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ABSTRACT

Skyrocketing data volumes, growing hardware capabilities, and the revolution in machine
learning (ML) theory have collectively driven the latest leap forward in ML. Despite our hope to
realize the next leap with new hardware and a broader range of data, ML development is reaching
scaling limits in both realms. First, the exponential surge in ML workload volumes and their
complexity far outstrip hardware improvements, leading to hardware resource demands surpassing
the sustainable growth of capacity. Second, the mounting volumes of edge data, increasing awareness
of user privacy, and tightening government regulations render conventional ML practices, which
centralize all data into the cloud, increasingly unsustainable due to escalating costs and scrutiny.

This dissertation surmounts these resource and data limits using a minimalist approach – re-
ducing complexity and eliminating bloating features – to develop minimalist systems. The thesis
provides evidence that by co-designing ML, systems, and networking, we can (1) minimize ML
resource demands by removing bloating system execution without compromising ML performance;
(2) minimize data collection by effectively offloading ML to the planet-scale data source; and (3)
minimize human effort by automatically discovering the sweet spot of ML and system efficiency.

The minimalist systems developed in this thesis span each stage of ML development, facilitating
the transition to the era of pervasive ML. The thesis commences with the data preprocessing stage
and introduces a network-aware execution engine called Sol. Sol empowers distributed ML clusters
to efficiently perform collaborative data processing over the Internet to minimize data migration.
The second and third parts of this thesis optimize the subsequent training stage, by introducing
ModelKeeper and AdaEmbed to minimize ML resource demands. ModelKeeper repurposes the
weights of previously trained models to warm up model training, reducing the amount of training
execution needed. During model training, AdaEmbed automatically identifies the model weights
that contribute more to model accuracy and removes less important weights, reducing model size
without compromising model accuracy.

The fourth and fifth parts introduce FedScale and Oort to complement and extend today’s ML
training stage and the subsequent deployment stage up to the planetary scale. They enable federated
model training and testing across millions of clients at the edge. FedScale supports on-device model
execution and integrates Oort to orchestrate clients. At runtime, Oort cherry-picks the clients, who
have the data that offers better utility in improving model accuracy and the capability to execute the
ML task quickly, to minimize the performance gap between cloud ML and federated ML.

xvii



CHAPTER 1

Introduction

The last ten years have witnessed a monumental surge in machine learning (ML) performance
and adoption. This leap was made possible by the cloud, especially hardware improvements,
big data, and the evolution of ML theories. These three driving forces empower ML developers
to develop powerful ML models in the cloud and subsequently deploy a plethora of ML-based
applications for end users at the edge.

As today’s machine learning heavily relies on the cloud to explore various models and to collect
real-life data from the edge to improve model quality, this has placed great strain on the system
infrastructure. For instance, over the recent three years, the size of the largest models has grown
more than 1000× [213], training jobs surged by over 7× [199], and the influx of edge data for cloud
models has escalated by 2.4× [257].

In the face of these scalability demands, extensive efforts have been channeled into designing
systems adept at efficiently scaling ML. To make the best use of hardware resources, a variety of
solutions perform advanced scheduling to scale up the resource utilization of hardwares [67, 259,
212, 46]. As the model and data sizes continue their growth trajectory, recent systems have focused
on scaling out ML execution across hundreds of machines [210, 144, 197, 168, 267]. By scaling up
resources and data capacity, we are hoping to usher in the next leap in ML.

However, this scaling strategy is becoming untenable for at least two of the aforementioned
drivers. First, we are grappling with stalling hardware improvements, yet experiencing an explosion
in both job numbers and model sizes. The increase in total hardware resource demands is outpacing
the sustainable growth in overall resource capacity [257]. Second, with the proliferation of end-user
devices and applications, the conventional way to improve cloud ML – by collecting real-life data
from the edge – is increasingly infeasible due to the exploding data volumes [54, 244], regulatory
restrictions (e.g., GDPR [10], CCPA [5]), and mounting privacy concerns [116, 128, 243].

So, how can we unblock resource and data limits to herald the next leap forward in ML? This
thesis contends that we can design minimalist systems to minimize the resource demands and data
collection needs of ML models without compromising model accuracy. The crux of this philosophy
– reducing complexity and eliminating bloating features – lies in the fact that not all ML components
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Figure 1.1: Lifecycles of ML development. With the rapid growth of ML applications, ML
development is facing scaling challenges in every stage.

contribute equally to model accuracy. Thus, we can build minimalist systems to only capture pivotal
components and jointly adapt ML and systems to expunge the bloating system execution.

In the remainder of this chapter, we provide background information on ML development,
highlight the motivations for minimalist systems, and summarize our contributions.

1.1 Background: Scaling Trends in Machine Learning

Modern ML applications are now often referred to as “Software 2.0” to highlight the radical
shift they represent compared to conventional computing applications [215]. Such applications are
developed using new end-to-end workflows, introduced to a broader range of users and settings
such as AI for science, and accommodate multifaceted considerations such as privacy, fairness, and
robustness. This section introduces the lifecycle and trends in ML development.

1.1.1 Lifecycle of Machine Learning Development

As shown in Figure 1.1, in contrast to conventional big data analytics, ML development often
involves an iterative lifecycle to pivot on the latest data trends (e.g., user preferences). It primarily
comprises four stages: Data Processing, Experimentation, Model Training, and Deployment, each
can involve computation on the globally generated data across many machines.

1 Data Processing: ML development aims to train and deploy models with high quality
(e.g., model accuracy). The performance of an ML model hinges on both the volume and
quality of the data. As such, ML developers often initiate by collecting and processing data.
This involves tasks such as cleaning and transforming the raw data into suitable formats,
performing big data analytics for feature engineering (e.g., analyzing data distribution), and
splitting the data for training, validation, and testing.
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2 Experimentation: Post data preparation, this stage delves into various configurations, such
as model architectures, hyperparameters, and input features, to optimize model performance.
It is an iterative process that compares results from various models, based on pre-selected
evaluation metrics.

3 Model Training: Concurrently with experimentation, a variety of models are trained using
the designated hyperparameters and techniques. Once training completes, ML developers
evaluate the model performance on the validation set, which informs further iterations in the
experimentation stage.

4 Model Deployment: This stage delivers the best performing model into service, which can
be in the cloud (e.g., gigantic recommendation models [194]) and/or at the edge (e.g., word
prediction on keyboard [116]). The decision of deployment depends on factors such as latency
requirements, computational resources, and request volumes. The model performs inference
tasks for the application request, and the data generated during service can refine the model.

The lifecycle does not end with deployment. Persistent monitoring and iterative model training
with fresh data are vital to adapt to evolving data patterns and ensure sustained model accuracy.
Thus, ML resource costs and data volumes inflate over time.

1.1.2 Machine Learning Development is Hitting Limits

With the proliferation of ML-based applications and the increasing demands for performance,
ML is experiencing a surge in data volumes, model sizes, and system resources [255, 139, 199].
Although recent systems have made considerable progress in scaling ML, ML development is
confronting resource and data limits:

Resource Limits The growth in the volumes of ML workloads and the complexity thereof far
outstrip hardware improvements, making it increasingly infeasible to scale out and democratize
ML advances. For instance, ML model sizes from 2019 to 2021 increased by 20×, whereas GPU
memory capacity growth lags, increasing by less than 2× every 2 years [257], e.g., 32 GB (NVIDIA
V100, 2018) to 80 GB (NVIDIA A100, 2021); large language models (LLMs) such as Llama 2
require millions of GPU hours to train [235], implying prohibitively high resource costs even for
model inference, due to the skyrocketing number of user requests. Indeed, the growth in ML
resource demands is outpacing the affordable increase in total resource capacity (4× vs. 2.9× in
the past 18 months), even with the addition of more machines [199].
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Data Limits Although the cloud has successfully accommodated the three "V"s (volume, velocity,
and variety) of Big Data, the conventional ML development that centralizes edge data to the cloud
becomes increasingly untenable. As applications shift to the edge for end-user service – Gartner
predicts that 75% of enterprise data will be created at the edge by 2025 – centralizing edge data
not only incurs high costs to keep up with the velocity of data generation, but also suffers from
various restrictions on the variety of data it can collect. For example, Meta is expected to lose $10
billion in advertising revenue due to Apple’s recent privacy restrictions on collecting iOS users’
tracking data to the platform; application-integrated LLMs have caused new privacy threats [166].
The cost and scrutiny of how data is collected and used will only increase with growing awareness
of user privacy and stronger government regulations. Making sense of data closer to its home is
more appealing than ever.

1.2 Thesis Statement and Contributions

Historically, ML system design trends have revolved around optimizing hardware resource
utilization and subsequently executing ML across hundreds of machines [259, 276, 108, 210, 197,
292]. However, in the face of such resource and data limits in scaling, even with the optimal solution
for both aspects, ML development is still capped by the sluggish growth of the resource capacity,
due to factors such as stalling hardware improvements and/or cost concerns, as well as the data
available in the cloud. This calls for revisiting the design philosophy to unblock the next leap
forward in ML performance and adoption.

Thesis Statement – By co-designing machine learning, systems, and networking, we can remove

the bloating system execution in machine learning to minimize the amount of system execution

needed to get the same model accuracy, and can enable efficient federated machine learning up to

the planetary scale to minimize data collection.

In lieu of solely focusing on scaling, this dissertation adopts a minimalist approach to unblock
the resource and data limits, by building systems to enable more efficient, sustainable ML with

reduced resource demands and data collection. Our systems can not only improve the efficiency
of the same ML algorithm by orders of magnitude, but also enable new advances in theory and
applications up to the planetary scale.

Our minimalist systems optimize every stage of the ML lifecycle, promoting pervasive ML in
the cloud and beyond (Figure 1.2):

1 Data Processing: As many of today’s organizations host their services globally and (there-
fore) generate massive amounts of data of interest worldwide, centralized data processing
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Figure 1.2: This dissertation introduces minimalist systems designed to reduce ML resource
demands and data collection. They span every stage of the ML lifecycle and enable efficient and
pervasive ML in the cloud (§2-§4) and up to the planetary scale (§5-§6).

becomes prohibitively expensive. In reality, we could minimize data migration by enabling
distributed ML clusters to perform in-situ data processing and subsequently aggregate their
intermediate results. However, modern execution engines (e.g., Spark [278] or PyTorch [24])
implicitly rely on ultra-fast datacenter networks, leading to great CPU/GPU underutilization
when their computation is bottlenecked by slow Internet.

Sol is a network-aware execution engine capable of executing distributed data processing
over the Internet. It pipelines task execution and expensive coordination over high-latency
networks, while dynamically scaling down a task’s CPU/GPU requirements to match the
available bandwidth, thereby boosting execution throughput. Sol allows ML data processing,
model training, and inference jobs to run with an order-of-magnitude reduction in data
migration costs.

