrade consumer inter-
faces provide optional plugable cryptographic protections for the confidentiality and integrity of
data stored in the untrusted producer VM.

To maximize cluster-wide utilization, Memtrade employs a broker – a central coordinator that
manages the remote-memory market and matches producers and consumers based on their supply
and demand, and helps facilitate their direct communication. The broker sets the price per unit of
remote memory and is incentivized by receiving a cut of monetary transactions. The broker does
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not require any support from the cloud provider, and it does not need to economically benefit the
cloud providers to be viable. Of course, cloud providers may choose to support it, but it’s optional.
One can implement their own pricing strategies based on different objectives; Memtrade broker
service is orthogonal towards the pricing and matching mechanisms.

Although we focus primarily on virtualized public clouds, Memtrade can be deployed in other
settings, such as private datacenters and containerized clouds. We plan to open-source Memtrade.
Overall, we make the following contributions:

• Memtrade is the first end-to-end system that enables a disaggregated memory marketplace on
clouds (§4.3). Memtrade is easily-deployable without any support from the cloud provider.

• We design a system to identify and harvest idle memory with minimal overhead and neg-
ligible performance impact (§4.4), which uses Silo – a novel in-memory victim cache for
swapped-out pages to reduce performance loss during harvesting.

• We design a broker that arbitrates between consumers and producers, enables their direct
communication and implements a placement policy based on consumer preferences, frag-
mentation, and producer availability (§4.5).

• Memtrade improves consumer average latency by up to 2.8×, while impacting producer
latency by less than 2.1% (§5.6), and improves memory utilization (up to 97.9%).

4.2 Background and Motivation

4.2.1 Remote Memory

Remote memory exposes capacity available in remote hosts as a pool of memory shared among
many machines. It is often implemented logically by leveraging unallocated memory in remote
machines via well-known abstractions, such as files [92], remote memory paging [165, 157, 211,
99, 111], distributed OS virtual memory management [275] and the C++ Standard Library data
structures [267]. Existing frameworks require specialized kernels, hypervisors or hardware that
might not be available in public clouds. Prior works focus on private-cloud use cases [202, 165,
92, 99, 267, 111] and do not consider the transient nature of public-cloud remote memory, nor the
isolation and security challenges when consumers and producers belong to different organizations.

4.2.2 Resource Underutilization in Cloud Computing

Underutilized Resources. Due to over-provisioning, a significant portion of resources remains
idle in private and public clouds that run a diverse mix of workloads. To demonstrate this, we
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Figure 4.1: Cluster resources remain significantly unallocated in (a) Google, (b) Alibaba, and (c)
Snowflake.
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Figure 4.2: (a) Unallocated memory remains available for long periods, but (b) idle memory are
reused quickly.

analyze production traces of Google [41], Alibaba [4], and Snowflake [292] clusters for periods
of 29 days, 36 hours, and 14 days, respectively (Figure 4.1). In Google’s cluster, averaging over
one-hour windows, memory usage never exceeds 60% of cluster capacity. In Alibaba’s cluster,
at least 30% of the total memory capacity always remains unused. Even worse, in Snowflake’s
cluster, which runs on public clouds, 80% of memory is unutilized on average.

However, idle memory alone is not sufficient for providing remote memory access; in the
absence of dedicated hardware such as RDMA, it also requires additional CPU and network-
bandwidth both at the consumer and the producer. Fortunately, the production traces show that
a significant portion of these resources are underutilized. Approximately, 50–85% of cluster CPU
capacity remains idle in all of these traces; Alibaba and Snowflake traces, which include bandwidth
usage, show that 50–75% of network capacity remains idle.
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Figure 4.3: Performance drop while harvesting memory for (a) Zipfian trace on Redis, and (b)
XGBoost training.

Availability of Unallocated and Idle Memory. Another important consideration is whether
unutilized memory remains available for sufficiently long periods of time to enable other appli-
cations to access it productively. Figure 4.2a shows that 99% of the unallocated memory in the
Google cluster remains available for at least an hour. Beyond unallocated memory, which con-
stitutes 40% of the memory in the Google traces, a significant pool of memory is allocated to
applications but remains idle [99]. Figure 4.2b shows that an additional 8% of total memory is
application memory that is not touched for an hour or more. In public clouds, where many tenants
are over-provisioned, the proportion of application idle memory may be much higher [292].

Uses for Transient Remote Memory. Transient remote memory seems attractive for numerous
uses in many environments. KV caches are widely used in cloud applications [242, 129, 86, 105,
308, 109], and many service providers offer popular in-memory cache-as-a-service systems [10,
57, 68, 19]. Similarly, transient memory can be used for filesystem-as-a-service [328] in serverless
computing. Application developers routinely deploy remote caches in front of persistent storage
systems, and in-memory caches are a key driver of memory consumption in clouds [242, 105].

4.2.3 Disaggregation Challenges in Public Clouds

Harvesting Application Memory. Beyond unallocated memory, a large amount of potentially-
idle memory is allocated to user VMs. In many cases, harvesting such idle memory has mini-
mal performance impacts. However, harvesting too aggressively can result in severe performance
degradation, or even crash applications. Figure 4.3 shows the performance degradation while har-
vesting memory from two applications. We can harvest a substantial amount of memory from each
without much performance loss. However, performance can quickly fall off a cliff, and dynamic
application load changes necessitate adaptive harvesting decisions in real-time.
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To reclaim an application’s idle memory, existing solutions use kernel modifications [202, 88,
225] to determine the age of pages mapped by the application. A well-explored technique is to
periodically scan the accessed bit present in page table entries to infer if a physical page is accessed
in a given time period. If a page’s age goes beyond a threshold, then it is marked as a cold page
and, therefore, reclaimed. Such an approach is difficult to deploy in public clouds, where each user
controls its own kernel distribution. Moreover, continuous page tracking can consume significant
CPU and memory and require elevated permissions from the host kernel [45].

Transience of Remote Memory. Producers and consumers have their own supply and demand
characteristics. At the same time, producers may disappear at any time, and the amount of unal-
located and idle memory that can be harvested safely from an application varies over time. Given
the remote I/O cost, too much churn in memory availability may deteriorate a consumer’s perfor-
mance.

Security. VMs that do not belong to the same organization in the public cloud are completely
untrusted. Since consumer data residing in remote memory may be read or corrupted due to ac-
cidents or malicious behavior, its confidentiality and integrity must be protected. Producer ap-
plications must also be protected from malicious remote memory operations, and the impact of
overly-aggressive or malicious consumers on producers must be limited.

4.3 Memtrade: Overview

Memtrade is a system that realizes remote memory on existing clouds. It consists of three core
components (Figure 4.4): (i) producers, which expose their harvested idle memory to the remote-
memory market (§4.4); (ii) the broker, which pairs producers with consumers while optimizing
cluster-wide objectives, such as maximizing resource utilization (§4.5); and (iii) consumers, which
request remote-memory allocations based on their demand and desired performance characteristics
(§4.6). This section provides an overview of these components and their interactions; more details
appear in subsequent sections.

Producers. A producer employs a collection of processes to harvest idle memory within a VM,
making it available to the remote-memory market. A producer voluntarily participates in the
market by first registering with the broker. The producer then monitors its resource usage and
application-level performance metrics, periodically notifying the broker about its resource avail-
ability. The producer harvests memory slowly until it detects a possible performance degradation,
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Figure 4.4: Memtrade architecture overview.

causing it to back off and enter recovery mode. During recovery, memory is returned to the pro-
ducer application proactively until its original performance is restored. When it is safe to resume
harvesting, the producer transitions back to harvesting mode.

When the broker matches a consumer’s remote memory request to the producer, it is notified
with the consumer’s connection credentials and the amount of requested memory. The producer
then exposes harvested memory through fixed-sized slabs dedicated to that consumer. A producer
may stop participating at any time by deregistering with the broker.

Broker. The broker arbitrates between producers and consumers, matching supply and de-
mand for harvested remote memory while considering consumer preferences and constraints.
While Memtrade supports untrusted producers and consumers from diverse tenants, its logically-
centralized broker component should be run by a trusted third party – such as a caching-as-a-
service provider [57, 68] or the public cloud operator. The broker facilitates the direct connec-
tion between the consumer and producer using existing virtual private cloud interconnection tools
(e.g.AWS Transit Gateway), which allow the consumer and producer to communicate even if they
are on separate virtual private networks [18, 39]. Note that cloud providers already support this ca-
pability. The broker decides on the per-unit remote memory price for a given lease time, based on
monitoring the current price of spot instances offered in the same public cloud. Appropriate pric-
ing provides incentives for both producers and consumers to participate in the market; the broker
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receives a cut of the monetary transactions it brokers as commission.
To improve the availability of transient remote memory, the broker relies on historical resource

usage information for producers to predict their future availability. It additionally considers pro-
ducer reputations, based on the frequency of any prior broken leases, in order to reduce occurrences
of unexpected remote memory revocations. Finally, it assigns producers to consumers in a manner
that maximizes the overall cluster-wide resource utilization.

Consumers. A consumer voluntarily participates in the remote-memory market by registering
its connection credentials with the broker. Once approved by the broker, the consumer can submit
a remote memory request by specifying its required remote memory, lease time, and preferences.
After matching the request with one or more producers, the broker sends a message to the consumer
with connection credentials for the assigned producer(s).

The consumer then communicates directly with assigned producers through a simple KV cache
GET / PUT / DELETE interface to access remote memory. We also implement a transparent remote-
paging interface for the consumer. When memory will be occasionally evicted by producers, and
a the data needs to be stored persistently, a swap interface may face performance issues. Con-
veniently, applications using caches assume that data is not persistent, and may be evicted asyn-
chronously. To ensure confidentiality and integrity of consumer data stored in producer memory,
consumer interfaces offer an optional cryptographically access to remote memory in a transparent
manner (§4.6.1).

4.4 Producer

The producer consists of two key components: the harvester, which employs a control loop to
harvest application memory, and the manager, which exposes harvested memory to consumers
as remote memory. The producer does not require modifying host-level software, facilitating de-
ployment in existing public clouds. Our current producer implementation only supports Linux
VMs. The harvester coordinates with a loadable kernel module within the VM to make harvesting
decisions, without recompiling the guest kernel.

The harvester runs producer applications within a Linux control group (cgroup) [23] to monitor
and limit the VM’s consumption of resources, including DRAM and CPU; network bandwidth is
managed by a custom traffic shaper (§4.4.2). Based on application performance, the harvester de-
cides whether to harvest more memory or release already-harvested memory. Besides unallocated
memory which is immediately available for consumers, the harvester can increase the free memory
within the VM by reducing the resident set size (RSS) of the application. In harvesting mode, the
cgroup limit is decreased incrementally to reclaim memory in relatively small chunks; the default
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Algorithm 3 Harvester Pseudocode
1: procedure DOHARVEST

2: Decrease cgroup memory limit by ChunkSize
3: sleep(CoolingPeriod) ▷ wait for performance impact
4: procedure DORECOVERY

5: while RecoveryPeriod not elapsed do
6: Disable cgroup memory limit
7: procedure RUNHARVESTER

8: for each performance monitor epoch do
9: if no page-in then

10: Add performance data point to baseline estimator
11: Generate baseline performance distribution
12: Generate recent performance distribution
13: if performance drop detected then
14: DoRecovery()
15: else
16: DoHarvest()
17: if severe performance drop detected then
18: Prefetch from disk

ChunkSize is 64 MB. If a performance drop is detected, the harvester stops harvesting and enters
recovery mode, disabling the cgroup memory limit and allowing the application to fully recover.

Because directly reclaiming memory from an application address space can result in perfor-
mance cliffs if hot pages are swapped to disk, we introduce Silo, a novel in-memory region that
serves as a temporary buffer, or victim cache, holding harvested pages before they are made avail-
able as remote memory. Silo allows the harvester to return recently-reclaimed pages to applications
efficiently. In addition, when it detects a significant performance drop due to unexpected load, Silo
proactively prefetches swapped-out pages from disk, which helps mitigate performance cliffs. Al-
gorithm 3 presents a high-level sketch of the harvester’s behavior.

The manager exposes the harvested memory via a key-value cache GET / PUT / DELETE in-
terface, by simply running a Redis server for each consumer. A key challenge for the manager is
handling the scenario where the harvester needs to evict memory. We leverage the existing Re-
dis LRU cache-eviction policy, which helps reduce the impact on consumers when the producer
suddenly needs more memory.

4.4.1 Adaptive Harvesting of Remote Memory

Monitoring Application Performance. The harvester provides an interface for applications to
periodically report their performance, with a metric such as latency or throughput. Without loss
of generality, our description uses a performance metric where higher values are better. Many
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Figure 4.5: Memory harvesting and recovery using Silo.

applications already expose performance metrics. For example, applications often periodically
write their throughput, latency, network bandwidth usage, etc. metrics to a log structure. From
this information, we can directly understand the performance variations overtime. For applications
with standard interface for monitoring performance metrics, the harvester can simply leverage
it. Otherwise, the harvester uses the swapped-in page count (promotion rate) as a proxy for per-
formance [202]. Besides, other Linux features (e.g., Pressure-Stall Information [? ]) also provide
insights on an application’s resource usage. One can leverage those information and correlate them
to the application’s performance metric. All of these approaches are transparent to the applications
– Memtrade doesn’t need to modify the application to monitor its performance.

Estimating the Baseline. To determine whether the memory limit should be decreased or in-
creased, the harvester compares the current application performance metric to baseline values
observed without memory harvesting. Of course, measuring performance without memory har-
vesting is difficult while the producer is actively reclaiming memory. To estimate the baseline
performance without harvesting, we use statistics for swap-in events. When there are no swap-in
events, the application has enough memory to run its workload. Therefore, the harvester includes
the performance metric collected during these times as a baseline. An efficient AVL-tree data
structure is used to track these points, which are discarded after an expiration time. Our current
implementation adds a new data point every second, which expires after a 6-hour WindowSize.
We found this yielded good performance estimates; shorter data-collection intervals or longer ex-
piration times could further improve estimates, at the cost of higher resource consumption (§4.7.1).

Detecting Performance Drops. To decide if it can safely reduce the cgroup memory limit, the
harvester checks whether performance has degraded more than expected from its estimated base-
line performance. Similar to baseline estimation, the harvester maintains another AVL tree to track
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Figure 4.6: Performance degradation caused by harvesting different amounts of memory with and
without Silo for (a) Zipfian trace running on Redis, and (b) XGBoost training.

application performance values over the same period.
After each performance-monitoring epoch, it calculates the 99th percentile (p99) of the recent

performance distribution. The harvester assumes performance has dropped if the recent p99 is
worse than baseline p99 by P99Threshold (by default, 1%), and it stops reducing the cgroup
size, entering a recovery state. It then releases harvested memory adaptively to minimize the
performance drop. Different percentiles or additional criteria can be used to detect performance
drops.

Effective Harvesting with Silo. The harvester reclaims memory until a performance drop is
detected. However, some workloads are extremely sensitive, and losing even a small amount of
hot memory can result in severe performance degradation. Also, because the harvester adjusts the
application memory size via a cgroup, it relies on the Linux kernel’s Page Frame Reclamation
Algorithm (PFRA) to make decisions. Unfortunately, PFRA is not perfect and sometimes reclaims
hot pages, even with an appropriate memory limit.