2 Experimentation: After getting the processed dataset, developers often prototype and/or
(re)train various models to identify the best one. Since an ML model is essentially a graph of
tensors with associated weight values, this raises a natural question: can we reuse such data
to reduce the total amount of training execution?

We show that initializing a training job’s model by transforming a previously-trained model’s
weights can jump-start training. We present ModelKeeper, the first system to automatically
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warm up the training of new jobs at the cluster level. Given a new model to train, ModelKeeper
scalably selects a parent model with high similarity in model architecture and good model
accuracy. Then it warms up the new model’s weights by transforming the parent model’s
weights, thereby reducing the amount of training execution needed for model convergence.

3 Model Training: Other than the large number of training jobs, the ever-growing model size
also leads to great resource demands. Notable examples include deep learning recommen-
dation models (DLRMs) and LLMs, which can span tens of terabytes and require hundreds
of GPUs to run. Understandably, not all components of the model (e.g., tensor weights)
contribute equally to model accuracy at all times.

We introduce AdaEmbed, the first in-training pruning system for embedding-based models
like DLRMs and LLMs, to further minimize ML resource demands. It considers the tensor
weights that are frequently accessed and accumulate large gradient norms to be more impor-
tant, and efficiently orchestrates hundreds of GPUs to remove less important weights during
training. It not only offers large resource savings and better model accuracy but also reduces
human effort by automatically searching for better embedding configurations.

4 Model Deployment and Data Collection: Minimizing ML resource demands enables
developing personalized models for various settings (e.g., incorporating personal features).
But still, ML performance is capped by the data that can be collected to the cloud, especially
when we desire more real-life or even sensitive data (e.g., user location data in DLRMs).

To minimize data collection, we developed FedScale, a scalable federated learning (FL) plat-
form that enables distributed edge devices, such as smartphones and laptops, to collaboratively
learn models without disclosing their raw data. FedScale spins up on-device execution and
communication over the Internet, orchestrating pervasive ML up to the global scale. To bridge
the performance gap between FL and cloud ML, we developed Oort, a client manager to
coordinate model training across millions of heterogeneous clients. At scale, Oort explores
and exploits those clients, who have both the data that offers the greatest utility in improving
model accuracy and the capability to execute training quickly, and prioritizes their use in
model training, achieving close-to-cloud ML performance.

Real-world Adoptions Our minimalist systems have received many adoptions in industry and the
open-source community, attracting hundreds of worldwide researchers and contributors in many
fields [8]. In terms of large-scale deployments, AdaEmbed is currently deployed at Meta, supporting
multiple production models and catering to millions of users. FedScale and Oort are deployed at
LinkedIn to support efficient federated learning. Recently, Oort is adopted by Cisco.
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1.3 Dissertation Plan

This dissertation is organized in terms of the lifecycle of ML development. Chapter 2 presents
Sol for the data processing stage, a network-aware execution engine for fast distributed computation
over the Internet, so that distributed ML clusters can collaboratively perform data processing
and model training across the globe to minimize the cost of data migration. In Chapter 3, we
introduce ModelKeeper for the experimentation stage, a cluster-wide model manager designed to
accelerate model training by automatically repurposing pre-trained model weights before training
starts, thereby minimizing the amount of training execution to model convergence. Chapter 4 moves
on to the training stage and discusses AdaEmbed, an in-training pruning system to reduce the size
of DLRM models during training. Chapter 5 delves into FedScale to augment today’s training and
deployment stage up to the planetary scale. FedScale is a platform enabling practical federated
ML across end-user devices, and its client manager, Oort, is discussed in Chapter 6 for efficient
participant selection. We conclude the dissertation and discuss future directions in Chapter 7.
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CHAPTER 2

Minimizing Data Migration via Federated Data Preprocessing

This chapter focuses on optimizing the preliminary stage of ML development, i.e., data prepro-
cessing, and introduces a federated execution engine named Sol. Sol enables data preprocessing,
ML training, and inference on data sourced globally throughout ML lifecycle. It is designed to
bridge the ever-widening gap between data generation and ML development – data of interest
is being generated over the globe, while the execution engines available today (e.g., Spark) are
ones primarily designed for ultra-fast datacenter networks. Sol aspires to expand ML execution
capabilities globally.

The next section introduces the need for a network-aware execution engine for efficient ML exe-
cution across diverse network conditions. Section 2.2 provides an outline of our system. Section 2.5
and Section 2.6, respectively, present the design of the control plane and data plane to tackle various
network latency and bandwidth conditions. We then implement and evaluate Sol in Section 2.7
and Section 2.8 through global-scale deployments. We then discuss future work in Section 2.9 and
survey related work in Section 2.10.

2.1 Background

Execution engines form the narrow waist of modern ML software stacks (Figure 2.1). Given
a user-level intent and corresponding input for an ML pipeline – be it running a SQL query to
understand data characteristics [42], training ML models across many GPUs [36], or realtime stream
processing to monitor model performance [60] – an execution engine orchestrates the execution
of tasks across many distributed workers until the job runs to completion even in the presence of
failures and stragglers.

Modern execution engines have primarily targeted datacenters with low latency and high
bandwidth networks. The absence of noticeable network latency has popularized the late-binding

task execution model in the control plane [207, 181, 241, 52] – pick the worker which will run
a task only when the worker is ready to execute the task – which maximizes flexibility. At the
same time, the impact of the network on task execution time is decreasing with increasing network
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Figure 2.1: Execution engine forms the narrow waist between diverse applications and resources.

bandwidth; most datacenter-scale applications today are compute- or memory-bound [36, 206]. The
availability of high bandwidth has led to tight coupling of a task’s roles to hide design complexity
in the data plane, whereby the same task reads remote input and computes on it too. Late-binding
before execution and tight coupling during execution work well together when the network is
well-provisioned.

Many emerging workloads, however, have to run on networks with high latency, low bandwidth,
or both. Large organizations often perform interactive SQL and iterative machine learning between
on- and off-premise storage [133, 128, 31, 74]. For example, Google uses federated model training
on globally distributed data subject to privacy regulations [55, 293]; telecommunications companies
perform performance analysis of radio-access networks (RAN) [137, 136]; while others troubleshoot
their appliances deployed in remote client sites using ML [195, 264]. Although these workloads are
similar to those running within a datacenter, the underlying network can be significantly constrained
in bandwidth and/or latency (§2.3). In this chapter, we investigate the impact of low bandwidth and

high latency on latency-sensitive interactive and iterative workloads.
While recent works have proposed solutions for bandwidth-sensitive workloads, the impact

of network constraints on latency-sensitive workloads has largely been overlooked. Even for
bandwidth-sensitive workloads, despite many resource schedulers [134, 280], query planners
[243, 211], or application-level algorithms [128, 284], the underlying execution engines of existing
solutions are still primarily the ones designed for datacenters. For example, Iridium [211], Tetrium
[134], and Pixida [155] rely on the execution engine of Apache Spark [278], while many others
(e.g., Clarinet [243], Geode [244]) are built atop the execution engine of Apache Tez [223].

Unfortunately, under-provisioned networks can lead to large CPU underutilization in today’s
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execution engines. First, in a high-latency network, late-binding suffers significant coordination
overhead, because workers will be blocked on receiving updates from the coordinator; this leads to
wasted CPU cycles and inflated completion times of latency-sensitive tasks (e.g., ML inference).
Indeed, late-binding of tasks to workers over the WAN can slow down the job by 8.5×–30× than
running it within the local-area network (LAN). Moreover, for bandwidth-intensive tasks (e.g., ML
training), coupling the provisioning of communication and computation resources at the beginning
of a task’s execution leads to head-of-line (HOL) blocking: bandwidth-sensitive jobs hog CPUs
even though they bottleneck on data transfers, which leads to noticeable queuing delays for the rest.

2.2 Solution Outline

By accounting for network conditions, we present a federated execution engine, Sol, which is
API-compatible with Apache Spark [278]. 1 Our design of Sol, which can transparently run existing
jobs and WAN-aware optimizations in other layers of the stack, is based on two high-level insights
to achieve better job performance and resource utilization.

First, we advocate early-binding control plane decisions over the WAN to save expensive
round-trip coordinations, while continuing to late-bind workers to tasks within the LAN for the
flexibility of decision making. By promoting early-binding in the control plane, we can pipeline
different execution phases of the task. In task scheduling, we subscribe tasks for remote workers in
advance, which creates a tradeoff: binding tasks to a remote site too early may lead to sub-optimal
placement due to insufficient knowledge, but deferring new task assignments until prior tasks
complete leaves workers waiting for work to do, thus underutilizing them. Our solution deliberately
balances efficiency and flexibility in scheduling latency-bound tasks, while retaining high-quality
scheduling for latency-insensitive tasks even under uncertainties.

Second, decoupling the provisioning of resources for communication and computation within

data plane task executions is crucial to achieving high utilization. By introducing dedicated
communication tasks for data reads, Sol decouples computation from communication and can
dynamically scale down a task’s CPU requirement to match its available bandwidth for bandwidth-
intensive communications; the remaining CPUs can be redistributed to other jobs with pending
computation.

Our evaluations show that Sol can automatically adapt to diverse network conditions while
largely improving application-level job performance and cluster-level resource utilization. Using
representative industry benchmarks on a 40-machine EC2 cluster across 10 regions, we show
that Sol speeds up SQL and machine learning jobs by 4.9× and 16.4× on average in offline and
online settings, respectively, compared to Apache Spark in resource-constrained networks. Even in

1Sol is available at https://github.com/SymbioticLab/Sol.

10

https://github.com/SymbioticLab/Sol


0 200 400
WAN Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Si
te

Pa
ir

s

(a) Pairwise latency across 44 DCs.

103 104 105

Network Bandwidth (Mb/s)

1

2

3

4

5

V
M

Ty
pe

s

498

815

2051

24750

99780

468

812

1976

4884

4898

LAN
WAN

(b) Measured bandwidth on EC2.

Figure 2.2: While execution engines are widely deployed on cloud platforms, the underlying
network conditions can be diverse in latency and bandwidth.

datacenter environments, Sol outperforms Spark by 1.3× to 3.9×. Sol offers these benefits while
effectively handling uncertainties and gracefully recovering from failures.

2.3 Motivation

2.3.1 Execution Engines

The execution engine takes a graph of tasks – often a directed acyclic graph (DAG) – from the
higher-level scheduler as its primary input. Tasks performing the same computation function on
different data are often organized into stages, with dependencies between the stages represented by
the edges of the execution DAG. Typically, a central coordinator in the execution engine – often
referred to as the driver program of a job – interacts with the cluster resource manager to receive
required resources and spawns workers across one or more machines to execute runnable tasks.2 As
workers complete tasks, they notify the coordinator to receive new runnable tasks to execute.

Design space. The design of an execution engine should be guided by how the environment
and workload characteristics affect delays in the control plane (i.e., coordinations between the
coordinator and workers as well as amongst the workers) and in the data plane (i.e., processing of
data by workers). Specifically, a task’s lifespan consists of four key components:

• Coordination time (tcoord) represents the time for orchestrating task executions across workers.
This is affected by two factors: network latency, which can vary widely between different pairs
of sites (Figure 2.2(a)), and the inherent computation overhead in making decisions. While the
latter can be reduced by techniques like reusing schedules [242, 184], the former is determined
by the environment.

2A task becomes runnable whenever its dependencies have been met.
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• Communication time (tcomm) represents the time spent on reading input and writing output of
a task over the network and to the local storage.3 For the same amount of data, time spent
in communication can also vary widely based on Virtual Machine (VM) instance types and
LAN-vs-WAN (Figure 2.2(b)).

• Computation time (tcomp) represents the time spent in running every task’s computation.

• Queuing time (tqueue) represents the time spent waiting for resource availability before execution.
Given a fixed amount of resources, tasks of one job may have to wait for tasks of other jobs to
complete.

We first take into account tcomp, tcoord, and tcomm in characterizing the design of execution
engines for a single task. By assuming tcomp ≫ tcoord, tcomm (i.e., by focusing on the execution
of compute-bound workloads such as HPC [107], AI training [36] and in many cases within
datacenters), existing execution engines have largely ignored two settings in the design space.

First, the performance of jobs can be dominated by the coordination time (i.e., tcoord ≫
tcomm, tcomp), and more time is spent in the control plane than the data plane. An example of such
a scenario within a datacenter would be stream processing using mini-batches, where scheduling
overhead in the coordinator is the bottleneck [242]. As tcoord → O(100) ms over the WAN,
coordination starts to play a bigger role even when scheduler throughput is not an issue. As
tcomp

tcoord
and

tcomm

tcoord
decrease, e.g., in interactive analytics [137, 136] and federated learning [55],

coordination time starts to dominate the end-to-end completion time of each task.
Second, in bandwidth-bound workloads, more time is likely to be spent in communication than

computation (i.e., tcomm > tcoord, tcomp). Examples of such a scenario include big data jobs in
resource-constrained private clusters [181] or across globally distributed clouds [211, 244, 243, 128],
and data/video analytics in a smart city [127].

In the presence of multiple jobs, inefficiency in one job’s execution engine can lead to inflated
tqueue for other jobs’ tasks. For latency-sensitive jobs waiting behind bandwidth-sensitive ones,
tqueue can quickly become non-negligible.

2.3.2 Inefficiencies in Constrained Network Conditions

While there is a large body of work reasoning about the performance of existing engines in
high-bandwidth, low-latency datacenters [206, 205], the rest of the design space remains unexplored.
We show that existing execution engines suffer significant resource underutilization and performance
loss in other settings.

3Most transfers after the input-reading stages happen over the network.
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Figure 2.3: TPC query completion times in different network settings using different execution
engines (scale factor is 100).
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Figure 2.4: CPU utilization throughout a machine learning job.

Performance degradation due to high latency. To quantify the impact of high latency on job
performance, we analyzed the individual query completion times of 110 queries on two industrial
benchmarks: TPC-DS and TPC-H. We use two popular execution engines – Apache Spark[278]
and Apache Tez[223] – on a 10-site deployment; each site has 4 machines, each with 16 CPU cores
and 64 GB of memory. We consider four network settings, each differing from the rest in terms of
either bandwidth or latency as follows: 4

• Bandwidth: Each VM has a 10 Gbps NIC in the high-bandwidth and 1 Gbps in the low-
bandwidth setting.

• Latency: Latency across machines is <1 ms in the low-latency setting, while latencies across
sites vary from O(10)–400 ms in the high-latency setting.

Figure 2.3 shows the distributions of average query completion times of Spark and Tez, where

4We use the latency profile of 10 sites on EC2 and set a large TCP window size to reach the network capacity [158].
For the high-bandwidth setting and the low-bandwidth one, we refer to the available LAN bandwidth on m4.10xlarge
and m4.2xlarge instances, respectively.
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Figure 2.5: Resource utilization over a bandwidth-bound query’s lifespan (scale factor is 1000).

we use a dataset of scale factor 100.5 We found that the availability of more bandwidth has little
impact on query completion times; different query plans and task placement decisions in Spark
and Tez did not improve the situation either. However, job completion times in the high-latency
setting are significantly inflated – up to 20.6× – than those in the low-latency setting. Moreover, we
observe that high network latency can lead to inefficient use of CPUs for a latency-bound machine
learning job (Figure 2.4).

The root cause behind this phenomenon is the late-binding of tasks to workers in the control
plane. In existing execution engines, decision making in the control plane, such as task scheduling
[243] and straggler mitigation [41], often requires realtime information from data plane executions,
whereas data processing is initiated by control plane decisions. With high coordination latency, this
leads to wasted CPU cycles as each blocks on acquiring updates from the other.

CPU underutilization due to low bandwidth. To understand the impact of low bandwidth on
resource efficiency, we analyzed bandwidth-sensitive workloads using a scale factor of 1000 in the
same experimental settings as above.

Figure 2.5 reports both the CPU and network utilizations throughout the execution of a rep-
resentative query (query-25 from the TPC-DS benchmark), which involves two large shuffles (in
stage 2 and stage 3) over the network. During task executions, large data reads over the network are
communication-intensive, while computations on the fetched data are CPU-intensive. We observe
that, when tasks are bandwidth-constrained, their overall CPU utilization plummets even though
they continue to take up all the available CPUs. This is due to the coupling of communication
with computation in tasks. In other words, the number of CPUs involved in communication is

5A scale factor of X means a X GB dataset.
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independent of the available bandwidth. The end result is head-of-line (HOL) blocking of both
latency- and bandwidth-sensitive jobs (not shown) by bandwidth-bound underutilized CPUs of large
jobs.

Shortcomings of existing works. Existing works on WAN-aware query planning and task place-
ment [134, 244, 211, 243] cannot address the aforementioned issues because they focus on managing
and/or minimizing bandwidth usage during task execution, not on the impact of latency before
execution starts or CPU usage during task execution.

2.4 Sol: A Federated Execution Engine

To address the aforementioned limitations, we present Sol, a federated execution engine which
is aware of the underlying network’s characteristics (Figure 2.6). It is primarily designed to facilitate
efficient execution of emerging distributed workloads across a set of machines which span multiple
sites (thus, have high latency between them) and/or are interconnected by a low bandwidth network.
Sol assumes that machines within the same site are connected over a low-latency network. As such,
it can perform comparably to existing execution engines when deployed within a datacenter.

Design goals. In designing Sol, we target a solution with the following properties:

• High-latency coordinations should be pipelined. Coordinations between control and data planes
should not stall task executions. As such, Sol should avoid synchronous coordination (e.g.,
workers blocking to receive tasks) to reduce overall tcoord for latency-bound tasks. This leads to
early-binding of tasks over high-latency networks.

• Underutilized resources should be released. Sol should release unused resources to the scheduler,
which can be repurposed to optimize tqueue for pending tasks. This calls for decoupling
communication from computation in the execution of bandwidth-intensive tasks without inflating
their tcomm and tcomp.

• Sol should adapt to diverse environments automatically. The network conditions for distributed
computation can vary at different points of the design space. Sol should, therefore, adapt to
different deployment scenarios with built-in runtime controls to avoid reinventing the design.

System components. At its core, Sol has three primary components:

• Central Coordinator: Sol consists of a logically centralized coordinator that orchestrates the
input job’s execution across many remote compute sites. It can be located at any of the sites;
each application has its own coordinator or driver program. Similar to existing coordinators, it
interacts with a resource manager for resource allocations.
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Figure 2.6: Sol components and their interactions. Low-latency sites synchronously coordinate
within themselves and asynchronously coordinate across high-latency links.

• Site Manager: Site managers in Sol coordinate local workers within the same site. Each site
manager has a shared queue, where it enqueues tasks assigned by the central coordinator to
the workers in this site. This allows for late-binding of tasks to workers within the site and
ensures high resource utilization, wherein decision making can inherit existing designs for
intra-datacenter systems. The site manager also detects and tackles failures and stragglers that
are contained within the site.

• Task Manager: At a high level, the task manager is the same as today: it resides at individual
workers and manages tasks. However, it manages compute and communication resources
independently.

Algorithm 2.1 shows a high-level overview explaining the interaction among these components
throughout our design in the control plane (§2.5) and the data plane (§2.6).

2.5 Sol Control Plane

Modern execution engines primarily target datacenters with low latency networks [278, 223, 60,
36], wherein late-binding of tasks to workers maximizes flexibility. For example, the coordinator
assigns new tasks to a worker after it is notified of new resource availability (e.g., due to task
completion) from that worker. Moreover, a variety of on-demand communication primitives, such
as variable broadcasts and data shuffles, are also initiated lazily by the coordinator and workers.
In the presence of high latency, however, late-binding results in expensive coordination overhead
(§2.3.2).

In this section, we describe how Sol pushes tasks to sites to hide the expensive coordination
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/* Operations in Central Coordinator */
1: for Site s in all sites do
2: while currentTaskNum(s) < targetQueLen(s) do
3: if Exist available tasks t for scheduling to s then
4: Push t to Site Manager in s; ▷ §2.5.3
5: else
6: Break down task dependency judiciously; ▷ §2.5.4

/* Operations in Site Manager */
7: if Receive task assignment then
8: Queue up task;
9: else if Receive task completion then

10: Notify coordinator and schedule of next task t;
11: if Task t requires large remote read then
12: Issue fetch request to the scheduled worker;
13: else
14: Launch task t;
15: else if Input is ready for computation task t then
16: Activate and launch task t;

/* Operations in Task Manager */
17: if Receive task assignment t then
18: Execute task t;
19: else if Detect task completion then
20: Notify Site Manager of the new task assignment;
21: else if Receive data fetch request then
22: Initiate communication task; ▷ §2.6.2

Algorithm 2.1: The interaction between the central coordinator, site manager, and task manager.

latency (§2.5.1), the potential benefits of push-based execution (§2.5.2) as well as how we address
the challenges in making it practical; i.e., how to determine the right number of tasks to push to
each site (§2.5.3), how to handle dependencies between tasks (§2.5.4), and how to perform well
under failures and uncertainties (§2.5.5).

2.5.1 Early-Binding to Avoid High-Latency Coordination

Our core idea to hide coordination latency (tcoord) over high-latency links is early-binding tasks
to sites. Specifically, Sol optimizes tcoord between the central coordinator and remote workers (i)
by pushing and queuing up tasks in each site; and (ii) by pipelining task scheduling and execution
across tasks.

Figure 2.7 compares the control flow in traditional designs with that in Sol. In case of late-
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Figure 2.8: Sol adopts the push-based model to pipeline task scheduling and data fetch.

binding, workers have to wait for new task assignments from the remote coordinator. In contrast, the
site manager in Sol directly dispatches a task already queued up in its local queue and asynchronously
notifies the coordinator of task completions as well as the resource status of the site. The coordinator
makes new task placement decisions and queues up tasks in site managers asynchronously, while
workers in that site are occupied with task executions.