To address these problems, we design Silo, a novel in-memory area for temporarily storing
swapped-out pages. We implement Silo as a loadable kernel module that is a backend for the
Linux frontswap interface [37]. The guest kernel swaps pages to Silo instead of disk, thus re-
ducing the cost of swapping (Figure 4.5a). If a page in Silo is not accessed for a configurable
CoolingPeriod (by default, 5 minutes), it is evicted to a slower memory tier (which is disk in
a traditional server setup). Otherwise, an access causes it to be efficiently mapped back into the
application’s address space (Figure 4.5b). In effect, Silo is an in-memory victim cache, prevent-
ing hot pages from being swapped to slow memory tier. Figure 4.6 shows that Silo can prevent
performance cliffs, allowing the harvester to avoid significant performance degradation.

When the harvester initially causes some pages to be swapped out to Silo, it cannot determine
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the performance impact until the CoolingPeriod ends. As a result, it harvests cautiously,
monitoring the application’s RSS, which is available in the memory stats for its cgroup. If it enters
harvesting mode, triggering the PFRA to move some pages to Silo, then the harvester refrains from
further decreasing the cgroup limit for at least the CoolingPeriod. Afterwards, if performance
is still stable, the harvester may resume decreasing the limit. This ensures that the harvester will not
explore the harvesting size too aggressively without considering the performance impact caused
by any disk I/O.

Handling Workload Bursts. Simply disabling the cgroup memory limit may not prevent perfor-
mance drops in the face of sudden bursts. Memtrade addresses this issue by prefetching previously-
reclaimed pages, proactively swapping them in from slow memory tiers. If the current performance
is worse than all the recorded baseline data points for consecutive epochs, the harvester instructs
Silo to prefetch ChunkSize of the most recently swapped-out pages (Figure 4.5c). Producers
with a low tolerance for performance degradation and compressible data could alternatively use a
compressed RAM disk [87] instead of a disk-based swap device. This would provide more rapid
recovery, trading off total harvestable memory.

4.4.2 Exposing Remote Memory to Consumers

The manager communicates with the broker to report resource availability, and it exposes a KV
or swap interface to consumers. The harvested memory space is logically partitioned into fixed-
size slabs; a slab (by default, 64 MB) is the granularity at which memory is leased to consumers.
Different slabs from the same producer can be mapped to multiple consumers for performance
and load balancing. Upon receiving a message from the broker, the manager create a lightweight
producer store in the producer VM, dedicated to serving remote memory for that consumer.

In Memtrade, the producer store is implemented by running a Redis [67] server within a cgroup
in the producer VM, providing a familiar KV cache interface to consumers. Since an empty Redis
server consumes only 3 MB of memory and negligible CPU, for simplicity, the manager runs
a separate producer store for each consumer. The producer can limit the maximum CPU used
by producer stores via cgroup controls. However, producer-side CPU consumption is typically
modest; YCSB on Redis uses 3.1% of a core on average.

When the lease period expires, before terminating the Redis server, the manager checks with
the broker to determine if the consumer wants to extend its lease (at the current market price).
Otherwise, the producer store is terminated and slabs are returned to the remote memory pool.

Network Rate Limiter. The manager limits the amount of network bandwidth used by each
consumer. We implemented a standard token-bucket algorithm [187] to limit consumer band-
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width. The manager periodically adds tokens to each consumer bucket, in proportion to its allotted
bandwidth specified in the consumer request for remote memory. Before serving a request, the
producer store checks the consumer’s available token count; if the I/O size exceeds the number of
available tokens, it refuses to execute the request and notifies the consumer.

Eviction. The size of a producer store is determined by the amount of memory leased by each
consumer. Once a producer store is full, it uses the default Redis eviction policy, a probabilistic
LRU approximation [255]. In case of sudden memory bursts, the manager must release mem-
ory back to the producer rapidly. In this scenario, the harvester asks the manager to reclaim an
aggregate amount of remote memory allocated to consumers. The manager then generates per-
consumer eviction requests proportional to their corresponding producer store sizes and employs
the approximate-LRU-based eviction for each producer store.

Defragmentation. The size of KV pairs may be smaller than the OS page size [242, 126, 114],
which means that an application-level eviction will not necessarily free up the underlying OS
page if other data in the same page has not been evicted. Fortunately, Redis supports memory
defragmentation, which the producer store uses to compact memory.

4.5 Broker

The Memtrade broker is a trusted third-party that facilitates transactions between producers and
consumers. It can be operated by the cloud provider, or by another company that runs the market
as a service, similar to existing caching-as-a-service providers [57, 68]. Producers and consumers
participate in the remote-memory market voluntarily, by registering their respective credentials
with the broker. Each producer periodically sends its resource utilization metrics to the broker,
which uses the resulting historical time series to predict future remote-memory availability over
requested lease periods. Consumers request remote memory by sending allocation requests to
the broker with the desired number of slabs and lease time, along with other preferences such as
acceptable latency and bandwidth. The broker connects producers and consumers that may reside
in separate virtual private clouds (VPCs) via existing high-bandwidth peering services [85, 39].
The broker maps consumer requests to producer slabs using an assignment algorithm that satisfies
consumer preferences, while minimizing producer overhead and ensuring system-wide wellness
objectives (e.g., load balancing and utilization).

In our current implementation, the broker runs on a single node and can handle a market with
thousands of participating VMs (§4.7.2). Since consumers communicate directly with assigned
producers until their leases expire, even if the broker is temporarily unavailable, the system can still
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continue to operate normally, except for the allocation of new remote memory. For higher availabil-
ity, the broker state could be replicated using distributed consensus, e.g., leveraging Raft [247, 33]
or ZooKeeper [172]. The Memtrade operator may also run several broker instances, each serving
a disjoint set of consumers and producers (e.g., one broker per region or datacenter).

4.5.1 Availability Predictor

Remote memory is transient by nature and can be evicted at any time to protect the performance of
producer applications. Hence, allocating remote memory without considering its availability may
result in frequent evictions that degrade consumer performance. Fortunately, application memory
usage often follows a predictable long-term pattern, such as exhibiting diurnal fluctuations [138].
The broker capitalizes on historical time series data for producer memory consumption, predicting
the availability of offered remote memory using an Auto Regressive Integrated Moving Average
(ARIMA) model [168]. Producers with completely unpredictable usage patterns are not suitable
for Memtrade. ARIMA model parameters are tuned daily via a grid search over a hyperparameter
space to minimize the mean squared error of the prediction.

4.5.2 Remote Memory Allocation

Constraints and Assumptions. While matching a consumer’s remote memory request, the bro-
ker tries to achieve the aforementioned goals under the following assumptions:

1. Online requests: Consumers submit remote memory requests in an online manner. During a
placement decision, new or pending requests may be queued.

2. Uncertain availability: It is unknown exactly how long producer remote memory slabs will
remain available.

3. Partial allocation: The broker may allocate fewer slabs than requested, as long as it satisfies
the minimum amount specified by the consumer.

Placement Algorithm. When the broker receives an allocation request from a consumer, it
checks whether at least one producer is expected to have at least one slab available for the en-
tire lease duration (§4.5.1), at a price that would not exceed the consumer budget (§4.5.3). The
broker calculates the placement cost of the requested slabs based on the current state of all potential
producers with availability, as a weighted sum of the following metrics: number of slabs available
at a given producer, predicted availability (based on ARIMA modeling), available bandwidth and
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CPU, network latency between the consumer and producer, and producer reputation (fraction of re-
mote memory not prematurely evicted during past lease periods – premature eviction of consumer
data hurts a producer’s reputation). A consumer may optionally specify weights for each of these
placement desirability metrics with its request.

The broker selects the producer with the lowest placement cost, greedily assigning the desired
number of slabs. If the producer cannot allocate the entire request, the broker selects the producer
with the next-lowest cost and continues iteratively until there are no slabs left to allocate or no
available producers. When fewer than the requested number are allocated, a request for the re-
maining slabs is appended to a queue. Pending requests are serviced in FIFO order until they are
satisfied, or they are discarded after a specified timeout.

4.5.3 Remote Memory Pricing

Remote memory must be offered at a price that is attractive to both producers and consumers,
providing incentives to participate in the remote memory market. Considering the transient nature
of harvested memory, any monetary incentive for leasing otherwise-wasted resources is beneficial
to a producer, provided its own application-level performance is not impacted. This incentive can
help the producer defray the expense of running its VM. A consumer must weigh the monetary cost
of leasing remote memory against the cost of running a static or spot instance with larger memory
capacity. In case if a rack-scale tiered memory system within any private cloud, the goal for the
broker can be better resource utilization while maintaining the service-level agreement (SLA) for
each applications.

In a public cloud setup, the broker sets a price for leasing a unit of remote memory (GB/hour)
and makes it visible to all consumers. Various economic objectives could be optimized (e.g., total
trading volume, total revenue of producers, etc.) If the primary goal is improving cluster-wide
utilization, the broker needs to focus on maximizing the total trading volume that can be achieved
by setting a market-clearing price for remote memory. In this regards, the broker can continuously
monitor the price of different instance types in the same public cloud. Specifically, for a given
lease, the broker can set the per-unit remote memory price to a value below that associated with
the lowest available instance price at that time. On the other hand, if the broker wants to maximize
its cut of the revenue, it will try to optimize the total revenue of producers. By default, we assume,
the broker wants to maximize its profit. Although, one can come up with any complex market
dynamics and plug in their customized policies to achieve the broker’s goal or market economics
as a whole. Memtrade provides the interface to operate on any pricing model to address different
economic objectives. It’s up to its users to choose the appropriate policy.

From a consumer’s perspective, an alternative to Memtrade is running a separate spot instance
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and consuming its memory remotely [296]. Thus, to be economically viable to consumers, the
price of remote memory in Memtrade should never exceed the corresponding spot instance price.
For simplicity, the broker initially sets the price for each unit of remote memory to one quarter of
the current market price for a spot instance, normalized by its size. This initial lower price makes
remote memory attractive to consumers. Afterwards, the price is adjusted to approximate the
maximal total producer revenue by searching for a better price locally. In each iteration, the broker
considers the current market price p, p+∆p, and p−∆p as the candidates for the price in the next
iteration, where ∆p is the step size (by default, 0.002 cent/GB·hour). Then the broker chooses
the one that generates the maximal total revenue for producers. Our pricing model yields good
performance in real-world traces (§4.5.4). Of course, alternative price-adjustment mechanisms can
be designed to achieve different economic objectives. One can simply add on their own pricing
model and economic objectives to the broker and enjoy the benefit of Memtrade.
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Figure 4.7: Effects of different pricing strategies. Revenue and trading-volume maximization both
perform similarly.
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4.5.4 Pricing Strategy

To study the impact of pricing strategy on the market, we simulate several pricing strategies with
different objectives, such as maximizing the total trading volume, and maximizing the total revenue
of producers. Our baseline sets the remote memory price to one quarter of the current spot-instance
price (Figure 4.7b). We simulate 10,000 consumers that use Memtrade as an inexpensive cache.
To estimate the expected performance benefit for consumers, we select 36 applications from the
MemCachier trace, generate their MRCs (Figure 4.8), and randomly assign one to each consumer.
For each consumer, we ensure that local memory serves at least 80% of its optimal hit ratio.
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Figure 4.8: Miss Ratio Curves of 36 MemCachier Applications

The strategies that maximize total trading volume (Figure 4.7c) and total producer revenue
(Figure 4.7d) both adjust the market price dynamically to optimize their objectives. Significantly,
when the remote-memory supply is sufficient, all three pricing strategies can improve the relative
hit ratio for consumers by more than 16% on average (Figure 4.7e).

We also examine temporal market dynamics using a real-world trace to simulate a total supply
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of remote memory which varies over time. We use the idle memory statistics from the Google
Cluster Trace 2019 – Cell C [41] to generate the total supply for each time slot, and assume one
Google unit represents 5 GB of memory. For the spot instance price, we use the AWS historical
price series of the spot instance type r3.large in the region us-east-2b [17]. Figure 4.9 plots the
results. Consistent with the earlier pricing-strategy results in Figure 4.7, the max-trading-volume
and max-revenue strategies effectively adjust the market price based on both supply and demand
(Figure 4.9a). The behavior of all the three pricing strategies with different economic objectives
show similar levels of consistency (Figure 4.9b–4.9e).
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Figure 4.9: Temporal market dynamics with simulated supply time-series from Google Cluster
Trace 2019.

We also consider a more realistic scenario where consumers consider the probability of be-
ing evicted when using MRCs to calculate their demand. If the eviction probability is 10%, the
total revenue will decrease by 7.6% and 7.1% with the max-trading-volume strategy and the max-
revenue strategy, respectively. Also, the cluster-wide utilization reductions corresponding to the
max-trading-volume strategy and the max-revenue strategy are 0.0% and 5.8% relatively.

In practice, the broker may have no prior knowledge regarding the impact of market price on
consumer demand. In this case, we adjust the market price by searching for a better price locally
with a predefined step size (0.002 cent/GB·hour). Figure 4.9f demonstrates the effectiveness of
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this approach using a simulation with the Google trace; the market price deviates from the optimal
one by only 3.5% on average. Cluster-wide utilization increases from 56.8% to 97.9%, consumer
hit ratios improve by a relative 18.2%, and the consumer’s cost of renting extra memory reduces
by an average of 82.1% compared to using spot instances.

4.6 Consumer

A consumer uses remote memory. It first sends its remote memory demand to the broker, based on
the current market price given by the broker and its expected performance benefit. After receiving
an assignment from the broker, the consumer communicates with producers directly during the
lease period. To ensure the confidentiality and integrity of its remote data, the consumer employs
standard cryptographic methods during this communication. Rate-limiting techniques are used to
protect producers from misbehaving or malicious consumers.

The consumer can use either a KV cache or a swap interface, which we built on top of Redis [67]
and Infiniswap [165] clients, respectively. By default, Memtrade uses the key-value interface,
because in contrast to swapping to disk, applications using a KV cache naturally assume cached
data can disappear. We have also found the KV interface performs better than the swap interface
(§4.7.3), due to the added overhead of going through the block layer when swapping. For the sake
of brevity, we focus our description on the KV interface.

4.6.1 Confidentiality and Integrity

This section explains how the consumer ensures data confidentiality and integrity during its KV
operations. The subscripts C and P are used to denote consumer-visible and producer-visible data,
respectively.

PUT Operations. To perform a PUT, the consumer prepares a KV pair (KC , VC) to be stored at
a remote producer. First, the value VC is encrypted using the consumer’s secret key and a fresh,
randomly-generated initialization vector (IV ). The IV is prepended to the resulting ciphertext,
yielding the value VP to be stored at the producer. Next, a secure hash H is generated for VP , to
verify its integrity and defend against accidental or malicious corruption by the producer.

To avoid exposing the lookup key KC , the consumer substitutes a different key KP . Since KP

need only be unique, it can be generated efficiently by simply incrementing a counter for each new
key stored at a producer. The producer store storing the KV pair can be identified using an index
Pi into a small table containing producer information.

86



The consumer stores the metadata tuple MC = (KP , H , Pi) locally, associating it with KC .
While many implementations are possible, this can be accomplished conveniently by adding (KC ,
MC) to a local KV store, where an entry serves as a proxy for obtaining the corresponding original
value. This approach also enables range queries, as all original keys are local.

GET Operations. To perform a GET, the consumer first performs a local lookup using KC to
retrieve its associated metadata MC , and sends a request to the producer using substitute key KP .
The consumer verifies that the value VP returned by the producer has the correct hash H; if veri-
fication fails, the corrupted value is discarded. The value VP is then decrypted using IV with the
consumer’s encryption key, yielding VC .

DELETE Operations. To perform a consumer-side eviction, the consumer first removes the
metadata tuple MC from its local store. It then sends an explicit DELETE request to the respective
producer store so that the consumer and producer store contents remain synchronized.