Furthermore, this execution model enables us to pipeline tcoord and tcomm for each individual
task’s execution. When the coordinator assigns a task to a site, it notifies the corresponding upstream
tasks (i.e., tasks in the previous stage) of this assignment. As such, when upstream tasks complete,
they can proactively push their latency-bound output partitions directly to the site where their
downstream tasks will execute, even though the control messages containing task placements may
still be on-the-fly. As shown in Figure 2.8, pull-based data fetches experience three sequential
phases of communication; in contrast, the scheduling of downstream tasks and their remote data
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reads are pipelined in the push-based model, improving their completion times.

2.5.2 Why Does Early-Binding Help?

Assume that the coordinator continuously allocates tasks to a remote site’s k CPUs. For each task
completion, the pull-based model takes one RTT for the coordinator to receive the task completion
notification and then send the next task assignment; during this period, the task is queued up in the
coordinator for scheduling. Hence, on average, i−1

k
RTTs are wasted before the ith task runs. The

push-based model can save up to i−1
k

RTTs for the ith task by pipelining inter-task assignments and
executions. Our analysis over 44 datacenters using the measured inter-site latencies shows that,
compared to late-binding, the push-based model can achieve an average improvement of 153 ms
for the data fetch of every downstream task (more details in Appendix A.1). Such gaps become
magnified at scale with a large number of small tasks, e.g., a large fan-out, latency-sensitive job.

One may consider pulling multiple tasks for individual workers at a time, but the push model
provides more flexibility. Pushing from the coordinator can react to online scheduling better. When
tasks arrive in an online manner, multiple tasks may not be available for pulling at a time. e.g.,
when a new task keeps arriving right after serving a pull request, pulling multiple tasks degenerates
into pulling one by one.

Moreover, by late-binding task assignments within the site, our site-manager approach enables
more flexibility than pushing tasks to individual workers (i.e., maintaining one queue per worker).
To evaluate this, we ran three workloads across 10 EC2 sites, where all workloads have the same
average task duration from TPC-DS benchmarks but differ in their distributions of task durations.
Figure 2.9 shows that the site-manager approach achieves superior job performance owing to better
work balance, particularly when task durations are skewed.
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2.5.3 How to Push the Right Number of Tasks?

Determining the number of queued-up tasks for site managers is crucial for balancing worker
utilization versus job completion times. On the one hand, queuing up too few tasks leads to
underutilization, inflating tqueue due to lower system throughput. On the other hand, queuing up too
many leads to sub-optimal work assignments because of insufficient knowledge when early-binding,
which inflates job completion times as well (see Appendix A.2 for more details).

Our target: Intuitively, as long as a worker is not waiting to receive work, queuing more tasks
does not provide additional benefits for improving utilization. To fully utilize the resource, we
expect the total execution time of the queued-up tasks will occupy the CPU before the next task
assignment arrives, which is the key to strike the balance between utilization and job performance.

Our solution: When every task’s duration is known, the number of queued-up tasks can adapt to
the instantaneous load such that the total required execution time of the queued-up tasks keeps all
the workers in a site busy, but not pushing any more to retain maximum flexibility for scheduling
across sites. However, individual task durations are often highly skewed in practice [41], while the
overall distribution of task durations is often stable over a short period [208, 106].

Even without presuming task-specific characteristics or distributions, we can still approximate
the ideal queue length at every site dynamically for a given resource utilization target. We model
the total available cycles in each scheduling round as our target, and the duration of each queued-up
task is a random variable. This can be mapped into a packing problem, where we have to figure out
how many random variables to sum up to achieve the targeted sum.

When the individual task duration is not available, we extend Hoeffding’s inequality, and inject
the utilization target into our model to determine the desired queue length (Appendix A.3 for a
formal result and performance analysis). Hoeffding’s inequality is known to characterize how the
sum of random variables deviates from its expected value with the minimum, the average, and the
maximum of variables [125]. We extend it but filter out the outliers in tasks, wherein we rely on
three statistics – 5th percentile, average, and 95th percentile (which are often stable) – of the task
duration by monitoring the tasks over a period. As the execution proceeds, the coordinator in Sol
inquires the model to generate the target queue size, whereby it dynamically pushes tasks to each
site to satisfy the specified utilization. Note that when the network latency becomes negligible, our
model outputs zero queue length as one would expect.
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Figure 2.11: (b) The recovery process is shown in red. (0) W1 detects large output, and sends
CANCEL message to the coordinator C for task rescheduling. (1) Upon receiving the update, C
waits until it gathers required information, then reschedules task, and (3) cancels task in W2.

2.5.4 How to Push Tasks with Dependencies?

In the presence of task dependencies, where tasks may depend on those in their parent stage(s),
pushing tasks is challenging, since it creates a tradeoff between the efficiency and quality of
pipelining. For latency-sensitive tasks, we may want to push downstream tasks to save round-trip
coordination even before the upstream output is available. However, for bandwidth-intensive tasks,
pushing their downstream tasks will not bring many benefits; this may even miss optimal task
placements due to insufficient knowledge about the outputs from all upstream tasks [243, 211].
Sol, therefore, has to reconcile between latency- and bandwidth-sensitive tasks at runtime without
presuming task properties.

To achieve the desired pipelining efficiency for latency-bound tasks, Sol speculates the best
placements for downstream tasks. Our straw-man heuristic is first pushing the downstream task
to the site with the least work, with an aim to minimize the queueing time on the site. Moreover,
Sol can refine its speculation by learning from historical trends (e.g., recurring jobs) or the iterative
nature of many jobs. For example, in stream processing and machine learning, the output partitions
computed for every batch are largely similar [279], so are their task placements [242]. As such, Sol
can reuse the placement decisions in the past run.

However, even when a bandwidth-intensive task is pushed to a suboptimal site, Sol can gracefully
retain the scheduling quality via worker-initiated re-scheduling. Figure 2.11 shows the control
flow of the recovery process in Sol and the baseline. In Figure 2.11(b), we push upstream tasks to
workers W1 and W2, and downstream tasks are pushed only to W2. As the upstream task in W1

proceeds, the task manager detects large output is being generated, which indicates we are in the
regime of bandwidth-intensive tasks. (0) Then W1 notifies the coordinator C of task completion
and a CANCEL message to initiate rescheduling for the downstream task. (1) Upon receiving the
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CANCEL message, the coordinator will wait until it collects output metadata from W1 and W2.
The coordinator then reschedules the downstream task, and (2) notifies W2 to cancel the pending
downstream task scheduled previously. Note that the computation of a downstream task will not be
activated unless it has gathered the upstream output.

As such, even when tasks are misclassified, Sol performs no worse than the baseline (Fig-
ure 2.11(a)). First, the recovery process does not introduce more round-trip coordinations due to
rescheduling, so it does not waste time. Moreover, even in the worst case, where all upstream tasks
have preemptively pushed data to the downstream task by mistake, the total amount of data transfers
is capped by the input size of the downstream. However, note that the output is pushed only if it
is latency-sensitive, so the amount of wasted bandwidth is also negligible as the amount of data
transfers is latency-bound.

2.5.5 How to Handle Failures and Uncertainties?

Fault tolerance and straggler mitigation are enforced by the local site manager and the global
coordinator. Site managers in Sol try to restart a failed task on other local workers; failures of long
tasks or persistent failures of short tasks are handled via coordination with the remote coordinator.
Similarly, site managers track the progress of running tasks and selectively duplicate small tasks
when their execution lags behind. Sol can gracefully tolerate site manager failures by redirecting
workers’ control messages to the central coordinator, while a secondary site manager takes over
(§2.8.5).

Moreover, Sol can guarantee a bounded performance loss due to early-binding even under
uncertainties. To ensure a task at the site manager will not experience arbitrarily large queueing
delay, the site manager can withdraw the task assignment when the task queueing delay on this site
exceeds ∆. As such, the total performance loss due to early-binding is (∆ + RTT), since it takes
one RTT to push and reclaim the task.

2.6 Sol Data Plane

In existing execution engines, the amount of CPU allocated to a task when it is reading data is
the same as when it later processes the data. This tight coupling between resources leads to resource
underutilization (§2.3.2). In this section, we introduce how to improve tqueue by mitigating HOL
blocking.
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Figure 2.12: High-level overview of data plane decoupling.

2.6.1 How to Decouple the Provisioning of Resources?

To remove the coupling in resource provisioning, Sol introduces dedicated communication
tasks,6 which fetch task input from remote worker(s) and deserialize the fetched data, and compu-
tation tasks, which perform the computation on data. The primary goal of decoupling is to scale
down the CPU requirements when multiple tasks have to fetch data over low-bandwidth links.

Communication and computation tasks are internally managed by Sol without user intervention.
As shown in Figure 2.12, 1 when a task is scheduled for execution, the site manager checks its
required input for execution and reserves the provisioned resource on the scheduled worker. 2
Bandwidth-insensitive tasks will be dispatched directly to the worker to execute. 3a However, for
tasks that need large volumes of remote data, the site manager will notify the task manager on the
scheduled worker to set up communication tasks for data preparation. 3b At the same time, the
corresponding computation tasks are marked as inactive and do not start their execution right away.
Once input data is ready for computation, the site manager will activate corresponding computation
tasks to perform computation on the fetched data.

Although decoupling the provisioning of computation and communication resources will not
speed up individual tasks, it can greatly improve overall resource utilization. When the input for
a task’s computation is being fetched by the communication task, by oversubscribing multiple
computation tasks’ communication to fewer communication tasks, Sol can release unused CPUs
and repurpose them for other tasks. In practice, even the decoupled job can benefit from its own
decoupling; e.g., when tasks in different stages can run in parallel, which is often true for jobs
with complicated DAGs, computation tasks can take up the released CPUs from other stages in
decoupling.

6Each communication task takes one CPU core by default in our design.
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2.6.2 How Many Communication Tasks to Create?

Although decoupling is beneficial, we must avoid hurting the performance of decoupled jobs
while freeing up CPUs. A key challenge in doing so is to create the right number of communication
tasks to fully utilize the available bandwidth. Creating too many communication tasks will hog
CPUs, while creating too few will slow down the decoupled job.

We use a simple model to characterize the number of required communication tasks. There
are two major operations that communication tasks account for: (i) fetch data with CPU cost CI/O

every time unit; (ii) deserialize the fetched data simultaneously with CPU cost Cdeser in unit time.
When the decoupling proceeds with I/O bandwidth B, the total requirement of communication tasks
N can be determined based on the available bandwidth (N = B × (CI/O + Cdeser)).

Referring to the network throughput control, we use an adaptive tuning algorithm. When a
new task is scheduled for decoupling, the task manager first tries to hold the provisioned CPUs
to avoid resource shortages in creating communication tasks. However, the task manager will
opportunistically cancel the launched communication task after its current fetch request completes,
and reclaim its CPUs if launching more communication tasks does not improve bandwidth utilization
any more.7 During data transfers, the task manager monitors the available bandwidth using an
exponentially weighted moving average (EWMA).8 As such, the task manager can determine
the number of communication tasks required currently: Ncurrent =

⌈
Bcurrent

Bold
×Nold

⌉
. Therefore,

it will launch more communication tasks when more bandwidth is available and the opposite
when bandwidth decreases. Note that the number of communication tasks is limited by the total
provisioned CPUs for that job to avoid performance interference.

2.6.3 How to Recover CPUs for Computation?

Sol must also ensure that the end-to-end completion time on computation experiences negligible
inflation. This is because when the fetched data is ready for computation, the decoupled job may
starve if continuously arriving computation tasks take up its released computation resources.

We refer to not decoupling as the baseline strategy, while waiting for the entire communication
stage to finish as the lazy strategy. The former wastes resources, while the latter can hurt the
decoupled job. Figure 2.13 depicts both.

Instead, Sol uses a greedy strategy, whereby as soon as some input data becomes ready (from
upstream tasks), the site manager will prioritize the computation task corresponding to that data
over other jobs and schedule it. As such, we can gradually increase its CPU allocation instead of
trying to acquire all at once or holding onto all of them throughout.

7This introduces little overhead, since the data fetch is in a streaming manner, wherein the individual block is small.
8Bcurrent = α Bmeasured + (1− α) Bold, where α is the smoothing factor (α = 0.2 by default) and B denotes the

available bandwidth over a period.
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unused CPUs, and 3 activate the computation task once its input data is ready. The first trough
marks the stage boundary.

2.6.4 Who Gets the Freed up CPUs?

Freed up CPUs from the decoupled jobs introduce an additional degree of freedom in scheduling.
Resource schedulers can assign them in a FIFO or fair manner. As the duration of communication
tasks can be estimated by the remaining data fetches and the available bandwidth, the scheduler can
plan for the extra resources into the future, e.g., similar to [105].

2.7 Implementation

While our design criteria are not married to specific execution engines, we have implemented
Sol in a way that keeps it API compatible with Apache Spark [4] in order to preserve existing
contributions in the big data stack.

Control and Data Plane To implement our federated architecture, we add site manager modules
to Spark, wherein each site manager keeps a state store for necessary metadata in task executions,
and the metadata is shared across tasks to avoid redundant requests to the remote coordinator.
The central coordinator coordinates with the site manager by heartbeat as well as the piggyback
information in task updates. During executions, the coordinator monitors the network latency using
EWMA in a one second period. This ensures that we are stable despite transient latency spikes.
When the coordinator schedules a task to the site, it assigns a dummy worker for the pipelining
of dependent tasks (e.g., latency-bound output will be pushed to the dummy worker). Similar to
delay scheduling, we set the queueing delay bound ∆ to 3 seconds [280]. Upon receiving the
completion of upstream tasks, the site manager can schedule the downstream task more intelligently
with late-binding. Meanwhile, the output information from upstream tasks is backed up in the state
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Figure 2.14: Performance of Sol, Spark, and Tez on TPC query processing benchmark.

store until their completion.

Support for Extensions Our modifications are to the core of Apache Spark, so users can enjoy
existing Spark-based frameworks on Sol without migrations of their codebase. Moreover, for recent
efforts on WAN-aware optimizations, Sol can support those more educated resource schedulers
or location-conscious job schedulers by replacing the default, but further performance analysis of
higher-layer optimizations is out of the scope of this paper. To the best of our knowledge, Sol is the
first execution engine that can optimize the execution layer across the design space.

2.8 Evaluation

In this section, we empirically evaluate Sol through a series of experiments using micro and
industrial benchmarks. Our key results are as follows:

• Sol improves performance of individual SQL and machine learning jobs by 4.9×–11.5× w.r.t.
Spark and Tez execution engines in WAN settings. It also improves streaming throughput by
1.35×–3.68× w.r.t. Drizzle (§2.8.2).

• In online experiments, Sol improves the average job performance by 16.4× while achieving
1.8× higher utilization (§2.8.3).

• Even in high bandwidth-low latency (LAN) setting, Sol improves the average job performance
by 1.3× w.r.t. Spark; its improvement in low bandwidth-low latency setting is 3.9× (§2.8.4).

• Sol can recover from failures faster than its counterparts, while effectively handling uncertainties
(§2.8.5).
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2.8.1 Methodology

Deployment Setup We first deploy Sol in EC2 to evaluate individual job performance using
instances distributed over 10 regions.9 Our cluster allocates 4 m4.4xlarge instances in each region.
Each has 16 vCPUs and 64GB of memory. To investigate Sol performance on multiple jobs in
diverse network settings, we set up a 40-node cluster following our EC2 setting, and use Linux

Traffic Control to perform network traffic shaping to match our collected profiles from 10 EC2
regions.

Workloads We use three types of workloads in evaluations:

1. SQL: we evaluate 110 industry queries in TPC-DS/TPC-H benchmarks [34, 35]. Performance
on them is a good demonstration of how good Sol would perform in real-world applications
handling jobs with complicated DAGs.

2. Machine learning: we train three popular federated learning applications: linear regression,
logistic regression, and k-means, from Intel’s industry benchmark [132]. Each training data
consists of 10M samples, and the training time of each iteration is dominated by computation.

3. Stream processing: we evaluate the maximum throughput that an execution design can sustain
for WordCount and TopKCount while keeping the end-to-end latency at a given target. We
define the end-to-end latency as the time from when records are sent to the system to when
results incorporating them appear.

Baselines We compare Sol to the following baselines:

1. Apache Spark [278] and Apache Tez [223]: the mainstream execution engines for generic
workloads in datacenter and wide-area environments.

2. Drizzle [242]: a recent engine tailored for streaming applications, optimizing the scheduling
overhead.

Metrics Our primary metrics to quantify performance are the overarching user-centric and
operator-centric objectives, including job completion time (JCT) and resource utilization.

2.8.2 Performance Across Diverse Workloads in EC2

In this section, we evaluate Sol’s performance on individual jobs in EC2, with query processing,
machine learning, and streaming benchmarks.

9California, Sydney, Oregon, Ohio, Tokyo, Mumbai, Seoul, Singapore, Sao Paulo and Frankfurt.
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Figure 2.15: Performance on machine learning.

Sol outperforms existing engines Figure 2.14 shows the distribution of query completion times
of 110 TPC queries individually on (10, 100, 1000) scale factor datasets. As expected, Sol and Spark
outperform Tez by leveraging their in-memory executions. Meanwhile, Sol speeds up individual
queries by 4.9× (11.5×) on average and 8.6× (23.3×) at the 95th percentile over Spark (Tez) for
the dataset with scale factor 10. While these queries become more bandwidth- and computation-
intensive as we scale up the dataset, Sol can still offer a noticeable improvement of 3.4× and 1.97×
on average compared to Spark on datasets with scale factors 100 and 1000, respectively. More
importantly, Sol outperforms the baselines across all queries.

Sol also benefits machine learning and stream processing. For such predictable workloads, Sol
pipelines the scheduling and data communication further down their task dependencies. Figure 2.15
reports the average duration across 100 iterations in machine learning benchmarks, where Sol
improves the performance by 2.64×-3.01× w.r.t. Spark.

Moreover, Sol outperforms Drizzle [242] in streaming workloads. Figure 2.16 shows that Sol
achieves 1.35×–3.68× higher throughput than Drizzle. This is because Sol follows a push-based

model in both control plane coordinations and data plane communications to pipeline round-trips for
inter-site coordinations, while Drizzle optimizes the coordination overhead between the coordinator
and workers. Allowing a larger target latency improves the throughout, because the fraction of
computation time throughout the task lifespan increases, and thus the benefits from Sol become less
relevant.

Sol is close to the upper bound performance To explore how far Sol is from the optimal, we
compare Sol’s performance in the high latency setting against Sol in a hypothetical latency-free
setting 10 , which is a straightforward upper bound on its performance. While high latencies lead
to an order-of-magnitude performance degradation on Spark, Sol is effectively approaching the
optimal. As shown in Figure 2.14 and Figure 2.15, Sol’s performance is within 3.5× away from the

10We create a 40-node cluster in a single EC2 region.
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Figure 2.16: Performance on stream processing. Higher is better.

upper bound. As expected in Figure 2.14(c), this performance gap narrows down as Sol has enough
work to queue-up for hiding the coordination delay.

2.8.3 Online Performance Breakdown

So far, we have evaluated Sol in the offline setting with individual jobs. Here we move on to
evaluate Sol with diverse workloads running concurrently and arriving in an online fashion with
our cluster. Specifically, we evaluate Sol in an online setting, where we run 160 TPC queries –
randomly drawn from the (10, 100)-scale TPC benchmarks – run as foreground, interactive jobs, and
bandwidth-intensive CloudSort jobs [27] – each has 200 GB or 1 TB GB input – in the background.
The TPC queries are submitted following a Poisson process with an average inter-arrival time of 10
seconds, while the CloudSort jobs are submitted every 300 seconds.

We evaluate Sol and Spark using two job schedulers:

1. FIFO: Jobs are scheduled in the order of their arrivals, thus easily resulting in Head-of-Line
(HOL) blocking;

2. Fair sharing: Jobs get an equal share of resources, but the execution of early submitted jobs
will be prolonged.

These two schedulers are prevalent in real deployments[123, 3], especially when job arrivals and
durations are unpredictable.

Improvement of resource utilization Figure 2.17 shows a timeline of normalized resource usage
for both network bandwidth and total CPUs with the FIFO scheduler. A groove in CPU utilization
and a peak in network utilization dictate the execution of bandwidth-intensive background jobs.
Similarly, a low network utilization but high CPU utilization implicates the execution of foreground
jobs. We observe Sol improves the CPU utilization by 1.8× over Spark. The source of this
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Figure 2.17: Resource utilization over time.

improvement comes from both control and data planes: (i) Sol pipelines high-latency coordinations,
and thus workers are busy in running tasks all the time. (ii) Sol flexibly repurposes the idle
CPU resources in the presence of bandwidth-intensive jobs, thus achieving higher utilizations by
orchestrating all jobs. Note that the CPU resource is not always fully saturated in this evaluation,
because the cluster is not extremely heavy-loaded given the arrival rate. Therefore, we believe Sol
can provide even better performance with heavy workloads, wherein the underutilized resource can
be repurposed for more jobs with decoupling. Results were similar for the fair scheduler too.

Improvement of JCTs Figure 2.18(a) and Figure 2.18(b) report the distribution of job completion
times with FIFO and fair schedulers respectively. The key takeaways are the following. First, simply
applying different job schedulers is far from optimal. With the FIFO scheduler, when CloudSort
jobs are running, all the frontend jobs are blocked as background jobs hog all the available resources.
While the fair scheduler mitigates such job starvation by sharing resources across jobs, it results in
a long tail as background jobs are short of resources.