Metadata Overhead. In our current prototype, each consumer uses a single secret key to encrypt
all values. Encryption uses AES-128 in CBC mode, and hashing uses SHA-256, both standard
constructions. By default, the integrity hash is truncated to 128 bits to save space. A 64-bit
counter is employed to generate compact producer lookup keys. The resulting space overhead for
the metadata MC corresponding to a single KV pair (KC , VC) is 24 bytes; the IV consumes an
additional 16 bytes at the producer.

For applications where consumer data is not sensitive, value encryption and key substitution are
unnecessary. Such an integrity-only mode requires only the integrity hash, reducing the metadata
overhead to 16 bytes.

4.6.2 Purchasing Strategy

A consumer must determine a cost-effective amount of memory to lease to meet its application-
level performance goals. In general, it may be difficult to estimate the monetary value of additional
memory. However, when its application is a cache, lightweight sampling-based techniques [295,
170, 293] can estimate miss ratio curves (MRCs) accurately, yielding the expected performance
benefit from a larger cache size.

The consumer estimates the value of additional cache space using the current price-per-hit

from the known cost of running its VM, and its observed hit rate. The expected increase in hits
is computed from its MRC, and valued based on the per-hit price. When remote memory is more
valuable to the consumer than its cost at the current market price, it should be leased, yielding an
economic consumer surplus.
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Total
Harvested

Idle
Harvested

Workload
Harvested

Perf
Loss

Redis 3.8 GB 23.7% 17.4% 0.0%
memcached 8.0 GB 51.4% 14.6% 1.1%
MySQL 4.2 GB 21.7% 7.0% 1.6%
XGBoost 18.3 GB 15.4% 17.8% 0.3%
Storm 3.8 GB 1.1% 1.4% 0.0%
CloudSuite 3.6 GB 2.5% 15.3% 0.0%

Table 4.1: Total memory harvested (idle and unallocated), the percentage of idle memory, the
percentage of application-allocated memory, and the performance loss of different workloads.

4.7 Evaluation

We evaluate Memtrade on a CloudLab [25] cluster using both synthetic and real-world cluster
traces.1 Our evaluation addresses the following questions:

• How effectively can memory be harvested? (§4.7.1)

• How well does the broker assign remote memory? (§4.7.2)

• What are Memtrade’s end-to-end benefits? (§4.7.3)

Experimental Setup. Unless otherwise specified, we configure Memtrade as follows. The pro-
ducer averages application-level latency over each second as its performance metric. We gener-
ate both the baseline performance distribution and the recent performance distribution from data
points over the previous 6 hours (WindowSize). If the recent p99 drops below the baseline p99
by more than 1% (P99Threshold), it is considered a performance drop. Harvesting uses a
64 MB ChunkSize and a 5-minute CoolingPeriod. If a severe performance drop occurs for
3 consecutive epochs, Silo prefetches ChunkSize from disk.

Each physical server is configured with 192 GB DRAM, two Intel Xeon Silver 4114 processors
with 20 cores (40 hyperthreads), and a 10Gb NIC. We use Intel DC S3520 SSDs and 7200 RPM
SAS HDDs. We run the Xen hypervisor (v4.9.2) with Ubuntu 18.04 (kernel v4.15) as the guest
OS.

Workloads. Consumers run YCSB [137] on Redis [67]. Producers run the following applications
and workloads:

1Memtrade can be readily deployed on any major cloud provider. We run our evaluation in CloudLab since it is
free.
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Figure 4.10: VM memory composition over time. Unallocated represents the part of memory not
allocated to the application; harvested means the portion of application’s memory which has been
swapped to disk; Silo denotes the part of memory used by Silo to buffer reclaimed pages; RSS
consists of application’s anonymous pages, mapped files, and page cache that are collected from
the cgroup’s stats file.

• Redis running a Zipfian workload using a Zipfian constant of 0.7 with 95% reads and 5%
updates.

• memcached and MySQL running MemCachier [57, 125] for 36 hours and 40 hours, respec-
tively. We use 70 million SET operations to populate the memcached server, followed by
677 million queries for memcached and 135 million queries for MySQL.

• XGBoost [121] training an image classification model on images of cats and dogs [24] using
CPU, with 500 steps.

• Storm [72] running the Yahoo streaming workload [124] for 1.5 hours.

• CloudSuite [43] executing a web-serving benchmark with memcached as the cache and
MySQL as the database, with 1000 users and 200 threads.

VM Rightsizing. To detemine the VM size for each workload, we find the AWS instance type [6]
with the minimal number of cores and memory that can fit the workload without affecting its
baseline performance. We use configurations of M5n.Large (2 vCPU, 8 GB RAM) for Redis,
M5n.2xLarge (8 vCPU, 32 GB RAM) for memcached and XGBoost, C6g.2xLarge (8 vCPU,
16 GB RAM) for MySQL, C6g.xLarge (4 vCPU, 8 GB RAM) for Storm, C6g.Large (2 vCPU,
4 GB RAM) for CloudSuite, and T2.xLarge (4 vCPU, 16 GB RAM) for consumer YCSB.
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Figure 4.11: Prefetching enables faster recovery and better latency during workload bursts. Mem-
ory compression enables even faster recovery, trading off the total amount of harvestable memory.
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Figure 4.12: Sensitivity analysis for the harvester. Single-machine experiments using Redis with
YCSB Zipfian constant 0.7.

4.7.1 Harvester

Effectiveness. To observe the effectiveness of the harvester, we run the workloads with their
respective producer configurations. For Redis, memcached, and MySQL we use average latency
to measure performance. Since XGBoost, Storm, and Cloudsuite do not provide any real-time
performance metric, we use the promotion rate (number of swapped-in pages) as a proxy for per-
formance.

We find that Memtrade can harvest significant amounts of memory, even from right-sized VMs
(Table 4.1). Here, a notable portion of the total harvested memory is extracted from the appli-
cation’s idle memory (on average, 1.1–51.4% across the entire workload) at a lower performance
degradation cost of 0–1.6%. Also, a whole-machine, all-core analysis shows that the producer-side
CPU and memory overheads due to the harvester were always less than 1%.

Figure 4.10 plots memory allocation over time for two representative workloads, and shows
that for workloads such as MemCachier with varying access patterns (Figure 4.10b), the harvester
dynamically adjusts the amount of harvested memory. For most workloads, the percentage of idle
harvested memory is higher at the end of the run. Therefore, we expect that if we ran our workloads
longer, the average percentage of idle harvested memory would only increase.
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Impact of Burst-Mitigation Techniques. To observe the effectiveness of the harvester during
workload bursts, we run YCSB on Redis using a Zipfian distribution (with constant 0.7). To create
a workload burst, we abruptly shift it to a uniform distribution after one hour of the run. Figure 4.11
shows the average latency and p99 latency using different burst-mitigation approaches. When
enabled, Silo prefetches harvested pages back into memory, which helps the application reduce its
recovery time by 28.6% and 65.5% over SSD and HDD, respectively. Although prefetching causes
a higher peak p99 latency on HDD due to contending with swapping I/O, this high tail latency is
transient and the application can recover much faster. A compressed RAM disk exhibits minimal
performance drop period during the workload burst (68.7% and 10.9% less recovery time over
prefetching from SSD and HDD, respectively), at the cost of less harvested memory.

Sensitivity Analysis. We run YCSB over Redis with a Zipfian constant of 0.7 to understand the
effect of each parameter on harvesting and producer performance. Each parameter is evaluated
in an isolated experiment. Figure 4.12 reports the results, using average performance to quantify
degradation.

The Silo CoolingPeriod controls the aggressiveness of harvesting (Figure 4.12a). Setting it
too high leads to less harvesting, while setting it too low causes performance drops that eventually
also leads to less harvested memory.

Both the harvesting ChunkSize (Figure 4.12b) and the P99Threshold (Figure 4.12c) af-
fect harvesting aggressiveness in a less pronounced way. The amount of harvested memory in-
creases with more aggressive parameters, while the performance impact always remains below
1%. The performance-monitoring WindowSize does not significantly change either the har-
vested memory or performance (Figure 4.12d).

4.7.2 Broker Effectiveness

To evaluate the effectiveness of the broker, we simulate a disaggregated memory consumption
scenario by replaying two days worth of traces from Google’s production cluster [41]. Machines
with high memory demand – often exceeding the machine’s capacity – are treated as consumers.
Machines with medium-level memory pressure (at least 40% memory consumption throughout the
trace period) are marked as producers. When a consumer’s demand exceeds its memory capacity,
we generate a remote memory request to the broker. We set the consumer memory capacity to
512 GB, the minimum remote memory slab size to 1 GB, and a minimum lease time of 10 minutes.
In our simulation, 1400 consumers generate a total of 10.7 TB of remote memory requests within
48 hours. On the producer side, we simulate 100 machines.

On average, the broker needs to assign 18 GB of remote memory to the producers per minute.
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Figure 4.13: Simulation of remote memory usage shows the broker allocates most requests and
improves cluster-wide utilization.

Our greedy placement algorithm can effectively place most requests. Even for a simulation where
producers have only 64 GB DRAM, it can satisfy 76% of the requests (Figure 4.13a). With
larger producers, the total number of allocations also increases. As expected, Memtrade increases
cluster-wide utilization, by 38% (Figure 4.13b).

Availability Predictor. To estimate the availability of producer memory, we consider its average
memory usage over the past five minutes to predict the next five minutes. ARIMA predictions are
accurate when a producer has steady usage or follows some pattern; only 9% of the predicted usage
exceeds the actual usage by 4%. On average, 4.59% of the allocated producer slabs get revoked
before their lease expires.

4.7.3 Memtrade’s Overall Impact

Encryption and Integrity Overheads. To measure the overhead of Memtrade, we run the YCSB
workload over Redis with 50% remote memory. Integrity hashing increases remote memory access
latency by 24.3% (22.9%) at the median (p99). Hashing and key replacement cause 0.9% memory
overhead for the consumer. Due to fragmentation in the producer VM, the consumer needs to
consume 16.7% extra memory over the total size of actual KV pairs. Note that this fragmentation
overhead would be same if the consumer had to store the KVs in its local memory.

Encryption and key substitution increase latency by another 19.8% (14.7%) at the median (p99).
Due to padding, encryption increases the memory overhead by another 25.2%. Fragmentation in
the producer VM causes 6.1% memory overhead. Note that for trusted producers, or for non-
sensitive consumer data, encryption can be disabled.
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Figure 4.14: Benefit of Memtrade with various configurations. Without Memtrade, remote requests
are served from SSD.

Application-Level Performance. We run YCSB over Redis with different consumer VM con-
figurations and security modes. The consumer memory size is configured such that Redis needs at
least x% (x ∈ {0, 10, 30, 50, 100}) of its working set to be in remote Memtrade memory. If remote
memory is not available, the I/O operation is performed using SSD.

For the 0% configuration, the entire workload fits in the consumer VM’s memory, and is fully
served by its local Redis. Figure 4.14 shows that an application benefits from using remote memory
as additional cache instead of missing to disk. For the fully-secure KV cache interface, Memtrade
improves average latency by 1.3–1.9×, and p99 latency by 1.5–2.1×. In the case of non-sensitive
data with only integrity checks, Memtrade provides 1.45–2.3× and 2.1–2.7× better average and
p99 latencies, respectively.

We also implemented a transparent swap-based consumer interface, built on top of Infin-
iswap [165]. When consuming remote memory via fully-secure remote paging, Memtrade’s perfor-
mance drops due to hypervisor swapping overhead – average and p99 latency drop by 0.95–2.1×
and 1.1–3.9×, respectively. However, given a faster swapping mechanism [224, 267] or faster
network (e.g., RDMA), Memtrade swap is likely to provide a performance benefit to consumers.

Cluster Deployment. To measure the end-to-end benefit of Memtrade, we run 110 applications
on CloudLab – 64 producer and 46 consumer VMs, randomly distributed across the cluster. Pro-
ducers run six workloads described earlier, while consumers run YCSB on Redis, configured with
10%, 30%, and 50% remote memory. The total consumer and producer memory footprints are
0.7 TB and 1.3 TB, respectively; our cluster has a total of 2.6 TB. Memtrade benefits the con-
sumers even in a cluster setting (Table 4.2). Memtrade improves the average latency of consumer
applications by 1.6–2.8×, while degrading the average producer latency by 0.0–2.1%.
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Producer
Application

Avg. Latency (ms) Consumer
Application

Avg. Latency (ms)
w/o

Harvester
w/

Harvester
w/o

Memtrade
w/

Memtrade
Redis 0.08 0.08 Redis 0% 0.62 –
Memcached 0.82 0.83 Redis 10% 1.10 0.71
MySQL 1.57 1.60 Redis 30% 1.54 0.88
Storm 5.33 5.47 Redis 50% 2.49 0.89

Table 4.2: Memtrade benefits consumers at a small cost to producers.

4.8 Discussion

Network Stack. As public cloud environments are typically virtualized, inter-VM networking
incurs additional latency due to traversing both kernel and hypervisor networking stacks. As shown
in Figure 4.15, kernel-bypass networking (e.g., DPDK, RDMA) offers lower latency in virtualized
environments; with RDMA and SR-IOV, the additional overhead is minimal compared to bare-
metal machines. Unfortunately, RDMA is not widely available in existing public clouds. While
DPDK is slower than RDMA, it still achieves single-digit µs latencies for small objects. However,
it consumes an excessive amount of CPU due to polling (nearly 100% of local CPU for larger
objects), which would require producers to have extremely idle CPU resources to be practical.
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Figure 4.15: Network latency using VMs vs.
bare-metal hosts for various protocols and differ-
ent object sizes.

CXL [27] is a new processor-to-
peripheral/accelerator cache-coherent in-
terconnect protocol that builds on and extends
the existing PCIe protocol by allowing co-
herent communication between the connected
devices.2 It provides byte-addressable memory
in the same physical address space and allows
transparent memory allocation using standard
memory allocation APIs. It also allows
cache-line granularity access to the connected
devices and underlying hardware maintains
cache-coherency and consistency. With PCIe
5.0, CPU-to-CXL interconnect bandwidth is
similar to the cross-socket interconnects on a
dual-socket machine [326]. CXL-Memory access latency is also similar to the NUMA access

2Prior industry standards in this space such as CCIX [22], OpenCAPI [62], Gen-Z [38] etc. have all come together
under the banner of CXL consortium. While there are some related research proposals (e.g., [206]), CXL is the de
facto industry standard at the time of writing this paper.
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latency. CXL adds around 50-100 nanoseconds of extra latency over normal DRAM access.
Because of its universal availability, Memtrade currently uses TCP networking, despite its rela-

tively high overhead and other limitations. For deployments in private clouds, replacing TCP with
RDMA or even CXL-enabled rack-servers would improve performance significantly.

Consumer Abstractions. Memtrade is designed considering the readily deployability feature for
most of the common usages in existing cloud infrastructure. To hold its ubiquitousness, we design
the consumer APIs thinking TCPs as the most common network medium. Although it needs some
re-write or modification to the consumer applications, on TCP networks, caching applications can
usually sustain the network communication overhead. Swapping to remote memory can be a viable
and transparent abstraction for consumer applications [224, 207, 111]. However, to maintain the
performance while remote swapping, we need to ensure the network stack is at least as performant
as RDMA over Infiniband. With faster and next-generation cache-coherent CXL interconnects, we
are confident on Memtrade’s applicability. In such a setup, we can design more transparent and
performant interfaces to the consumers to consume remote memory efficiently. OS level features
(i.e., migration-based page placement [225]) can be utilized to design new consumer APIs.