Instead, Sol achieves better job performance by improving both the intra-job and inter-job
completions in the task execution level: (i) Early-binding in the control plane improves small jobs,
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Figure 2.19: Sol performance in other design space.

whereby the cluster can finish more jobs in a given time. Hence, even the simple pipelining can
achieve an average improvement of 2.6× with the FIFO scheduler and 2.5× with the fair scheduler.
(ii) With data plane decoupling, the latency-sensitive jobs can temporarily enjoy under-utilized
resource without impacting the bandwidth-intensive jobs. We observe that the performance loss of
bandwidth-intensive jobs is less than 0.5%. As the latency-sensitive jobs complete faster, bandwidth-
intensive jobs can take up more resources. As such, Sol further improves the average JCTs w.r.t.
Spark with both FIFO (average 16.4×) and fair schedulers (average 8.3×).

2.8.4 Sol’s Performance Across the Design Space

We next rerun the prior online experiment to investigate Sol’s performance in different network
conditions with our cluster.
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Figure 2.20: Sol performance under latency variations.

High bandwidth-low latency network In this evaluation, each machine has 10 Gbps bandwidth,
and the latency across machines is <1 ms. Figure 2.19 shows the distribution of JCTs. The benefits
of data plane decoupling depend on the time spent on data exchanges over the network. Although
jobs are prone to finishing faster in this favorable environments, Sol can still improve over Spark by
1.3× on average by mitigating the HOL blocking with the decoupling in task executions.

Low bandwidth-low latency network In practice, users may deploy cheap VMs to perform
time-insensitive jobs due to budgetary constraints. We now report the JCT distribution in such
a setting, where each machine has 1 Gbps low bandwidth and negligible latency. As shown in
Figure 2.19(b), Sol largely outperforms Spark by 3.9×. This gain is again due to the presence of
HOL blocking in Spark, where bandwidth-intensive jobs hog their CPUs when tasks are reading
large output partitions over the low-bandwidth network.

Note that the high latency-high bandwidth setting rarely exists. As such, Sol can match or
achieve noticeable improvement over existing engines across all practical design spaces.

2.8.5 Sol’s Performance Under Uncertainties

As a network-aware execution engine, Sol can tolerate different uncertainties with its federated
design.

Uncertainties in network latency While Sol pushes tasks to site managers with early-binding
under high network latency, its performance is robust to latency jitters. We evaluate Sol by
continuously feeding our cluster with inference jobs; each scans a 30 GB dataset and the duration
of each task is around 100 ms. We snapshot a single site experiencing transient or lasting latency
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Figure 2.21: Impact of different failures on iteration duration for Sol and Spark: (a) Sol site manager
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variations. As shown in Figure 2.20, Sol proceeds more tasks than Spark with early-binding of
tasks. Moreover, Sol can efficiently react to RTT variations by adaptively tuning its queue size.

Uncertainties in failure Figure 2.21 compares Sol’s performance with Spark under different
failures. In this evaluation, we train a long running linear regression in our 10-site deployment,
and each iteration performs two stages: training on the data and the aggregation of updates. When
the site manager fails (a), Sol restarts the site manager on other local machines, and reschedules
the missing queued-up tasks. The recovery of site managers is pipelined with task executions,
experiencing little overhead in job performance. Task failures (b) and machine failures (c) in
Spark require a tight coordination with the remote coordinator, but Sol handles such failures by
coordinating the site manager. Upon detecting task failures, the site manager restarts the task on
other locally available machines with its metadata, while asynchronously notifying the coordinator.
As such, Sol suffers little overhead by hiding the failures silently. Although the coordinator needs to
take charge of rescheduling in both Sol and Spark under site-wide failures (d), tasks in Sol complete
faster.

2.9 Discussion and Future Work

Fine-grained queue management. By capturing the range of task durations, Sol pushes the right
number of tasks to site managers at runtime. However, Hoeffding’s inequality can be suboptimal,
especially when the variance of task durations becomes much greater than their average [125].
Further investigations on the queue management of site managers are needed. To this end, one
possible approach is to build a context-aware machine learning model (e.g., reinforcement learning)
to decide the optimal queue length [63].
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Performance analysis of geo-aware efforts. As the first federated execution engine for diverse
network conditions, Sol can serve a large body of existing efforts for geo-distributed data analytics
[211, 243, 134]. Although these works do not target latency-bound tasks, for which Sol shows
encouraging improvements with control plane optimizations, it would be interesting to investigate
Sol’s improvement for bandwidth-intensive workloads after applying techniques from existing
geo-distributed frameworks.

2.10 Related Work

Geo-distributed storage and data analytics Numerous efforts strive to build frameworks operat-
ing on geo-distributed data. Recent examples include geo-distributed data storage [258, 177] and
data analytics frameworks [128, 31]. Geode [244] aims at generating query plans that minimize
data transfers over the WAN, while Clarinet [243] and Iridium [211] develop the WAN-aware
query optimizer to optimize query response time subject to heterogeneous WAN bandwidth. These
optimizations for data analytics lie on the scheduler layer and could transparently leverage Sol for
further gains (§2.7).

Data Processing Engines The explosion of data volumes has fostered the world of MapReduce-
based parallel computations [80]. Naiad [196] and Flink [60] express data processing as pipelined
fault-tolerant data flows, while the batch processing on them performs similarly to Spark [278].
The need for expressive user-defined optimizations motivates Dryad [135] and Apache Tez [223] to
enable runtime optimizations on execution plans. These paradigms are designed for well-provisioned
networks. Other complementary efforts focus on reasoning about system performance [206, 205],
or decoupling communication from computation to further optimize data shuffles [71, 70]. Our
work bears some resemblance, but our focus is on designing a network-aware execution engine.

Speeding up data-parallel frameworks Although Nimbus [184] and Drizzle [242] try to speed
up execution engines, they focus on amortizing the computation overhead of scheduling iterative
jobs. Hydra [79] democratizes the resource management for jobs across multiple groups. While
Yaq-c [214] discusses the tradeoff between utilization and job performance in queue management,
its solution is bound to specific task durations without dependencies. Moreover, we optimize task
performance inside execution engines.

2.11 Summary

As modern data processing expands due to changing workloads and deployment scenarios,
existing execution engines fall short in meeting the requirements of diverse design spaces. In this
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chapter, we explored the possible designs beyond those for datacenter networks and presented
Sol, a federated execution engine that emphasizes an early-binding design in the control plane
and decoupling in the data plane. In comparison to the state-of-the-art, Sol can match or achieve
noticeable improvements in job performance and resource utilization across all practical points in
the design space.
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CHAPTER 3

Minimizing Training Execution via Automated Training Warmup

In the previous chapter, we showed how to efficiently preprocess data for ML development at
a low cost – e.g., by performing in-situ computation on data and only aggregating the processed
data. This chapter moves on to the experimentation stage, in which developers often train hundreds
of models to find the best performing model on the processed data [281, 239]. In this process, we
develop ModelKeeper, the first automated training warmup system that accelerates the training
of deep neural networks (DNNs) by repurposing previously-trained models. In a shared cluster,
ModelKeeper reduces the cost of model training by exploiting the insight that initializing a training

job’s model by transforming an already-trained model’s weights can jump-start it and reduce the

total amount of training needed.

The rest of this chapter is organized as follows. The next section introduces the potential
to leverage model similarity. Section 3.2 outlines the proposed system. Section 3.3 presents
analyses into real-world model zoos, showcasing the opportunity of model transformation. The
design section, Section 3.5, illustrates how ModelKeeper scalably selects a parent model with high
similarity and good model accuracy, and performs structure-aware transformation across model
architectures. We then implement and ModelKeeper in Section 3.6 and Section 3.7, respectively.
Next, we discuss in Section 3.8 its current limitations and future research directions, survey related
work in Section 3.9, and summarize our findings in Section 3.10.

3.1 Background

Modern machine learning (ML) clusters train thousands of deep neural networks (DNNs) every
day [255, 139]. For a specific ML task, ML developers often start with exploring various model
architectures using Neural Architecture Search (NAS) to find the one with desired accuracy [286]. In
preparation for model serving, developers may train tens of models to customize the latency-accuracy
trade-off across hardware [127, 78], to organize weak and powerful DNNs into different inference
stages for fast feature extraction [77], and/or to dynamically select tens of models and combine their
predictions to maximize ensemble accuracy [253, 110, 90]. Overall, from inception to deployment,

36



ML development often requires training hundreds of models across developers [281, 239].
Naturally, many recent advances in ML training optimizations have focused on faster DNN

execution, e.g., by increasing parallelism [197, 267], improving communication [210, 144], or
increasing GPU utilization [259, 108, 260, 276]. However, little has been done to exploit the natural
similarity between models that are trained as part of the same NAS process, models targeting the
same ML task in different hardware, or models embedded in different applications. Indeed, our
analysis of three large CV and NLP model zoos shows that more than 60% of widely-used models
can find an architecturally similar counterpart within the same zoo (§3.3.2).

In fact, one can reduce the amount of training needed for model convergence by leveraging

a well-trained model’s weights to warm up the training of a new model. This is because any
DNN model is fundamentally a computation graph of tensor weights and operators; transforming
the weights of trained models with similar architectures to a new model can accelerate model
convergence (similar to transfer learning [272, 236] but across architectures).

Despite the potential for large benefits, there exists little systematic support for automated
repurposing of weights. Today’s frameworks may provide pre-trained models, but are limited to a
few models and specific datasets, and/or require domain knowledge to manually search, transfer,
and contribute a trained model’s weights [20]. As such, ML developers have to train models from
scratch more often [212]. A few recent AutoML frameworks (e.g., Retiarii [286]) repurpose trained
models, but they are limited to individual jobs within a NAS task because they rely on the lineage
of model mutation to enable the transfer. When models are submitted by various developers and/or
frameworks with distinct architectures and performance requirements, these solutions do not apply.

3.2 Solution Outline

We introduce ModelKeeper, a cluster-wide training warmup system, to reduce the training
execution needed for model convergence via automated model weight transformation (§3.4). Model-
Keeper adaptively manages a collection of trained models (i.e., model zoo) from prior training jobs
corresponding to different ML tasks. For a new training job, ModelKeeper selects and transforms a
trained model’s weights (i.e., parent model) to the training model (i.e., query model) before training
takes place. It can benefit various ML applications, including exploratory training (e.g., improving
Retiarii [286] further) and general training (e.g., using PyTorch [24]) of CV/NLP models, with
few-lines-of-code change.