4.9 Related Work

Remote Memory. Existing work on remote-memory-enabled datacenter [275, 191, 166, 157,
202, 243, 214, 186, 94, 99, 92, 165, 267] assume that memory is contained within the same or-

ganization and shared among multiple cooperative applications. Given the large amount of idle
memory and diverse consumer applications and workloads, public clouds serve as a promising
environment to exploit remote memory.

Public Cloud Spot Marketplaces. Amazon AWS, Microsoft Azure, and Google Cloud offer
spot instances [71] – a marketplace for unutilized public cloud VMs that have not been reserved,
but have been provisioned by the cloud provider. AWS allows customers to bid on spot instances
while Azure and Google Cloud [80, 63] sell them at globally fixed prices. Prior work explored
the economic incentives for spot instances [89, 296, 327, 305, 282, 320, 108, 90, 156, 278, 159].
However, they used full spot instances to produce memory; Memtrade is more generic, enabling
fine-grained consumption of excess memory from any instance type.

Single-Server Memory Management. Reclaiming idle memory from applications has been
explored in many different contexts, e.g., physical memory allocation across processes by an
OS [140, 130, 88], ballooning in hypervisors [294, 272, 277], transcendent memory for caching
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disk swap [221, 222, 220], etc. Our harvesting approach is related to application-level balloon-
ing [269]. However, in most prior work, applications belong to the same organization while Mem-
trade harvests and grants memory across tenants. Multi-tenant memory sharing [90, 156, 129] has
considered only single-server settings, limiting datacenter-wide adoption.

Resource Autoscaling and Instance Rightsizing. Cloud orchestration frameworks and sched-
ulers [290, 273, 52, 96, 13] can automatically increase or decrease the number of instances based
on the task arrival rate. However, users still need to statically determine the instance size before
launching a task, which may lead to resource overprovisioning.

Instance rightsizing [268, 82, 97, 100, 298] automatically determines the instance size based
on a task’s resource consumption. In existing solutions, cloud providers are fully responsible
for resource reclamation and performance variability in producer VMs. Memtrade is by design
more conservative: producers can generate and reclaim memory capacity at any time. Even with
rightsizing, servers may have idle memory that can be harvested and offered to consumer VMs.

Memory Harvesting. Harvesting unused resources of a traditional server or VM is a concern in
many hyperscale datacenters [155, 276]. Earlier research mostly focus on the unallocated memory
of a VM as the harvesting target. However, besides that unallocated memory, there are significant
amount of memory that has been allocated to an application; the application used that for a while;
and then, remained unutilized for a significant amount of time [225, 301, 208, 202]. Memtrade
harvester considers all kind of idle memory.

4.10 Conclusion

We present Memtrade, a readily deployable system for the realization of disaggregated memory
marketplace on existing clouds. With the rising popularity of serverless and disaggregated storage,
there will be increased demand for offering disaggregated computing resources in public clouds,
and our work attempts to apply a similar approach to memory. This opens several interesting
research directions for future work, including exploring whether other resources, such as CPU and
persistent memory, can be offered in a similar manner via a disaggregated-resource market.
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CHAPTER 5

TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory

5.1 Introduction

The surge in memory needs for datacenter applications [251, 34], combined with the increasing
DRAM cost and technology scaling challenges [205, 219] has led to memory becoming a signifi-
cant infrastructure expense in hyperscale datacenters. Non-DRAM memory technologies provide
an opportunity to alleviate this problem by building tiered memory subsystems and adding higher
memory capacity at a cheaper $/GB point [185, 146, 144, 21, 51]. These technologies, however,
have much higher latency vs. main memory and can significantly degrade performance when data
is inefficiently placed in different levels of the memory hierarchy. Additionally, prior knowledge
of application behavior and careful application tuning is required to effectively use these technolo-
gies. This can be prohibitively resource-intensive in hyperscale environments with varieties of
rapidly evolving applications.

Compute Express Link (CXL) [27] mitigates this problem by providing an intermediate la-
tency operating point with DRAM-like bandwidth and cache-line granular access semantics. CXL
protocol allows a new memory bus interface to attach memory to the CPU (Figure 5.1). From
a software perspective, CXL-Memory appears to a system as a CPU-less NUMA node where its
memory characteristics (e.g., bandwidth, capacity, generation, technology, etc.) are independent of
the memory directly attached to the CPU. This allows flexibility in memory subsystem design and
fine-grained control over the memory bandwidth and capacity [31, 30, 69]. Additionally, as CXL-
Memory appears like the main memory, it provides opportunities for transparent page placement on
the appropriate memory tier. However, Linux’s memory management mechanism is designed for
homogeneous CPU-attached DRAM-only systems and performs poorly on CXL-Memory system.
In such a system, as memory access latency varies across memory tiers (Figure 5.2), application
performance greatly depends on the fraction of memory served from the fast memory.

97



CPU

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

(a) Without CXL

CPU

DRAM

DRAM

NVMDDR LPDDR

CXL

….
Memory Technology

(b) With CXL

Figure 5.1: CXL decouples memory from compute.

To understand whether memory tiering can be beneficial, we need to understand the variety of
memory access behavior in existing datacenter applications. For each application, we want to know
how much of its memory remains hot, warm, and cold within a certain period and what fraction
of its memory is short- vs. long-lived. Existing Idle Page Tracking (IPT) based characterization
tools [32, 46, 291] do not fit the bill as they require kernel modifications that is often not possible
in productions. Besides, continuous access bit sampling and profiling require excessive CPU and
memory overhead. This may not scale with large working sets. Moreover, applications often have
different sensitivity towards different types of memory pages (e.g., anon page, file page cache,
shared memory, etc.) which existing tools do not account. To this end, we build Chameleon, a
robust and lightweight user-space tool, that uses existing CPU’s Precise Event-Based Sampling
(PEBS) mechanism to characterize an application’s memory access behavior (§5.3). Chameleon
generates a heat-map of memory usage on different types of pages and provides insights into an
application’s expected performance with multiple temperature tiers.

We use Chameleon to profile a variety of large memory-bound applications across different
service domains running in our production and make the following observations. (1) Meaning-
ful portions of application working sets can be warm/cold. We can offload that to a slow tier
memory without significant performance impact. (2) A large fraction of anon memory (created
for a program’s stack, heap, and/or calls to mmap) tends to be hotter, while a large fraction of
file-backed memory tends to be relatively colder. (3) Page access patterns remain relatively stable
for meaningful time durations (minutes to hours). This is enough to observe application behavior
and make page placement decisions in kernel-space. (4) With new (de)allocations, actual physical
page addresses can change their behavior from hot to cold and vice versa fairly quickly. Static
page allocations can significantly degrade performance.

Considering the above observations, we design an OS-level transparent page placement mech-
anism – TPP, to efficiently place pages in a tiered-memory systems so that relatively hot pages
remain in fast memory tier and cold pages are moved to the slow memory tier (§5.5). TPP has
three prime components: (a) a lightweight reclamation mechanism to demote colder pages to the

98



Cache
Main 

Memory
CXL-Memory

NVM 
Disaggregated Memory

SSD
HDD

Register 0.2ns
1-40ns

80-140ns

170-250ns

300-400ns
2-4μs

10-40μs
3-10ms

Attached 
to CPU

Network 
Attached

CPU 
Independent

Figure 5.2: Latency characteristics of memory technologies.

slow tier node; (b) decoupling the allocation and reclamation logic for multi-NUMA systems to
maintain a headroom of free pages on fast tier node; and (c) a reactive page promotion mechanism
that efficiently identifies hot pages trapped in the slow memory tier and promote them to the fast
memory tier to improve performance. We also introduce support for page type-aware allocation
across the memory tiers – preferably allocate sensitive anon pages to fast tier and file caches to
slow tier. With this optional application-aware setting, TPP can act from a better starting point and
converge faster for applications with certain access behaviors.

We choose four production workloads that constitute significant portion of our server fleet and
run them on a system that support CXL 1.1 specification (§5.6). We find that TPP provides the sim-
ilar performance behavior of all memory served from the fast memory tier. For some workloads,
this holds true even when local DRAM is only 20% of the total system memory. TPP moves all the
effective hot memory to the fast memory tier and improves default Linux’s performance by up to
18%. We compare TPP against NUMA Balancing [60] and AutoTiering [189], two state-of-the-art
solutions for tiered memory. TPP outperforms both of them by 5–17%.

We make the following contributions in this paper:

• We present Chameleon, a lightweight user-space memory characterization tool. We use it
to understand workload’s memory consumption behavior and assess the scope of tiered-
memory in hyperscale datacenters (§5.3).

• We propose TPP for efficient memory management on a tiered-memory system (§5.5). We
publish the source code of TPP. A major portion of it has been merged to Linux kernel v5.18.
Rest of it is under an upstream discussion.

• We evaluate TPP on a CXL-enabled tiered-memory systems with real production workloads
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(§5.6) for years. TPP makes tiered memory systems as performant as an ideal system with all
memory in local tier. For datacenter applications, TPP improves default Linux’s performance
by up to 18%. It also outperforms NUMA Balancing and AutoTiering by 5–17%.

To the best of our knowledge, we are the first to characterize and evaluate an end-to-end practi-
cal CXL-Memory system that can be readily deployed in hyperscale datacenters.

5.2 Motivation

Increased Memory Demand in Datacenter Applications. To build low-latency services, in-
memory computation has become a norm in datacenter applications. This has led to rapid growth in
memory demands across the server fleet. With new generations of CPU and DRAM technologies,
memory is becoming the more prominent portion of rack-level power and TCO (Figure 5.3).
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Figure 5.3: Memory as a percentage of rack TCO and power across Meta’s different hardware
generations.

Scaling Challenges in Homogeneous Server Designs. In today’s server architectures, memory
subsystem design is completely dependent on the underlying memory technology support in the
CPUs. This has several limitations: (a) memory controllers only support a single generation of
memory technology which limits mix-and-match of different technologies with different cost-per-
GB and bandwidth vs. latency profiles; (b) memory capacity comes at power-of-two granularity
which limits finer grain memory capacity sizing; (c) there are limited bandwidth vs. capacity
points per DRAM generation (Figure 5.4). This forces higher memory capacity in order to get
more bandwidth on the system. Such tight coupling between CPU and memory subsystem restricts
the flexibility in designing efficient memory hierarchies and leads to stranded compute, network,
and/or memory resources. Prior bus interfaces that allow memory expansion are also proprietary to
some extent [50, 169, 11] and not commonly supported across all the CPUs [38, 62, 22]. Besides,
high latency characteristics and lack of coherency limit their viability in hyperscalers.
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CXL for Designing Tiered-Memory Systems. CXL [27] is an open, industry-supported in-
terconnect based on the PCI Express (PCIe) interface. It enables high-speed, low latency com-
munication between the host processor and devices (e.g., accelerators, memory buffers, smart I/O
devices, etc.) while expanding memory capacity and bandwidth. CXL provides byte addressable
memory in the same physical address space and allows transparent memory allocation using stan-
dard memory allocation APIs. It allows cache-line granularity access to the connected devices and
underlying hardware maintains coherency and consistency. With PCIe 5.0, CPU to CXL inter-
connect bandwidth will be similar to the cross-socket interconnects (Figure 5.5) on a dual-socket
machine. CXL-Memory access latency is also similar to the NUMA access latency. CXL adds
around 50-100 nanoseconds of extra latency over normal DRAM access. This NUMA-like be-
havior with main memory-like access semantics makes CXL-Memory a good candidate for the
slow-tier in datacenter memory hierarchies.

CXL solutions are being developed and incorporated by leading chip providers [1, 12, 59, 70,
30, 69]. All the tools, drivers, and OS changes required to support CXL are open sourced so
that anyone can contribute and benefit directly without relying on single supplier solutions. CXL
relaxes most of the memory subsystem limitations mentioned earlier. It enables flexible mem-
ory subsystem designs with desired memory bandwidth, capacity, and cost-per-GB ratio based on
workload demands. This helps scale compute and memory resources independently and ensure a
better utilization of stranded resources.

Scope of CXL-Based Tiered-Memory Systems. Datacenter workloads rarely use all of the
memory all the time [202, 41, 4, 292, 301]. Often an application allocates a large amount of
memory but accesses it infrequently [202, 226]. We characterize four popular applications in
our production server fleet and find that 55-80% of an application’s allocated memory remains
idle within any two minutes interval (§5.3.2). Moving this cold memory to a slower memory
tier can create space for more hot memory pages to operate on the fast memory tier and improve
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application-level performance. Besides, it also allows reducing TCO by flexible server design with
smaller fast memory tier and larger but cheaper slow memory tier.

As CXL-attached slow memory can be of any technology (e.g., DRAM, NVM, LPDRAM, etc.),
for the sake of generality, we will call a memory directly attached to a CPU as local memory and
a CXL-attached memory as CXL-Memory.

Lightweight Characterization of Datacenter Applications. In a hyperscaler environment,
different types of rapidly evolving applications consume a production server’s resources. Applica-
tions can have different requirements, e.g., some can be extremely latency sensitive, while others
can be memory bandwidth sensitive. Sensitivity towards different memory page types can also vary
for different applications. To understand the scope of tiered-memory system for existing datacen-
ter applications, we need to characterize their memory usage pattern and quantify the opportunity
of memory offloading at different memory tiers for different page types. This insight can help
system admins decide on the flexible and optimized memory configurations to support different
workloads.

Existing memory characterization tools fall short of providing these insights. For example, ac-
cess bit-based mechanism [32, 46, 291] cannot track detailed memory access behavior because it
tells whether a given page is accessed within a certain period of time. Even if a page gets multiple
accesses within a tracking cycle, IPT-based tools will count that as a single access. Moreover,
IPT only provides information in the physical address space – we cannot track memory alloca-
tion/deallocation if a physical page is re-used by multiple virtual pages. The overhead of such
tools significantly increases with the application’s memory footprint size. Even for application’s
with 10s of GB working set size, the overhead of IPT-based tool can be 20–90% [? ]. Simi-
larly, complex PEBS-based user-space tools [261, 123, 303, 274] lead to high CPU overheads
(more than 15% per core) and often slow down the application. None of these tools generate page
type-aware heat map.
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Figure 5.6: Overview of Chameleon components (left) and workflow (right)

5.3 Characterizing Datacenter Applications

To understand the scope of tiered-memory in hyperscale applications, we develop Chameleon, a
light-weight user-space memory access behavior characterization tool. The objective of developing
Chameleon is to allow users hop on any existing datacenter production machine and readily deploy
it without disrupting the running application(s) and modifying the underline kernel. Chameleon’s
overhead needs to be comparatively lower such that it does not notably affect a production appli-
cation’s behavior. Chameleon’s prime use case is to understand an application’s memory access
behavior, i.e., what fraction of an application’s memory remains hot-warm-cold, how long a page
survive on a specific temperature tier, how frequently they get accessed and so on. In practice, to
characterize a certain type of application, we expect to run Chameleon for a few hours on a tiny
fraction of servers in the whole fleet.

Considering the above objectives, we design Chameleon with two primary components – a Col-
lector and a Worker– running simultaneously on two different threads. Collector utilizes the PEBS
mechanism of modern CPUs to collect hardware-level performance events related to memory ac-
cesses. Worker uses the sampled information to generate insights.

Collector. Collector samples last level cache (LLC) misses for demand loads (event
MEM LOAD RETIRED.L3 MISS) and optionally TLB misses for demand stores (event
MEM INST RETIRED.STLB MISS STORES). Sampled records provide us with the PID and
virtual memory address for the memory access events. Like any other sampling mechanism, ac-
curacy of PEBS depends on the sampling rate – frequent samples provide higher accuracy. High
sampling rate, however, incurs higher performance overhead directly on application threads and
demands more CPU resources for Chameleon’s Worker thread. In our fleets, sampling rate is con-
figured as one sample for every 200 events, which appears as a good trade-off between overhead
and accuracy. Note the choice of the sampling event on the store side is due to hardware lim-
itations, i.e., there is no precise event for LLC-missed stores, likely because stores are marked
complete once TLB translation is done in modern high-end CPUs. We have conveyed the concern
on this limitation to major x86 vendors in multiple occasions.
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To improve flexibility, the Collector divides all CPU cores into a set of groups and enables
sampling on one or more group(s) at a time (Figure 5.6a). After each mini interval (by
default, 5 seconds), the sampling thread rotates to the next core group. This duty-cycling helps
further tune the trade-off between overhead and accuracy. It also allows sampling different events
on different core groups. For example, for latency-critical applications, one can choose to sample
half of the cores at a time. On the other hand, for store-heavy applications, one can enable load
sampling on half of the cores and store sampling on the other half at the same time.

The Collector reads the sampling buffer and writes into one of the two hash tables. After each
interval (by default, 1 minute), the Collector wakes up the Worker to process data in current
hash table and moves to the other hash table for storing next interval’s sampled data.

Worker. The Worker (Figure 5.6b) runs on a separate thread to read page access information
and generate insights on memory access behavior. It considers the address of a sampled record as
a virtual page access where the page size is defined by the OS. This makes it generic to systems
with any page granularities (e.g., 4KB base page, 2MB huge page, etc.). To generate statistics
on both virtual- and physical-spaces, the Worker finds the corresponding physical page mapped to
the sampled virtual page. This address translation can cause high overhead if the target process’s
working set size is extremely large (e.g., terabyte-scale). One can disable the Worker’s physical
address translation feature and characterize an application only on its virtual-space access pattern.

For each page, a 64-bit bitmap tracks its activeness within an interval. If a page is active within
an interval, the corresponding bit is set. At the end of each interval, the bitmap is left-shifted one
bit to track for a new interval. One can use multiple bits for one interval to capture the page access
frequency, at the cost of supporting shorter history. After generating the statistics and reporting
them, the Worker sleeps (Figure 5.6c).

To characterize an application deployed on hundreds of thousands of servers, we run Chameleon
on a small set of servers only for a few hours. During our analysis, we chose servers where system-
wide CPU and memory usage does not go above 80%. In such production environments, we do not
notice any service-level performance impact while running Chameleon. CPU overhead is within
3–5% of a single core. However, on a synthetic memory bandwidth sensitive workload that uses all
CPU cores so that Chameleon needs to contend for CPU, we lose 7% performance due to profiling.

5.3.1 Production Workload Overview

We use Chameleon to characterize most popular memory-bound applications running for years
across our production server fleet serving live traffic on four diverse service domains. These work-
loads constitute a significant portion of the server fleet and represent a wide variety of our work-
loads [285, 284]. Web implements a Virtual Machine to serve web requests. Web1 is a HipHop
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Figure 5.7: Application memory usage over last N mins.

Virtual Machine (HHVM)-based and Web2 is a Python-based service. Cache is a large distributed-
memory object caching service lying between the web and database tiers for low-latency data-
retrieval. Data Warehouse is a unified computing engine for parallel data processing on compute
clusters. This service manages and coordinates the execution of long and complex batch queries on
data across a cluster. Ads are compute heavy workloads that retrieve in-memory data and perform
machine learning computations.

5.3.2 Page Temperature

In datacenter applications, a significant amount of allocated memory remains cold beyond a few
minutes of intervals (Figure 5.7). Web, Cache, and Ads use 95–98% of the system’s total memory
capacity, but within a two-minute interval, they use 22–80% of the total allocated memory on
average. Data Warehouse is a compute-heavy workload where a specific computation operation
can span even terabytes of memory. This workload consumes almost all the available memory
within a server. Even here, on average, only 20% of the accessed memory is hot within a two-
minute interval.

Observation: A significant portion of a datacenter application’s accessed memory remain cold
for minutes. Tiered memory system can be a good fit for such cold memory if page placement
mechanism can move these cold pages to a lower memory tier.

5.3.3 Temperature Across Different Page Types

Applications consume different types of pages based on application logic and execution demand.
However, the fraction of anons (anonymous pages) remain hot is higher than the fraction of files
(file pages). For Web, within a two-minute interval, 35–60% of the total allocated anons remain
hot; for files, in contrast, it is only 3–14% of the total allocation (Figure 5.8).
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Figure 5.9: Memory usage over time for different applications

Cache applications use tmpfs [77] for a fast in-memory lookup. Anons are used mostly for
processing queries. As a result, file pages contribute significantly to the total hot memory. How-
ever, for Cache1, 40% of the anons get accessed within every two minutes, while the fraction for
file is only 25%. For Cache2, the fraction of anon and file usage is almost equal within a two-
minute time window. However, within a minute interval, even for Cache2, higher fraction of anons
(43%) remain hot over file pages (30%).

Data Warehouse and Ads use anon pages for computation. The file pages are used for writing
intermediate computation data to the storage device. As expected, almost all of hot memories are
anons where almost all of the files remain cold.

Observation: A large fraction of anon pages is hot, while file pages are comparatively colder
within short intervals.

Due to space constraints, we focus on a subset of these applications. In our analysis, we find
the similar behavior from the rest of the applications.

5.3.4 Usage of Different Page Types Over Time

When the Web service starts, it loads the VM’s binary and bytecode files into memory. As a result,
at the beginning, file caches occupy a significant portion of the memory. Overtime, anon usage
slowly grows and file caches get discarded to make space for the anon pages (Figure 5.9a).
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Figure 5.10: Workloads’ sensitivity towards anons and files varies. High memory capacity utiliza-
tion provides high throughput.

Cache applications mostly use file caches for in-memory look-ups. As a result, file pages con-
sume most of the allocated memory. For Cache1 and Cache2 (Figure 5.9b-5.9c), the fraction of
files hovers around 70–82%. While the fraction of anon and file is almost steady, if at any point,
anon usage grows, file pages are discarded to accommodate newly allocated anons.

For Data Warehouse workload, anon pages consume most of the allocated memory – 85% of
the total allocated memory are anons and rest of the 15% are file pages (Figure 5.9d). The usage
of anon and file pages mostly remains steady.

Observation: Although anon and file usage may vary over time, applications mostly maintain
a steady usage pattern. Smart page placement mechanisms should be aware of page type when
making placement decisions.

5.3.5 Impact of Page Types on Performance

Figure 5.10 shows what fractions of different page types are used to achieve a certain application-
level throughput. Memory-bound application’s throughput improves with high memory utilization.
However, workloads have different levels of sensitivity toward different page types. For example,
Web’s throughput improves with the higher utilization of anon pages (Figure 5.10a).

For Cache, tmpfs is allocated during initialization period. Besides, Cache1 uses a fixed
amount of anons throughout its life cycle. As a result, we cannot observe any noticeable re-
lation between anon or file usage and the application throughput (Figure 5.10b). However, for
Cache2, we can see high throughput is achieved with comparatively higher utilization of anons
(Figure 5.10c). Similarly, Data Warehouse application maintains a fixed amount of file pages.
However, it consumes different amount of anons at different execution period and the highest
throughput is achieved when the total usage of anons reaches to its highest point (Figure 5.10d).

Observation: Workloads have different levels of sensitivity toward different page types that
varies over time.
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Figure 5.11: Fraction of pages re-accessed at different intervals.

5.3.6 Page Re-access Time Granularity

Cold pages often get re-accessed at a later point. Figure 5.11 shows the fraction of pages that
become hot after remaining cold for a certain interval. For Web, almost 80% of the pages are
re-accessed within a ten-minute interval. This indicates Web mostly repurposes pages allocated at
an earlier time. Same goes for Cache – randomly offloading cold memory can impact performance
as a good chunk of colder pages get re-accessed within a ten-minute window.

However, Data Warehouse shows different characteristics. For this workload, anons are mostly
newly allocated – within a ten-minute interval, only 20% of the hot file pages are previously ac-
cessed. Rest of them are newly allocated.

Observation: Cold page re-access time varies for workloads. Page placement on a tiered
memory system should be aware of this and actively move hot pages to lower memory nodes to
avoid high memory access latency.

From above observations, tiered memory subsystems can be a good fit for datacenter applica-
tions as there exists significant amount of cold memory with steady access patterns.

5.4 Design Principles of TPP

With the advent of CXL technologies, hyperscalers are embracing CXL-enabled heteroge-
neous tiered-memory system where different memory tier has different performance character-
istics [208, 163]. For performance optimization in such systems, transparent page placement
mechanism (TPP) is needed to handle pages with varied hotness characteristics on appropriate
temperature tiers. To design TPP for next-generation tiered-memory systems, we consider follow-
ing questions:

• What is an ideal layer to implement TPP functionalities?

• How to detect page temperature?

108



• What abstraction to provide for accessing CXL-Memory?

In this section, we discuss the rationale and trade-offs behind design choices for TPP.
Implementation Layer. Application-transparent page placement mechanism can be employed

both in the user- and kernel-space. In user-space, a Chameleon-like tool can be used to detect page
temperatures and perform NUMA migrations using user-space APIs (e.g., move pages()). To
identify what to migrate, the migration tool needs to implement user-space page lists and history
management. This technique entails overheads due to user-space to kernel-space context switch-
ing. It also adds processing overheads due to history management in user space. Besides, there
are memory overheads due to page information management in user-space that may not scale with
large working sets. While this is acceptable for profiling tools that run for short intervals on a
small sample of servers in the fleet, it can be prohibitively expensive when they run continuously
on all production fleet. Considering these, we design TPP as a kernel feature as we think it’s less
complex to implement and more performant over user-space mechanisms.

Page Temperature Detection. There are several different techniques that can potentially be
used for page temperature detection including PEBS, Page Poisoning, and NUMA Balancing.
PEBS can be utilized in kernel-space to detect page temperature. However, as PEBS counters
are not standardized across CPU vendors, a generic precise event-based kernel implementation for
page temperature detection that works across all hardware platforms is not feasible. Additionally,
limited number of perf counters are supported in CPUs and are generally required to be exposed in
user-space. More importantly, as mentioned earlier, even with optimizations, PEBS-based profiling
is not good enough as an always-running component of TPP for high pressure workloads.

Sampling and poisoning a few pages within a memory region to track their access events is an-
other well-established approach [88, 81, 60, 45] for finding hot/cold pages. To detect a page access,
IPT-based [45, 81] approach needs to clear the page’s accessed bit and flush the correspond-
ing TLB entry. This requires monitoring accessed bits at high frequency which results in
unacceptable slowdowns [88, 81]. Thermostat [88] solves this problem by sampling at 2MB page
granularity which makes it effective specifically for huge-pages. One of our design goals behind
TPP is that it should be agnostic to page size. In our production environment, application owners
generally pre-allocate 2MB and 1GB pages and use them to allocate text regions (code), static data
structures, and slab pools that serve request allocations. In most cases, these large pages are hot
and should never get demoted to CXL-Memory.

NUMA Balancing (also known as AutoNUMA) [60] is transparent to OS page sizes. It gener-
ates a minor page fault when the sampled page gets accessed. Periodically incurring page faults
on most frequently accessed pages can lead to high overheads. To address this, when designing
TPP, we chose to only leverage minor page fault as a temperature detection mechanism for CXL-
Memory. As CXL-Memory is expected to hold warm and cold pages, this will keep the overhead
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of temperature detection low. For cold page detection in local memory node, we find Linux’s
existing LRU-based age management mechanism is lightweight and quite efficient.

Empirically, we do not see any potential benefit to leverage a more sophisticated page temper-
ature detection mechanism. In our experiments (§5.6), using kernel LRUs for on-the-fly profiling
works well. Combining LRUs and NUMA Balancing, we can detect most hot pages in CXL-
Memory at virtually zero overhead as presented in Figure 5.14 and Table 5.1.

Memory Abstraction for CXL-Memory. One can use CXL-Memory as a swap-space to host
colder memory using existing in-memory swapping mechanisms [76, 37, 87, 28]. TMO [301]
is one such swap-based mechanism that detects cold pages in local memory and moves them to
swap-space that is referred to as (z)swap pool. However, we do not plan to use CXL-Memory as
an in-memory swap device. In such a case, we will effectively lose CXL’s most important feature,
i.e., load/store access semantics at cache-line granularity. With swap abstraction, every access to
a (z)swapped page will incur a major page fault and we have to read the whole page from CXL-
Memory. This will significantly increase the effective access latency far over 200ns and make
CXL-Memory less attractive. We chose to build TPP so that applications can leverage load-store
semantics when accessing warm or cold data from CXL-Memory.

While the swap semantics of TMO are not desirable in CXL-Memory page placement context,
the memory saving through feedback-driven reclamation is still valuable. We think TMO as an
orthogonal and complimentary tool to TPP as it operates one layer above TPP (§5.6.3.2). TMO
runs in user-space and keeps pushing for memory reclamation, while TPP runs in kernel-space and
optimizes page placement for allocated memory between local and CXL-Memory tiers.

5.5 TPP for CXL-Memory

An effective page placement mechanism should efficiently offload cold pages to slower CXL-
Memory while aptly identify trapped hot pages in CXL-node and promote them to the fast memory
tier. As CXL-Memory is CPU-less and independent of the CPU-attached memory, it should be
flexible enough to support heterogeneous memory technologies with varied characteristics. Page
allocation to a NUMA node should not frequently halt due to the slower reclamation mechanism to
free up spaces. Besides, an effective policy should be aware of an application’s sensitivity toward
different page types.

Considering the datacenter workload characteristics and our design objectives, we propose
TPP– a smart OS-managed mechanism for tiered-memory system. TPP places ‘hotter’ pages in lo-
cal memory and moves ‘colder’ pages in CXL-Memory. TPP’s design-space can be divided across
four main areas – (a) lightweight demotion to CXL-Memory, (b) decoupled allocation and recla-
mation paths, (c) hot-page promotion to local nodes, and (d) page type-aware memory allocation.
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5.5.1 Migration for Lightweight Reclamation

Linux tries to allocate a page to the memory node local to a CPU where the process is running.
When a CPU’s local memory node fills up, default reclamation pages-out to swap device. In such
a case, in a NUMA system, new allocations to local node halts and takes place on CXL-node until
enough pages are freed up. The slower the reclamation is, the more pages end up being allocated
to the CXL-node. Besides, invoking paging events in the critical path worsens the average page
access latency and impacts application performance.

CPU

demotion
watermark

allocation
watermark

x% of 
capacity

migrates to CXL-Memory

high watermark

Local Node

CXL Node

initiates reclamation2

1

CXL

headroom for allocation

Figure 5.12: TPP decouples the allocation and reclamation logics for local memory node. It uses
migration for demotion.

To enable a light-weight page reclamation for local nodes, after finding the reclamation-
candidates, instead of invoking swapping mechanism, we put them in to a separate demotion list
and try to migrate them to the CXL-node asynchronously ( 1 in Figure 5.12). Migration to a
NUMA node is orders of magnitude faster than swapping. We use Linux’s default LRU-based
mechanism to select demotion candidates. However, unlike swapping, as demoted pages are still
available in-memory, along with inactive file pages, we scan inactive anon pages for reclamation
candidate selection. As we start with the inactive pages, chances of hot pages being migrated to
CXL-node during reclamation is very low unless the local node’s capacity is smaller than the hot
portion of working set size. If a migration during demotion fails (e.g., due to low memory on the
CXL-node), we fall back to the default reclamation mechanism for that failed page. As allocation
on CXL-node is not performance critical, CXL-nodes use the default reclamation mechanism (e.g.,
pages out to the swap device).