ModelKeeper addresses two primary challenges toward selecting a suitable parent model and
repurposing its weights. First, ModelKeeper must determine similarity between two models (§3.5.1).
Intuitively, we can treat each DNN model as a directed graph, where nodes represent tensors (layers)
and edges represent data flows, and use heuristics for the classic NP-hard graph edit distance

37



problem [113] to find the matching similarity. However, maximizing matching by skipping nodes
can be harmful because the computation of each tensor affects that of the subsequent ones in a
trained parent model. To this end, we present a structure-aware dynamic programming approach to
capture the similarity (transformable tensor weights) between two models. To scale to real-world
zoos with thousands of models, we then introduce a two-stage hierarchical search algorithm to
identify similar models efficiently.

Second, perfect matching is unlikely as two models are seldom identical. Therefore, given
many candidate parent models with different similarity scores and each with different accuracy,
which one to pick and then how to transform its weights to the query model (§3.5.2)? A more
similar parent model enables transforming more weights, while a more accurate one implies a
better training jump start after the transformation. When the two are at odds, we adopt a bucketing
heuristic: potential parent models are put into different buckets in terms of their similarity to the
query model, grouping comparable parent models together. We then pick the most accurate parent
from the bucket containing the most similar parent models. Nevertheless, tensor mappings from the
parent to the query model can be incomplete (e.g., due to non-identical architectures). To preserve
maximal parent model information, we introduce width and depth operators to transform parent
model weights into the query model with negligible overhead.

We have integrated ModelKeeper with four popular ML frameworks (§3.6): Ray [192], AutoK-
eras [145], MLFlow [281], and Microsoft NNI with Retiarii backend [286].1 Our evaluations across
thousands of DNN training jobs in CV and NLP applications (§3.7) show that ModelKeeper can save
23%–77% total amount of training needed (i.e., 1.3×–4.3× faster training) than the state-of-the-art
without model accuracy drop, while efficiently serving cluster-scale warmup requests.

Overall, we make the following contributions in this chapter:

1. We present ModelKeeper, a system to enable automated training warmup for faster DNN training
in clusters;

2. In order to maximize training speedup, we demonstrate how to scalably compute similarities
between models and how to transform an already-trained model’s weights to a yet-to-be trained
model with little overhead;

3. We integrate ModelKeeper with multiple advanced ML frameworks, and evaluate it across
thousands of CV and NLP models to show large improvements.
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Figure 3.1: A DNN model is essentially a graph of tensors. Model outputs are determined by tensor
weights and their control flow.

3.3 Motivation

3.3.1 DNN Model Training

Modern DNN frameworks represent DNN computations as a directed computation graph with
tens to thousands of nodes across branches (Figure 3.1) [140, 24]. Each node implies a mathematical
tensor operation (e.g., matrix multiplication or convolution) along with its tensor weights and input,
where weights are n-dimensional arrays typically consisting of floats. DNN training often covers
thousands of iterations across mini-batches of data to minimize the training loss. In each iteration,
the computation graph takes a data mini-batch as the input, and performs a (1) forward pass, where
each node conducts the tensor operation on the output of parent nodes to get the training loss
regarding the model output and ground truth; and a (2) backward pass, which updates the weight
values, from the last to front tensors, using the gradients derived by the training loss with respect to
the current weight. Therefore, the DNN model is essentially a graph of weights orchestrated by
tensor operators, and training searches for the best weight values.

3.3.2 Opportunities for Repurposing Models

In this chapter, we focus on reducing the amount of training needed to train a new model by
automatically repurposing the weights of previously trained models. Our approach of warming up
the weights of a new model before its training starts is based on the following observations.

1ModelKeeper is available at https://github.com/SymbioticLab/ModelKeeper.
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Figure 3.2: Pervasive model similarity in today’s model zoos. We measure the top-1 and top-5
architectural similarities of each model to other models, and report the distribution across models. 1
indicates identical model architectures.

Pervasive model similarity. With the rapid increase in the number of ML training jobs in
datacenters [139, 108], similarities between training jobs are increasing too [255]:

• First, for a specific ML task, ML developers often explore various model architectures using
Neural Architecture Search (NAS) to find the preferred model architecture (e.g., better capacity-
accuracy frontier [286]), or to investigate the performance consistency of new optimizations
across models (e.g., ML ablation study) [190]. For example, Microsoft tuning clusters perform
as many as 75 exploratory training jobs in median for user apps [180].

• Second, in preparation for ML deployment, developers can train dozens of models to either
customize the latency-accuracy tradeoff across hardware (e.g., in video analysis systems [127,
141]), or to dynamically select tens of models and combine their predictions in order to maximize
accuracy under changing loads in today’s ensemble-serving systems [253, 110] (e.g., AWS
Autogluon [90]).

• Third, the potential for similar models increases with increasing users. For example, over 100K
ML models are submitted to Kaggle competitions each month [16]. Each competition can have
thousands of participants developing their models independently, and participants are reported
to have trained many similar models [81].

Indeed, our analysis of three large public model zoos – Imgclsmob [26] for ImageNet classifica-
tion (435 models), HuggingFace [14] for English text generation (2.5K models), and NASBench [84]
for NAS task (16K models) – reinforces these observations. Figure 3.2 reports the pairwise architec-
tural similarity across models in each model zoo. We measure the similarity of each model to other
zoo models2 in terms of the normalized graph edit distance of two directed model computation

2To avoid over-optimistic identification of model similarity, we removed identical models in each zoo and focus on
different model architectures.
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Figure 3.3: Transferring model weights from well-trained models with similar architectures can
accelerate new model training.
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Figure 3.4: Warm start provides better initial weights search space. We use RoR3 to warm start
ResNet101.

graphs [96] (∈ [0, 1]), where 1 indicates identical graphs. We observe that more than 60% of the
models have at least one other model (top-1) in the zoo with a similarity over 0.6. Pervasive similar-
ity is prominent in all these model zoos because modern models often rely on similar architecture
designs but with wider/deeper layers or branches. For example, convolution layers are widely-used
in CV models [120, 131], while NLP models are often stacked by attention layers [240].

Similar models can warm-start training. Recent theoretical [236] and empirical [272] efforts
from the transfer learning community show that inheriting well-trained parent model weights
can speed up the training of a new model, because this warm start enables an informed weight
initialization (e.g., training from the basin of loss curvature). Yet, different from their focus on
manually transfering the same model across datasets for better model generalization accuracy [202,
288], we notice that transforming a trained model’s weights to a new model (i.e., across architectures)
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can accelerate its training.
Consider the training of ResNet101 on CIFAR-10 dataset as an example. We copy the tensor

weights of a well-trained parent model (e.g., ResNet50 or RoR3 [285]) to the ResNet101 tensor if
two tensors have identical properties (e.g., same operator and weight dimensions), while the rest
of the training proceeds as normal. We notice that (1) warmup training can reduce the amount
of training needed, while obtaining the same final accuracy as training from scratch with random
weight initialization (Figure 3.3(a)); and (2) the savings are more encouraging when inheriting from
more similar models – similarity of ResNet34, ResNet50, and RoR3 to ResNet101 is 0.19, 0.48,
and 0.85, respectively – and better performing models (Figure 3.3(b)), which respectively determine
whether it is possible and beneficial to transform the weights.

These improvements are because they speed up the search in the space of weight values. If we
consider ResNet101 as an example, (1) warming it up using RoR3’s weights before training starts
results in a smaller distance to the final weights achieved when the model converges (Figure 3.4(a)),
and (2) during the training, this informed weight initialization enables smaller gradient variance
(i.e., more consistent gradient directions) towards the basin of loss curvature (Figure 3.4(b))), thus
requiring fewer iterations to convergence in theory [40, 202].

3.4 ModelKeeper Overview

ModelKeeper is an automated training warmup system for various ML tasks that accelerates
DNN training by warm-starting models with weights from already-trained models.

Design Space Large training clusters are shared between users with varying expertise, and they
can train a large number of jobs with different model architectures. Consequently, ModelKeeper
must minimize the information needed and overhead incurred for each training model (i.e., query

model), while offering users the flexibility in their request (e.g., using ImageNet model zoo to
warm start models on other image datasets). In fact, determining which dataset (model zoo) as the
source to transfer is as yet an open problem in the transfer learning community [272, 178, 288].
ModelKeeper is complementary to and benefits existing ML efforts as it automates training warmup
(e.g., searching, transforming, and contributing a trained parent model’s weights) for a given model
zoo, instead of making the developer keep tracking all models and handcraft which model to
repurpose [20]. We empirically show that ModelKeeper can benefit the model training across
datasets too (§3.7.4).

For a given model zoo, the effectiveness of transforming parent model weights relies on two
key aspects: (i) Model similarity: it dictates the similarity of two model architectures, including
the weights shape and operation type of a tensor; and (ii) Parent model accuracy: it determines the
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Figure 3.5: ModelKeeper architecture. It can run as a cluster-wide service to serve different users
and/or frameworks.

value of transformation. Having architectural similarity is the prerequisite to transforming more
weights information of a parent model, while better parent model accuracy implies a potentially
better warm start after transformation.

As such, ModelKeeper should repurpose a parent model with large similarity and better accuracy.
We provide the theoretical analysis to support why ModelKeeper can benefit model convergence
following this principle in Appendix B.1.

System Components ModelKeeper is a complementary system to existing ML training (Fig-
ure 6.3), and has integrations with various frameworks (e.g., Microsoft NNI [17] and Ray [192]). It
consists of the remote coordinator, which serves user query models before their training executes,
and the client agent that allows users to submit model warmup requests. ModelKeeper coordinator
employs three key components to warm up models by transforming a trained model’s weights:

• Model Matcher: to identify architecturally similar models in the zoo of trained models;

• Model Mapper: to select a zoo model with good architectural similarity and accuracy as the
parent model, and transforms the parent model weights to the query model;

• Zoo Manager: to adaptively manage zoo models that can be submitted from users to support
transformation at scale.

Figure 3.6 reports the example interface on the client agent, where the user benefits from
ModelKeeper with a few lines of code in training (Coordinator interfaces are in Section 3.6).
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1 from modelkeeper import ModelKeeperClient
2
3 def training_with_keeper(model, dataset):
4 # Create client session to keeper coordinator
5 keeper_client = ModelKeeperClient(coordinator_ip)
6 warmed_model, meta = keeper_client.query_for_model(
7 model, meta={'data': 'Flowers102',
8 'task':'classification', 'tags': None})
9

10 acc = train(warmed_model, dataset) # Training starts
11
12 # Register model to ModelKeeper when training ends
13 keeper_client.register_model(warmed_model,
14 meta={'data': 'Flowers102', 'accuracy': acc,
15 'task': 'classification', 'tags': None})
16 keeper_client.stop()

Figure 3.6: Code snippet of ModelKeeper client service APIs.