If there are multiple CXL-nodes, the demotion target is chosen based on the node distances
from the CPU. Although other complex algorithms can be employed to dynamically choose the
demotion target based on a CXL-node’s state, this simple distance-based static mechanism turns
out to be effective.
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5.5.2 Decoupling Allocation and Reclamation

Linux maintains three watermarks (min, low, high) for each memory zone within a node. If the
total number of free pages for a node goes below low watermark, Linux considers the node
is under memory pressure and initiates page reclamation for that node. In our case, TPP demotes
them to CXL-node. New allocation to local node halts till the reclaimer frees up enough memory
to satisfy the high watermark. With high allocation rate, reclamation may fail to keep up as it
is slower than allocation. Memory retrieved by the reclaimer may fill up soon to satisfy allocation
requests. As a result, local memory allocations halt frequently, more pages end up in CXL-node
which eventually degrades application performance.

In a multi-NUMA system with severe memory constraint, we should proactively maintain a
reasonable amount of free memory headroom on the local node. This helps in two ways. First,
new allocation bursts (that are often related to request processing and, therefore, both short-lived
and hot) can be directly mapped to the local node. Second, local node can accept promotions of
trapped hot pages on CXL-nodes.

To achieve that, we decouple the logic of ‘reclamation stop’ and ‘new allocation happen’ mech-
anism. We continue the asynchronous background reclamation process on local node until its total
number of free pages reaches demotion watermark, while new allocation can happen if the
free page count satisfies a different watermark – allocation watermark ( 2 in Figure 5.12).
Note that demotion watermark is always set to a higher value above the allocation and low water-
mark so that we always reclaim more to maintain the free memory headroom.

How aggressively one needs to reclaim often depends on the application behavior and available
resources. For example, if an application has high page allocation demand, but a large fraction
of its memory is infrequently accessed, aggressive reclamation can help maintain free memory
headroom. On the other hand, if the amount of frequently accessed pages is larger than the local
node’s capacity, aggressive reclamation will thrash hot memory across NUMA nodes. Consid-
ering these, to tune the aggressiveness of the reclamation process on local nodes, we provide a
user-space sysctl interface (/proc/sys/vm/demote scale factor) to control the free
memory threshold for triggering the reclamation on local nodes. By default, its value is empiri-
cally set to 2% that means reclamation starts as soon as only a 2% of the local node’s capacity is
available to consume. One can use workload monitoring tools [301] to dynamically adjust it.

5.5.3 Page Promotion from CXL-Node

Due to increased memory pressure on local nodes, new pages may often get allocated to CXL-
nodes. Besides, demoted pages may also become hot later as discussed in §5.3.6. Without any
promotion mechanism, hot pages will always be trapped in CXL-nodes and hurt application per-
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Figure 5.13: TPP promotes a page considering its activity state.

formance. To promote such pages, we augment Linux’s NUMA Balancing [60].
NUMA Balancing for CXL-Memory. In NUMA Balancing, a kernel task routinely samples a

subset of a process’s memory (by default, 256MB of pages) on each memory node. When a CPU
accesses a sampled page, a minor page-fault is generated (known as NUMA hint fault). Pages
that are accessed from a remote CPU are migrated to that CPU’s local memory node (known as
promotion). In a CXL-System, it is not reasonable to promote a local node’s hot memory to other
local or CXL-nodes. Besides, as sampling pages to find a local node’s hot memory generates
unnecessary NUMA hint fault overheads, we limit sampling only to CXL-nodes.

While promoting a CXL-node’s trapped hot pages, we ignore the allocation watermark check-
ing for the target local node. This creates more memory pressure to initiate the reclamation of
comparatively colder pages on that node. If a system has multiple local nodes, we select the node
where the task is running. When applications share multiple memory nodes, we choose local node
with the lowest memory pressure.

Ping-Pong due to Opportunistic Promotion. When a NUMA hint fault happens on a page,
default NUMA balancing instantly promotes the page without checking its active state. As a result,
pages with very infrequent accesses can still be promoted to the local node. Once promoted, these
type of pages may shortly become the demotion candidate if the local nodes are always under
pressure. Thus, promotion traffic generated from infrequently accessed pages can easily fill up the
local node’s free space and generate a higher demotion traffic for CXL-nodes. This unnecessary
traffic can negatively impact an application’s performance.

Apt Identification of Trapped Hot Pages. To solve this ping-pong issue, instead of instant
promotion, we check a page’s age through its position in the LRU list maintained by the OS. If the
faulted page is in inactive LRU, we do not consider the page for promotion instantly as it might be
an infrequently accessed page. We consider the faulted page as a promotion candidate only if it is
found in the active LRUs ( 1 in Figure 5.13). This significantly reduces the promotion traffic.

However, OS uses LRU lists for reclamation. If a memory node is not under pressure and
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Figure 5.14: Fast cold page demotion and effective hot page promotion allow TPP to serve most
of the traffics from the local node.

reclamation does not kick in, then pages in inactive LRU list do not automatically move to the
active LRU list. As CXL-nodes may not always be under pressure, faulted pages may often be
found in the inactive LRU list and, therefore, bypass the promotion filter. To address this, whenever
we find a faulted page on the inactive LRU list, we mark the page as accessed and move it to the
active LRU list immediately ( 2 in Figure 5.13). If the page still remains hot during the next
NUMA hint fault, it will be in the active LRU, and promoted to the local node ( 3 in Figure 5.13).

This helps TPP add some hysteresis to page promotion. Besides, as Linux maintains separate
LRU lists for anon and file pages, different page types have different promotion rates based on their
respective LRU sizes and activeness. This speeds up the convergence of hot pages across memory
nodes.

5.5.4 Page Type-Aware Allocation

The page placement mechanism we described above is generic to all page types. However, some
applications can further benefit from page type-aware allocation policy. For example, production
applications often perform lots of file I/O during the warm up phase and generate file caches that
are accessed infrequently. As a result, cold file caches eventually end up on CXL-nodes. Not
only that, local memory node being occupied by the inactive file caches often forces anons to be
allocated on the CXL-nodes that may need to be promoted back later.

To resolve these unnecessary page migrations, we allow an application allocating caches (e.g.,
file cache, tmpfs, etc.) to the CXL-nodes preferrably, while preserving the allocation policy for
anon pages. When this allocation policy is enabled, page caches generated at any point of an
application’s life cycle will be initially allocated to the CXL-node. If a page cache becomes hot
enough to be selected as a promotion candidate, it will be eventually promoted to the local node.
This policy helps applications with infrequent cache accesses run on a system with a small amount
of local memory and large but cheap CXL-Memory while maintaining the performance.
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5.5.5 Observability into TPP to Assess Performance

Promotion- and demotion-related statistics can help better understand the effectiveness of the page
placement mechanism and debug issues in production environments. To this end, we introduce
multiple counters to track different demotion and promotion related events and make them avail-
able in the user-space through /proc/vmstat interface.

To characterize the demotion mechanism, we introduce counters to track the distribution of suc-
cessfully demoted anon and file pages. To understand the promotion behavior, we add new counters
to collect information on the numbers of sampled pages, the number of promotion attempts, and
the number of successfully promoted pages for each of the memory types.

To track the ping-pong issue mentioned in §5.5.3, we utilize the unused 0x40 bit in the
page flag to introduce PG demoted flag for demoted pages. Whenever a page is demoted its
PG demoted bit is set and gets cleared upon promotion. We also count the number of demoted
pages that become promotion candidates. High value of this counter means TPP is thrashing across
NUMA nodes. We add counters for each of the promotion failure scenario (e.g., local node having
low memory, abnormal page references, system-wide low memory, etc.) to reason about where
and how promotion fails.

5.6 Evaluation

We integrate TPP on Linux kernel v5.12. We evaluate TPP with a subset of representable pro-
duction applications mentioned in §5.3.1 serving live traffic on tiered memory systems across our
server fleet. We explore the following questions:

• How effective TPP is in distributing pages across memory tiers and improving application
performance? (§5.6.1)

• What are the impacts of TPP components? (§5.6.2)

• How it performs against state-of-the-art solutions? (§5.6.3)

For each experiment, we use application-level throughput as the metric for performance. In
addition, we use the fraction of memory accesses served from the local node as the key low-level
supporting metric. We compare TPP against default Linux (§5.6.1), default NUMA Balancing [60],
AutoTiering [189], and TMO [301] (§5.6.3) (Table 5.1). None of our experiments involve swap-
ping to disks, the whole system has enough memory to support the workload. We use the default
local-node first, then CXL-node allocation policy for Linux.
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Workload/Throughput (%)
(normalized to Baseline)

Default
Linux

TPP
NUMA

Balancing
AutoTiering

Web1 (2:1) 83.5 99.5 82.8 87.0
Cache1 (2:1) 97.0 99.9 93.7 92.5
Cache1 (1:4) 86.0 99.5 90.0 Fails
Cache2 (2:1) 98.0 99.6 94.2 94.6
Cache2 (1:4) 82.0 95.0 78.0 Fails

Data Warehouse (2:1) 99.3 99.5 – –

Table 5.1: TPP is effective over its counterparts. It reduces memory access latency and improves
application throughput.

Experimental Setup. We deploy a number of pre-production x86 CPUs with FPGA-based
CXL-Memory expansion card that support CXL 1.1. Memory attached to the expansion card shows
up to the OS as a CPU-less NUMA node. Although our current FPGA-based CXL cards have
around 250ns higher latency than our eventual target, we use them for the functional validation.

We have confirmation from two major x86 CPU vendors that the access latency to CXL-Memory

is similar to the remote latency on a dual-socket system. For performance evaluation, we primarily
use dual-socket systems and configure them to mimic our target CXL-enabled system’s character-
istics (one memory node with all active CPU cores and one CPU-less memory node) according to
the guidance of our CPU vendors. For baseline, we disable the memory node and CPU cores on a
socket while enabling sufficient memory on another socket. Here, single memory node serves the
whole working set.

We use two memory configurations where the ratio of local node and CXL-Memory capacity is
(a) 2:1 (§5.6.1.1) and (b) 1:4 (§5.6.1.2). Configuration (a) is similar to our current CXL-enabled
production systems where local node is supposed to serve all the hot working set. We use config-
uration (b) to stress-test TPP on a constrained memory scenario – only a fraction of the total hot
working set can fit on the local node and hot pages are forced to move to the CXL-node.

5.6.1 Effectiveness of TPP

5.6.1.1 Default Production Environment (2:1 Configuration).

Web. Web1 performs lots of file I/O during initialization and fills up the local node. Default Linux
is 44× slower than TPP during freeing up the local node. As a result, new allocation to the local
node halts and anons get allocated to the CXL-node and stay there forever. In default Linux, on
average, only 22% of total memory accesses are served from the local node (Figure 5.14a). As a
result, throughput drops by 16.5%.
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Figure 5.15: Effectiveness of TPP under memory constraint.

Active and faster demotion helps TPP move colder file pages to CXL-node and allow more
anon pages to be allocated in the local node. Here, 92% of the total anon pages are served from
the local node. As a result, local node serves 90% of total memory accesses. Throughput drop is
only 0.5%.

Cache. Cache applications maintain a steady ratio of anon and file pages throughout their life
cycle. Almost all the anon pages get allocated to the local node from the beginning and served from
there. For Cache1, with default Linux, only 8% of the total hot pages are trapped in CXL-node.
As a result, application performance remains very close to the baseline – performance regression
is only 3%. TPP can even minimize this performance gap (throughput is 99.9% of the baseline) by
promoting all the trapped hot files and improving the fraction of traffic served from the local node
(Figure 5.14b).

Although most of the Cache2’s anon pages reside in the local node on a default Linux kernel,
all of them are not always hot – only 75% of the total anon pages remain hot within a two-minute
interval. TPP can efficiently detect the cold anon pages and demote them to the CXL-node. This
allows the promotion of more hot file pages. On default Linux, local node serves 78% of the
memory accesses (Figure 5.14c) and cause 2% throughput regression. TPP improves the fraction
of local traffic to 91%. Throughput regression is only 0.4%.

Data Warehouse. This workload generates file caches to store the intermediate processing
data. File caches mostly remain cold. Besides, only one third of the total anon pages remain hot.
Our default production configuration is good enough to serve all the hot memory from the local
node. Default Linux and TPP perform the same (0.5–0.7% throughput drop).

TPP improves the fraction of local traffic by moving relatively hotter anon pages to the local
node. With TPP, 94% of the total anon pages reside on the local node, while the default kernel hosts
only 67%. To make space for the hot anon pages, cold file pages are demoted to the CXL-node.
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Figure 5.16: TPP benefits CXL-node with varied latency traits.

TPP allows 4% higher local node memory accesses over Linux (Figure 5.14d).

5.6.1.2 Large Memory Expansion with CXL (1:4 Configuration).

Extreme setups like 1:4 configuration allow flexible server design with DRAM as a small-sized
local node and CXL-Memory as a large but cheaper memory. As in our production, such a config-
uration is impractical for Web and Data Warehouse, we limit our discussion to the Cache applica-
tions. Note that TPP is effective even for Web and Data Warehouse in such a setup and performs
very close to the baseline.

Cache1. In a 1:4 configuration, on a default Linux kernel, file pages consume almost all the
local node’s capacity. 85% of the total anon pages get trapped to the CXL-node and throughput
drops by 14%. Because of the apt promotion, TPP can move almost all the CXL-node’s hot anon
pages (97% of the total hot anon pages within a minute) to the local node. This forces less latency-
sensitive file pages to be demoted to the CXL-node. Eventually, TPP stabilizes the traffic between
the two nodes and local node serves 85% of the total memory accesses. This helps Cache1 achieve
the baseline performance – even though the local node’s capacity is only 20% of the working set
size, throughput regression is only 0.5% (Figure 5.15a).

Cache2. Similar to Cache1, on default Linux, Cache2 experiences 18% throughput loss. Only
14% of the anon pages remain on the local node (Figure 5.15b). TPP can bring back almost all the
remote hot anon pages (80% of the total anon pages) to local node while demoting the cold ones to
the CXL-node. As Cache2 accesses lots of caches, and caches are now mostly in CXL-node, 41%
of the memory traffic comes from the CXL-node. Yet, throughput drop is only 5% with TPP.
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Figure 5.17: Impact of decoupling allocation and reclamation.

5.6.1.3 TPP with Varied CXL-Memory Latencies.

The variation in CXL-Memory’s access latency does not impact TPP much. We run Cache2 with
2:1 configuration where CXL-Memory has different latency characteristics (Figure 5.16). In all
cases, due to TPP’s better hot page identification and effective promotion, only a small portion
(4–5%) of hot pages are served from the CXL-node. On the other hand, for default Linux, 22–25%
hot pages remain trapped in the CXL-node. This increases the average memory access latency by
7× for default Linux (Figure 5.16a). This, eventually, impact the application-level performance,
default Linux experiences 2.2− 2.8× higher throughput loss over TPP (Figure 5.16b).

5.6.2 Impact of TPP Components

In this section, we discuss the contribution of TPP components. As a case study, we use Cache1
with 1:4 configuration.

Allocation and Reclamation Decoupling. Without this feature, reclamation on local node
triggers at a later phase. With high memory pressure and delayed reclamation on local node, the
benefit of TPP disappears as it fails to promote CXL-node pages. Besides, newly allocated pages
are often short-lived (less than a minute life-time) and de-allocated even before being selected as a
promotion candidate. Trapped CXL-node hot pages worsen the performance.

Without the decoupling feature, allocation maintains a steady rate that is controlled by the
rate of reclamation (Figure 5.17a). As a result, any burst in allocations puts pages to the CXL-
node. When allocation and reclamation is decoupled, TPP allows more pages on the local node –
allocation rate to local node increases by 1.6× at the 95th percentile.

As local node is always under memory pressure, new allocations consume freed up pages in-
stantly and promotion fails as the target node becomes low on memory after serving allocation
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Application Configuration
% of Memory Access Traffic Throughput

w.r.t BaselineLocal Node CXL-node
Web1 2:1 97% 3% 99.5%

Cache1 1:4 85% 15% 99.8%
Cache2 1:4 72% 28% 98.5%

Table 5.2: Page-type aware allocation helps applications.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

L
oc

al
 T

ra
ff

ic
 (%

)

Time (minute)
TPP NUMA Balancing AutoTiering

(a) Web1 on 2:1 Configuration

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

L
oc

al
 T

ra
ff

ic
 (%

)

Time (minute)

TPP
Numa Balancing
AutoTiering (2:1)

(b) Cache1 on 1:4 Configuration

Figure 5.19: TPP outperforms existing page placement mechanism. AutoTiering can’t run on 1:4
configuration For Cache1, TPP on 1:4 configuration performs better than AutoTiereing on 2:1.

requests. For this reason, without the decoupling feature, promotion almost halts most of the time
(Figure 5.17b). Trapped pages on the CXL-node generates 55% of the memory traffic which leads
to a 12% throughput drop. With the decoupling feature, promotion maintains a steady rate of
50KB/s on average. During the surge in remote memory usage, the promotion goes as high as
1.2MB/s in the 99th percentile. This helps TPP to maintain the throughput of baseline.

Active LRU-Based Hot Page Detection. Considering active LRU pages as promotion can-
didates helps TPP add hysteresis to page promotion. This reduces the page promotion rate by
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Web1 on 2:1 Configuration TPP-only TPP with TMO
Migration Failure Rate (pages/sec) 20 5
CXL-node’s Memory Traffic (%) 3.1% 2.7%

Table 5.3: TMO enhances TPP’s memory reclamation process and improves page migration by
generating more free space.

Web1 on 2:1 Configuration TMO-only TMO with TPP
Process Stall (Normalized to Threshold) 70% 40%
Memory Saving (% of Total Capacity) 13.5% 16.5%

Table 5.4: TPP improves TMO by effectively turning the swap action into a two-stage demote-
then-swap process.

11×. The number of demoted pages that subsequently get promoted is also reduced by 50%. Al-
though the demotion rate drops by 4%, as we are not allowing unnecessary promotion traffics to
waste local memory node, now there are more effective free pages in local node. As a result, pro-
motion success rate improves by 48%. Thus, reduced but successful promotions provide enough
free spaces in local node for new allocations and improve the local node’s memory access by 4%.
Throughput also improves by 2.4%. The time requires to converge the traffic across memory tiers
is almost similar – to reach the peak traffic on local node, TPP with active LRU-based promotion
takes extra five minutes (Figure 5.18).

Cache Allocation to Remote Node Policy. For Web and Cache, preferring the file cache
allocation to CXL-node can provide all-local performances even with a small-sized local node
(Table 5.2). TPP is efficient enough to keep most of the effective hot pages on the local node.
Throughput drop over the baseline is only 0.2–2.5%.

5.6.3 Comparison Against Existing Solutions

We compare TPP against Linux’s default NUMA Balancing, AutoTiering, and TMO. We use Web1
and Cache1, two representative workloads of two different service domains, and evaluate them
on target production setup (2:1 configuration) and memory-expansion setup (1:4 configuration),
respectively. We omit Data Warehouse as it does not show any significant performance drop even
with default Linux (§5.6.1).

5.6.3.1 TPP against NUMA Balancing and AutoTiering.

Web1. NUMA Balancing helps when the reclaim mechanism can provide with enough free pages
for promotion. When the local node is low on memory, NUMA Balancing stops promoting pages
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and performs even worse than default Linux because of its extra scanning and failed promotion
tries. Due to 42× slower reclamation rate than TPP, NUMA Balancing experiences 11× slower
promotion rate. Local node can serve only 20% of the memory traffic (Figure 5.19a). As a result,
throughput drops by 17.2%. Due to the unnecessary sampling, its system-wide CPU overhead is
2% higher that TPP.

AutoTiering has a faster reclamation mechanism – it migrates pages with low access frequencies
to CXL-node. However, with a tightly-coupled allocation-reclamation path, it maintains a fixed-
size buffer to support promotion under pressure. This reserved buffer eventually fills up during a
surge in CXL-node page accesses. At that point, AutoTiering also fails to promote pages and end
up serving 70% of the traffic from the CXL-node. Throughput drops by 13% from the baseline.

Note that TPP experiences only a 0.5% throughput drop.
Cache1. In 1:4 configuration, with more memory pressure on local node, NUMA Balancing

effectively stops promoting pages. Only 46% of the traffics are accessed from the local node
(Figure 5.19b). Throughput drops by 10%.

We can not setup AutoTiering with 1:4 configuration. It frequently crashes right after the warm
up phase, when query fires. We run Cache1 with AutoTiering on 2:1 configuration. TPP out
performs AutoTiering even with a 46% smaller local node – TPP can serve 10% more traffic from
local node and provides 7% better throughput over AutoTiering.

5.6.3.2 Comparison between TPP and TMO

TPP vs. TMO. TMO monitors application stalls during execution time because of insufficient
system resources (CPU, memory, and IO). Based on the pressure stall information (PSI), it decides
on the amount of memory that needs to be offloaded to the swap space. As mentioned in §5.4,
using TMO for CXL-Memory’s (z)swap-based abstraction is beyond our design goal. For the sake
of argument, if we configure CXL-Memory as a swap-space for TMO, it will be only populated
during reclamation. New page allocation can never happen there. Besides, without any fast pro-
motion mechanism, aggressive reclamation can hurt application’s performance; especially, when
reclaimed pages are re-accessed through costly swap-ins. As a result, TMO throttles and can not
populate most of the CXL-Memory capacity. For Web1, Cache1, and Data Warehouse in 2:1 con-
figuration, TMO can only consume 45%, 61%, and 7% of the CXL-Memory capacity, respectively.
On the other hand, TPP can use CXL-Memory for both allocation and reclamation purposes. For
same applications, TPP’s CXL-Memory usage is 83%, 92%, and 87%, respectively.

TPP with TMO. We run TMO with TPP and observe they are orthogonal and augment each
other’s behavior for Web1 on 2:1 configuration. TPP keeps most hot pages in local node; it gets
slightly better when TMO is enabled (Table 5.3). TMO creates more free memory space in the
system by swapping out cold pages both from local and CXL-Memory nodes. The presence of
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some memory headroom in the system makes it easier for TPP to move pages around and leads
to fewer page migration failures. As TPP-driven migration fails less frequently, page placement is
more optimized, resulting in even fewer accesses to the CXL-node.

TMO is still able to save memory without noticeable performance overhead, as shown in Table
5.4. This is because TPP makes (z)swap a two-stage process – TMO-driven reclamation in local
node will first demote victim pages to CXL-Memory before getting (z)swapped out eventually.
This improves victim page selection process – semi-hot pages now get a second chance for staying
in local memory when drifting down CXL-node’s LRU list. As a result, TPP reduces the amount
of process stall in TMO originated from major page faults (i.e., memory and IO pressure in [301])
by 30%. As TMO throttles itself based on the process stall metric, this improves memory saving
by 3% (2GB in absolute terms).

5.7 Discussion and Future Research

TPP makes us production-ready to onboard our first generation of CXL-enabled tiered-memory
system. We, however, foresee research opportunities with technology evolution.

Tiered Memory for Multi-tenant Clouds. In a typical cloud, when multiple tenants co-exist
on a single host machine, TPP can effectively enable them to competitively share different memory
tiers. When local memory size dominates the total memory capacity of the system, this may
not cause much problem. However, if applications with different priorities have different QoS
requirements, TPP may provide sub-optimal performance. Integrating a well-designed QoS-aware
memory management mechanism over TPP can address this problem.

Allocation Policy for Memory Bandwidth Expansion. For memory bandwidth-bound appli-
cations, CPU to DRAM memory bandwidth often becomes the bottleneck. CXL’s additional mem-
ory bandwidth can help by spreading memory across the top-tier and remote node. Instead of only
placing cold pages into CXL-Memory, which draw very low bandwidth consumption, the optimal
solution should place the right amount of bandwidth-heavy, latency-insensitive pages to CXL-
Memory. The methodology to identify the ideal fraction of such working sets may even require
hardware support. We want to explore transparent memory management for memory bandwidth-
expansion use case in our future work.

Hardware Support for Effective Page Placement. Hardware features can further enhance
performance of TPP. A memory-side cache and its associated prefetcher on the CXL ASIC might
help reduce the effective latency of CXL-Memory. Hardware support for data movement between
memory tiers can help reduce page migration overheads. While in our environment we do not see a
high migration overheads, others may chose to put provision systems more aggressively with very
small amount of local memory and high amount of CXL-Memory. For our use cases, in steady
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state, the migration bandwidth is 4–16 MB/s (1–4K pages/second) which is far lower than CXL
link bandwidth and also unlikely to cause any meaningful CPU overhead due to page movement.

5.8 Related Work

Tiered Memory System. With the emergence of low-latency non-DDR technologies, heteroge-
neous memory systems are becoming popular. There have been significant efforts in using NVM
to extend main memory [144, 185, 21, 88, 249, 261, 183, 143, 230]. CXL enables an intermediate
memory tier with DRAM-like low-latency in the hierarchy and brings a paradigm shift in flexible
and performant server design. Industry leaders are embracing CXL-enabled tiered memory system
in their next-generation datacenters [1, 12, 59, 70, 31, 30, 69].

Page Placement for Tiered Memory. Prior work explored hardware-assisted [257, 229, 234]
and application-guided [299, 58, 144, 70] page placement for tiered memory systems, which may
not often scale to datacenter use cases as they require hardware support or application redesign
from the ground up.

Application-transparent page placement approaches often profile an application’s physical [141,
183, 88, 202, 329, 81] or virtual address-space [209, 318, 304, 261] to detect page temperature.
This causes high performance-overhead because of frequent invocation of TLB invalidations or
interrupts. We find existing in-kernel LRU-based page temperature detection is good enough for
CXL-Memory. Prior study also explored machine learning directed decisions [141, 202], user-
space APIs [261, 209], and swapping [88, 202] to move pages across the hierarchy, which are
either resource or latency intensive.

In-memory swapping [76, 37, 87, 28] can be used to swap-out cold pages to CXL-node. In
such cases, CXL-node access requires page-fault and swapped-out pages are immediately brought
back to main memory when accessed. This makes in-memory swapping ineffective for workloads
that access pages at varied frequencies. When CXL-Memory is a part of the main memory, less
frequently accessed pages can be on CXL-node without any page-fault overhead upon access.

Solutions considering NVM to be the slow memory tier [306, 189, 78, 167] are conceptually
close to our work. Nimble [306] is optimized for huge page migrations. During migration, it
employs page exchange between memory tiers. This worsens the performance as a demotion needs
to wait for a promotion in the critical path. Similar to TPP, AutoTiereing [189] and work from
Huang et al. [78] use background migration for demotion and optimized NUMA balancing [60]
for promotion. However, their timer-based hot page detection causes computation overhead and is
often inefficient, especially when pages are infrequently accessed. Besides, none of them consider
decoupling allocation and reclamation paths. Our evaluation shows, this is critical for memory-
bound applications to maintain their performance under memory pressure.
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Disaggregated Memory. Memory disaggregation exposes capacity available in remote hosts
as a pool of memory shared among many machines. Most recent memory disaggregation ef-
forts [92, 226, 165, 224, 207, 111, 275, 267, 297, 99, 158] are specifically designed for RDMA
over InfiniBand or Ethernet networks where latency characteristics are orders-of-magnitude higher
than CXL-Memory. Memory managements of these systems are orthogonal to TPP– one can use
both CXL- and network-enabled memory tiers and apply TPP and memory disaggregation solu-
tions to manage memory on the respective tiers.

5.9 Conclusion

We analyze datacenter applications’ memory usage behavior using Chameleon, a lightweight and
robust user-space working set characterization tool, to find the scope of CXL-enabled tiered-
memory system. To realize such a system, we design TPP, an OS-level transparent page placement
mechanism that works without any prior knowledge on applications’ memory access behavior. We
evaluate TPP using diverse production workloads and find TPP improves application’s perfor-
mance on default Linux by 18%. TPP also outperforms NUMA Balancing and AutoTiering, two
state-of-the-art tiered-memory management mechanisms, by 5–17%.
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CHAPTER 6

Conclusions

Although networking technologies like InfiniBand and Ethernet continue to improve, their latency
remain considerably high for providing a cache-coherent memory address space across disaggre-
gated memory devices. CXL [27] is a new processor-to-peripheral/accelerator cache-coherent in-
terconnect protocol that builds on and extends the existing PCIe protocol by allowing coherent
communication between the connected devices.1 It provides byte-addressable memory in the same
physical address space and allows transparent memory allocation using standard memory alloca-
tion APIs. It also allows cache-line granularity access to the connected devices and underlying
hardware maintains cache-coherency and consistency.

With the emergence of new hardware technologies comes the opportunity to rethink and revisit
past design decisions, and CXL is no different. Earlier software solutions for memory disaggre-
gation over RDMA are not optimized enough in CXL-based because of its much lower latency
bound, especially for intra-server CXL (CXL 1.0/1.1) with 100s of nanoseconds latency. Re-
cent works in leveraging CXL 1.0/1.1 within a server have focused on (tiered) memory pooling
[225, 208] because a significant portion of datacenter application working sets can be offloaded to
a slower-tier memory without hampering performance [202, 225, 226]. With the widespread usage
of generation of CXL devices, we envision a huge scope for memory disaggregation.

CXL Roadmap. Today, CXL-enabled CPUs and memory devices support CXL 1.0/1.1 (Fig-
ure 6.1) that enables a point-to-point link between CPUs and accelerator memory or between CPUs
and memory extenders. CXL 2.0 spec enables one-hop switching that allows multiple accelera-
tors without (Type-1 device) or with memory (Type-2 device) to be configured to a single host and
have their caches be coherent to the CPUs. It also allows memory pooling across multiple hosts
using memory expanding devices (Type-3 device). A CXL switch has a fabric manager (it can be
on-board or external) that is in charge of the device address-space management. Devices can be

1Prior industry standards in this space such as CCIX [22], OpenCAPI [62], Gen-Z [38] etc. have all come together
under the banner of CXL consortium. While there are some related research proposals (e.g., [206]), CXL is the de
facto industry standard at the time of writing this paper.
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Figure 6.1: CXL roadmap paves the way for memory pooling and disaggregation in next-
generation datacenter design.

hot-plugged to the switch. A virtual CXL switch partitions the CXL-Memory and isolate the re-
sources between multiple hosts. It provides telemetry for load on each connected devices for load
balancing and QoS management.

CXL 3.0 adds multi-hop hierarchical switching – one can have any complex types of network
through cascading and fan-out. This expands the number of connected devices and the complexity
of the fabric to include non-tree topologies, like Spine/Leaf, mesh- and ring-based architectures.
CXL 3.0 supports PCIe 6.0 (64 GT/s i.e., up to 256 GB/s of throughput for a x16 duplex link) and
expand the horizon of very complex and composable rack-scale server design with varied memory
technologies (Figure 6.2). A new Port-Based Routing (PBR) feature provides a scalable addressing
mechanism that supports up to 4,096 nodes. Each node can be any of the existing three types of
devices or the new Global Fabric Attached Memory (GFAM) device that supports different types
of memory (i.e., Persistent Memory, Flash, DRAM, other future memory types, etc.) together in a
single device. Besides memory pooling, CXL 3.0 enables memory sharing across multiple hosts
on multiple end devices. Connected devices (i.e., accelerators, memory expanders, NICs, etc.) can
do peer-to-peer communicate bypassing the host CPUs.

In essence, CXL 3.0 enables large networks of memory devices. This will proliferate software-
hardware co-designed memory disaggregation solutions that not only simplify and better imple-
ment previous-generation memory disaggregation solutions but also open up new possibilities.

6.1 Disaggregated Memory at Rack-Scale and Beyond: Open
Challenges

Although higher than intra-server CXL latency, rack-scale CXL systems with a CXL switch (CXL
2.0) will experience much lower latency than RDMA-based memory disaggregation. With a hand-
ful of hops in CXL 3.0 setups, latency will eventually reach a couple microseconds similar to that
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Figure 6.2: CXL 3.0 enables a rack-scale server design with complex networking and composable
memory hierarchy.

found in today’s RDMA-based disaggregated memory systems. For next-generation memory dis-
aggregation systems that operate between these two extremes, i.e., rack-scale and a little beyond,
many open challenges exist. We may even have to revisit some of our past design decisions (§1.1).
Here we present a non-exhaustive list of challenges informed by our experience.

6.1.1 Abstractions

Memory Access Granularity. CXL enables cache-line granular memory access over the con-
nected devices, whereas existing OS VMM modules are designed for page-granular (usually, 4KB
or higher) memory access. Throughout their lifetimes, applications often write a small part of
each page; typically only 1-8 cache-lines out of 64 [111]. Page-granular access causes large dirty
data amplification and bandwidth overuse. In contrast, fine-grained memory access over a large
memory pool causes high meta-data management overhead. Based on an application’s memory
access patterns, remote memory abstractions should support transparent and dynamic adjustments
to memory access granularity.

Memory-QoS Interface. Traditional solutions for memory page management focus on track-
ing (a subset of) pages and counting accesses to determine the heat of the page and then moving
pages around. While this is enough to provide a two-level, hot-vs-cold QoS, it cannot capture the
entire spectrum of page temperature. Potential solutions include assigning a QoS level to (1) an
entire application; (2) individual data structures; (3) individual mmap() calls; or even (4) indi-
vidual memory accesses. Each of these approaches have their pros and cons. At one extreme,
assigning a QoS level to an entire application maybe simple, but it cannot capture time-varying
page temperature of large, long-running applications. At the other end, assigning QoS levels to
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individual memory accesses requires recompilation of all existing applications as well as cum-
bersome manual assignments, which can lead to erroneous QoS assignments. A combination of
aforementioned approaches may reduce developer’s overhead while providing sufficient flexibility
to perform spatiotemporal memory QoS management.

6.1.2 Management and Runtime

Memory Address Space Management. From CXL 2.0 onward, devices can be hot-plugged to
the CXL switches. Device-attached memory is mapped to the system’s coherent address space
and accessible to host using standard write-back semantics. Memory located on a CXL device can
either be mapped as Host-managed Device Memory (HDM) or Private Device Memory (PDM). To
update the memory address space for connected devices to different host devices, a system reset is
needed; traffic towards the device needs to stop to alter device address mapping during this reset
period. An alternate solution to avoid this system reset is to map the whole physical address space
to each host when a CXL-device is added to the system. The VMM or fabric manager in the CXL
switch will be responsible to maintain isolation during address-space management. How to split
the whole address-space in to sizable memory blocks for the efficient physical-to-virtual address
translation of a large memory network is an interesting challenge [206, 314].

Unified Runtime for Compute Disaggregation. CXL Type-2 devices (accelerator with mem-
ory) maintains cache coherency with the CPU. CPU and Type-2 devices can interchangeably use
each other’s memory and both get benefited. For example, applications that run on CPUs can
benefit as they can now access very high bandwidth GPU memory. Similarly, for GPU users, it is
beneficial for capacity expansion even though the memory bandwidth to and from CPU memory
will be lower. In such a setup, remote memory abstractions should track the availability of compute
cores and efficiently perform near-memory computation to improve the overall system throughput.

Future datacenters will likely be equipped with numerous domain-specific compute re-
sources/accelerators. In such a heterogeneous system, one can borrow the idle cores of one com-
pute resource and perform extra computation to increase the overall system throughput. A unified
runtime to support malleable processes that can be immediately decomposed into smaller pieces
and offloaded to any available compute nodes can improve both application and cluster throughput
[266, 312].

6.1.3 Allocation Policies

Memory Allocation in Heterogenous NUMA Cluster. For better performance, hottest pages
need to be on the fastest memory tier. However, due to memory capacity constraints across differ-
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ent tiers, it may not always be possible to utilize the fastest or performant memory tier. Determining
what fraction of memory is needed at a particular memory tier to maintain the desired performance
of an application at different points of its life cycle is challenging. This is even more difficult when
multiple applications coexist. Efficient promotion or demotion of pages of different temperatures
across memory tiers at rack scale is necessary. One can consider augmenting TPPby incorporating
a lightweight but effective algorithm to select the migration target considering node distances from
the CPU, load on CPU-memory bus, current load on different memory tiers, network state, and the
QoS requirements of the migration-candidate pages.

Allocation Policy for Memory Bandwidth Expansion. For memory bandwidth-bound applica-
tions, CPU-to-DRAM bandwidth often becomes the bottleneck and increases the average memory
access latency. CXL’s additional memory bandwidth can help by spreading memory across the
top-tier and remote nodes. Instead of only placing cold pages into CXL-Memory, which has
low bandwidth consumption, an ideal solution should place the right amount of bandwidth-heavy,
latency-insensitive pages to CXL-Memory. The methodology to identify the ideal fraction of such
working sets may even require hardware support.

Memory Sharing and Consistency. CXL 3.0 allows memory sharing across multiple devices.
Through an enhanced coherency semantics, multiple hosts can have a coherent copy of a shared
segment, with back invalidation for synchronization. Memory sharing improves application-level
performance by reducing unnecessary data movement and improves memory utilization. Sharing a
large memory address space, however, results in significant overhead and complexity in the system
that plagued classic distributed shared memory (DSM) proposals [244]. Furthermore, sharing
memory across multiple devices increases the security threat in the presence of any malicious
application running on the same hardware space. We believe that disaggregated memory systems
should cautiously approach memory sharing and avoid it unless it is absolutely necessary.

6.1.4 Rack-Level Objectives

Rack-Scale Memory Temperature. To obtain insights into an application’s expected perfor-
mance with multiple temperature tiers, it is necessary to understand the heat map of memory usage
for that application. Existing hot page identification mechanisms (including Chameleon) are lim-
ited to a single host OS or user-space mechanism. They either use access bit-based mechanism
[32, 46, 291], special CPU feature-based (e.g., Intel PEBS) tools [261, 303, 274], or OS features
[60, 225] to determine the page temperature within a single server. So far, there is no distributed
mechanism to determine the cluster-wide relative page temperature. Combining the data of all the
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OS or user-space tools and coordinating between them to find rack-level hot pages is an important
problem. CXL fabric manager is perhaps the place where one can get a cluster-wide view of hard-
ware counters for each CXL device’s load, hit, and access-related information. One can envision
extending Chameleon for rack-scale environments to provide observability into each application’s
per-device memory temperature.

Hardware-Software Co-Design for a Better Ecosystem. Hardware features can further en-
hance performance of memory disaggregation systems in rack-scale setups. A memory-side cache
and its associated prefetcher on the CXL ASIC or switch might help reduce the effective latency
of CXL-Memory. Hardware support for data movement between memory tiers can help reduce
page migration overheads in an aggressively provisioned system with very small amount of local
memory and high amount of CXL-Memory. Additionally, the fabric manager of a CXL switch
should implement policies like fair queuing, congestion control, load balancing etc. for better
network management. Incorporating Leap’s prefetcher and Hydra’s erasure-coded resilience ideas
into CXL switch designs can enhance system-wide performance.

Energy- and Carbon-Aware Memory Disaggregation. Datacenters represent a large and grow-
ing source of energy consumption and carbon emissions [101]. Some estimates place datacenters
to be responsible for 1-2% of aggregate worldwide electricity consumption [176, 252]. To reduce
the TCO and carbon footprint, and enhance hardware life expectancy, datacenter rack maintain
a physical energy budget or power cap. Rack-scale memory allocation, demotion, and promotion
policies can be augmented by incorporating energy-awareness in their decision-making process. In
general, we can introduce energy-awareness in the software stack that manage compute, memory,
and network resources in a disaggregated cluster.

6.2 Concluding Remarks

I started my PhD in 2017 with the research question in mind – How to make memory disaggregation

practical? At that time, we had the conviction that memory disaggregation is inevitable, armed
only with a few data points that hinted it might be within reach. As I conclude this dissertation in
2023, we have successfully built a comprehensive software-based disaggregated memory solution
over ultra-fast RDMA networks that can provide a seamless experience for most memory-intensive
applications. With diverse cache-coherent interconnects finally converging under the CXL banner,
the entire industry and academia are at the cusp of taking a leap toward next-generation software-
hardware co-designed disaggregated systems. Most of the hyperscalers are shifting towards a
disaggregated datacenter design to reduce the TCO and improve the effective application-level
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performance. The software solutions presented in this dissertation are the stepping stones for the
practical usability for memory disaggregation systems. We are happy that our solutions have a
wide acceptance in the industry and already been deployed in hyperscaler datacenters and merged
to Linux mainstream. We envision, many more influential research in this field to build a software-
hardware ecosystem supporting memory disaggregation.
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Novaković, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh
Venkatasubramanian, and Michael Wei. Remote regions: a simple abstraction for remote
memory. In USENIX ATC, 2018.

[93] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap
Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote memory in the age of fast networks. In SoCC, 2017.

[94] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap
Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote memory in the age of fast networks. In SoCC, 2017.

[95] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson.
Onyx: A protoype phase change memory storage array. In HotStorage, 2011.

[96] S. Alamro, M. Xu, T. Lan, and S. Subramaniam. CRED: Cloud right-sizing to meet exe-
cution deadlines and data locality. In 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), 2016.

[97] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan
Yu, and Ming Zhang. CherryPick: Adaptively unearthing the best cloud configurations for
big data analytics. In NSDI, 2017.

[98] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Mar-
cos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far memory
improve job throughput? In EuroSys, 2020.

138

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://redis.io/topics/whos-using-redis
https://www.kernel.org/doc/Documentation/blockdev/zram.txt
https://www.kernel.org/doc/Documentation/blockdev/zram.txt


[99] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Mar-
cos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far memory
improve job throughput? In EuroSys, 2020.

[100] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan, Brian
Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and
Ricardo Bianchini. Providing SLOs for resource-harvesting VMs in cloud platforms. In
OSDI, 2020.

[101] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene Zhang. Tree-
house: A case for carbon-aware datacenter software. In HotCarbon, 2022.

[102] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, and Matei Zaharia. Spark
SQL: Relational data processing in Spark. In SIGMOD, 2015.

[103] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload
analysis of a large-scale key-value store. SIGMETRICS Perform. Eval. Rev., 2012.

[104] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload
analysis of a large-scale key-value store. In SIGMETRICS, 2012.

[105] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload
analysis of a large-scale key-value store. In SIGMETRICS, 2012.

[106] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading scheme to reduce data
access penalty. In ACM/IEEE Conference on Supercomputing, 1991.

[107] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. Rack-scale in-
memory join processing using RDMA. In SIGMOD, 2015.

[108] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. The
Resource-as-a-Service (RaaS) cloud. In HotCloud, 2012.

[109] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy
Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and Gregory R.
Ganger. The CacheLib caching engine: Design and experiences at scale. In OSDI, 2020.

[110] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. Linux block io: Intro-
ducing multi-queue ssd access on multi-core systems. In SYSTOR, 2013.

[111] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur Mutlu,
and Aasheesh Kolli. Rethinking software runtimes for disaggregated memory. In ASPLOS,
2021.

[112] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi, Onur Mutlu,
and Pratap Subrahmanyam. Project pberry: Fpga acceleration for remote memory. HotOS,
2019.

139



[113] Pei Cao, Edward W. Felten, and Kai Li. Implementation and performance of application-
controlled file caching. In OSDI, 1994.

[114] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Characterizing, modeling,
and benchmarking RocksDB key-value workloads at Facebook. In FAST, 2020.

[115] Amanda Carbonari and Ivan Beschasnikh. Tolerating faults in disaggregated datacenters. In
HotNets, 2017.

[116] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink: Stream and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 2015.

[117] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson. Moneta: A
high-performance storage array architecture for next-generation, non-volatile memories. In
MICRO, 2010.

[118] Jeremy C. W. Chan, Qian Ding, Patrick P. C. Lee, and Helen H. W. Chan. Parity logging with
reserved space: Towards efficient updates and recovery in erasure-coded clustered storage.
In FAST, 2014.

[119] Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo Wang, Yubin Xia, Haibing Guan, and
Binyu Zang. Efficient and available in-memory kv-store with hybrid erasure coding and
replication. ACM Transactions on Storage (TOS), 13(3):25, 2017.

[120] Haogang Chen, Yingwei Luo, Xiaolin Wang, Binbin Zhang, Yifeng Sun, and Zhenlin Wang.
A transparent remote paging model for virtual machines. In International Workshop on
Virtualization Technology, 2008.

[121] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In SIGKDD,
2016.

[122] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing
Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

[123] Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren. ATMem: Adaptive data placement
in graph applications on heterogeneous memories. In CGO, 2020.

[124] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holder-
baugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng, et al. Benchmark-
ing streaming computation engines: Storm, flink and spark streaming. In IPDPSW, 2016.

[125] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Dynacache: Dy-
namic cloud caching. In HotCloud, 2015.

[126] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Cliffhanger: Scaling
performance cliffs in web memory caches. In NSDI, 2016.

140



[127] Asaf Cidon, Robert Escriva, Sachin Katti, Mendel Rosenblum, and Emin Gun Sirer. Tiered
replication: A cost-effective alternative to full cluster geo-replication. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages 31–43, Santa Clara, CA, July 2015.
USENIX Association.

[128] Asaf Cidon, Stephen M Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and
Mendel Rosenblum. Copysets: Reducing the frequency of data loss in cloud storage. In
USENIX ATC, 2013.

[129] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman. Memshare: a dy-
namic multi-tenant key-value cache. In USENIX ATC, 2017.

[130] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory. Prentice Hall
Professional Technical Reference, 1973.

[131] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accelerating relational
databases by leveraging remote memory and RDMA . In SIGMOD, 2016.

[132] Jeffrey Dean. Evolution and future directions of large-scale storage and computation sys-
tems at google . In SoCC, 2010.

[133] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven
Swanson. Basic performance measurements of the intel optane DC persistent memory mod-
ule . arXiv preprint arXiv:1903.05714, 2019.

[134] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos, I. Koutsopou-
los, K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo, Q. Chen, M. Nemirovsky,
D. Roca, H. Klos, and T. Berends. Rack-scale disaggregated cloud data centers: The dReD-
Box project vision . In DATE, 2016.
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