Training Lifecycle When the developer creates a new training job, 1 she first initiates a client
connection to the remote ModelKeeper coordinator, and then issues a query with the specified
job meta information. ModelKeeper client agent will automatically extract the model information
needed (e.g., model computation graph) and issue a request (mostly size < 1 MB) to the coordinator.
2 Upon receiving the request, Matcher consults its metadata store, identifies zoo models that the
user can access and that meet the specified tag (e.g., name of the preferred parent models), and
measures their architectural similarity to the query model. 3 Mapper selects a parent model with a
large architectural similarity and good accuracy out of these zoo models. Thereafter, it loads the
model weights of this parent model from the data store, and transforms the model weights, based
on pairwise tensor mapping from the Matcher, to the query model. Note that this transformation
only updates tensor weight values, while others (e.g., model architecture) remain the same. 4 The
coordinator responds to the developer with warmup model weights, and the rest of the training
remains as usual. 5 When the training completes, ModelKeeper can automatically register the
trained model to the Zoo Manager to benefit future jobs.

3.5 ModelKeeper Design

In large shared clusters, models are often submitted by various developers and/or frameworks
with diverse architectures at different points in time. The large variety in model architectures and
accuracy characteristics leads to novel system challenges in automating weight transformation from
a parent model with high similarity and better accuracy:

• Having similar model architectures is the prerequisite to transforming weights across architec-
tures. How to identify more architecturally similar zoo models (§3.5.1)?

• As the similarity and accuracy of many potential parent models can come at odds, which one
to pick and then how to transform its weights to the query model even in the presence of
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Figure 3.7: ModelKeeper relies on dynamic programming-like heuristics to measure graph-level
model architectural similarity.

non-identical architectures (§3.5.2)?

• New training jobs and trained models can join the cluster on the fly. How to serve user warmup
requests at scale for high throughput clusters in the wild (§3.5.3)?

3.5.1 Matcher: Identify Similar Models

The similarity between two model architectures determines the number of tensor weights that
we can transform. Hence, we need to identify the graph-level architectural similarity of each parent
and query model pair (Figure 3.7) and their pairwise tensor mappings. It is tempting to model it as
a classic NP-hard graph edit distance (GED) problem [51] by treating tensors as nodes and data
flows as edges with the goal to morph one graph to the other with minimum edits (e.g., add/delete
a node). However, model matching encounters new challenges: (i) Prefix Preference: we prefer
to match the prefix over the suffix of model graphs. Because prefix tensors are more transferable
since they capture general input features (e.g., image color blobs) [272, 202]. Moreover, model
weights are trained systematically over tensors, so any edit on prefixes can result in information
loss to subsequent tensors [89]; (ii) Partial Matching: we can partially transform the weights of
a smaller dimensional tensor to a wider one to match more tensors, or postpone its matching to
preserve its exact weights information; and (iii) Scalability: as each model can consist of thousands
of nodes across branches, capturing the similarity to thousands of zoo models is challenging.

ModelKeeper Matcher measures the graph-level similarity of models, in terms of the total
number of transformable weights after mapping tensor pairs from the parent to the query model. It
uses the widely-used ONNX tool [21] to extract the computation graph. ONNX supports various

45



model formats (e.g., Tensorflow and PyTorch), which allows us to perform the cross-framework
transformation.

Structure-Aware Pairwise Model Matching We introduce a dynamic programming-based heuris-
tic to measure the end-to-end similarity (i.e., number of weights to transform) of two models. It
relies on a similarity table M(|gp|+1)×(|gq |+1)(i, j) to record the best similarity after matching the
prefixes of the parent and the query model. Here, |gp| and |gq| respectively denote the number
of tensors of the parent model and the query model. Then, it enumerates plausible matching
operations from previous states (e.g., M(i− 1, j − 1)), and takes the operation that can acquire the
maximum similarity to enter the next state (i.e., M(i, j)).

Figure 3.7 shows the execution of our structure-aware matching algorithm. It traverses the
similarity table in the topological order of graph tensors. This allows us to embed graph-level
information while prioritizing the matching of prefixes. To advance to the current tensor pair (i, j),
it enumerates three plausible operations:

1. MATCH: transform weights of i’s parent to j’s parents.

2. SKIP_PARENT: give up transforming tensor i’s parent;

3. SKIP_CHILD: give up transforming to tensor j’s parent;

Then, it updates the table to obtain the maximum similarity after each step based on previous
states as follows:

M(i, j) = max
k∈parent(i)


M(k, jparent) +MATCH(k, jparent) (3.1)

M(k, j) + SKIP_PARENT (3.2)

M(i, jparent) + SKIP_CHILD (3.3)

To get the overall transformable weights, we can reward each operation based on the number of
tensor weights transformed. When tensor i and j belong to the same operator (e.g., convolution),
the fraction of transformed weights along each weights dimension in MATCH operation (3.1) is:

MATCH(i, j) =

∏
dim=1min(dim(i), dim(j))∏
dim=1max(dim(i), dim(j))

(
∈ [0, 1]

)
(3.4)

Otherwise, we assign MATCH(i, j) to -1, as this transformation is useless and even loses the
weights of that parent model tensor. Similarly, SKIP_PARENT is set to -1 as it loses the parent
model tensor, and SKIP_CHILD is 0, since it does not transform the parent model tensor.

Capturing the graph-level similarity is more challenging when tensor j of the query model is
the intersection of multiple upstream branches. Because different upstream branches to j may
follow the same branch of the parent model during their matching, leading to repetitive (conflicting)
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Figure 3.8: Keeper is order-of-magnitude more scalable than existing GED. V-Ensemble is a model
zoo for ensemble training (§3.7.1).

matching. As shown in Figure 3.7, when we reach ( 6 , 6 ), branch ( 2→ 3 ) and ( 4→ 5 ) may both
be matched to ( 2→ 3 ) that maximizes their own similarity. To avoid conflicting matching, the
similarity to j is the sum of upstream branches (M(i, j) =

∑
k∈parent(j) M(i, k)), and we greedily

adopt the matching of a branch to tensor j, whose trajectory achieves the largest similarity (i.e.,
match 2→ 3 to 2→ 3 ), to maximize their sum. Meanwhile, we discard the trajectory of other
branches where conflict exists. As such, branch 4→ 5 takes the inferior match ( 5 ), where 4 is
skipped.

The last entry of the table, i.e., M(|gp|, |gq|), gives the end-to-end similarity. Note that we can
learn the pairwise tensor mappings by backtracking operations taken to reach M(|gp|, |gq|) over the
table in linear time. For a specific model, our heuristic will naturally treat the model itself as the
most similar model, because matching will always take operation MATCH(i, i) in each step to
maximize the similarity.

Figure 3.8 reports that our pairwise matching can match thousands of model pairs in a second,
and achieves higher throughput than the state-of-the-art GED solution [218] in this model matching
scenario. More importantly, our empirical results report that our structure-aware matching achieves
better training warmup than the GED solution (§3.7.3).

3.5.2 Mapper: Transform Maximal Parent Information

The effectiveness of weight transformation is determined by the similarity (transfer more
weights) and accuracy (transfer better weights) of parent models. Unfortunately, it is impractical
to pick the optimal parent model, since the performance of transformation can only be known
after training each derived warmup model to converge. Worse, the variety of model similarity
and performance leads to the tussle in selecting the parent model. As shown in Figure 3.9, while
some models (e.g., ResNet34) possess high accuracy, their low similarity to ResNet101 can cap the
number of weights that can transform. Next, we introduce Mapper to exploit the sweet spot of both
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Figure 3.9: Models vary in accuracy and architecture (Imgclsmob zoo). We measure their similarity
w.r.t.ResNet101, and prefer to transform a parent model with better similarity and accuracy.

aspects, and then to transform maximal parent model weights in the presence of partial matching.
As shown in Algorithm 3.1, Mapper relies on Matcher to identify similar models (Line 2). As

having a good similarity is the prerequisite for transformation, we need to first ensure picking similar
models. To this end, Mapper takes the popular bucketing strategy to allocate models into B buckets
in terms of their similarity (Line 14). Taking Figure 3.9 as an example, with B = 10 by default,
bucket 10 will accommodate models with similarities between 0.9 and 1.0, so models in the same
bucket have comparable similarities. Then, Mapper traverses from the last bucket (bucket 10) to the
first until reaching the first one with nonempty models (bucket 9), from which it selects the model
with the best performance as the parent model (Line 15). As such, the parent model approaches the
boundary of better model similarity and accuracy. Later, Mapper performs structure-aware weight
transformation to initialize the query model weights (Line 18).

Information-Preserving Weight Transformation To maximize the end-to-end number of weights
to transform, Matcher allows partial matching: it may map a small tensor of the parent to a wider
one of the query model, or skip the mapping of some tensors in the parent or the query model. Here,
the straw-man solution (e.g., in Retiarii [286]), which transfers the weights of parent model tensors
if and only if two tensors are identical, can be suboptimal (§3.7.3), since losing the parent model
tensor can make the transfer of its subsequent tensors useless.

To preserve maximal parent model information under partial mappings, Mapper employs a
width operator and a depth operator, which extend the well-known ML technique for function-
preserving model transformation (e.g., Net2Net [66] and Network Morphism [254]). But unlike
existing model transformation techniques [145], which are limited to expand the depth and width of
a pre-determined model, or complicated transfer learning (e.g., knowledge distillation [124]) that
requires additional computation (e.g., pre-training) and/or intrusive implementation, our operators
transform the parent model weights into the query model with little overhead.
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Input: Query model q, Model Zoo M
Output: Warmup Model Weights

1: NumOfBuckets B = 10 ▷ Model similarity ∈ [0, 1]

2: Function GetModelSim(Query q, Models M)
/* Structure-aware matching for model similarity. */

3: topo_query_tensors = SortByTopo(q)
4: model_similarity = {}

5: for model m ∈M do
6: similarity_table = zeros(|gm|+1, |gq |+1)
7: for tensor i ∈ CachedModelTopo(m) do
8: for tensor j ∈ topo_query_tensors do

/* Enumerate and merge intersection. */
9: similarity_table[i][j] = Equation (3.1-3.3)

10: model_similarity[m] = similarity_table[|gm|][|gq |]

11: return model_similarity

12: Function QueryForModel(Query q, Model Zoo M)
/* Bucket models in terms of similarities. Pick the model in the top-similar bucket with the best

performance. */
13: model_similarity = GetModelSim(q, M )
14: top_similar_bucket = BucketBySimilarity(model_similarity, B).first

15: for model ∈ top_similar_bucket do
16: if model.perf > best_parent.perf then
17: best_parent = model

/* Perform width and depth weight transformation */
18: warmup_weights = TransWeight(best_parent, q)

19: return warmup_weights

Algorithm 3.1: Select the parent model to transform.

Our graph-level transformation proceeds in the topological order of tensors. Mapper handles
the expanding case similarly to today’s function-preserving transformation (Figure 3.10): (i) to
transform a parent model tensor into a wider query model tensor, the width operator copies the
parent model weights to its mapping tensor of the query model, and pads the rest of the columns
via weighted replication from other columns; and (ii) when the mapping requires inserting a new
tensor into the parent model (i.e., SKIP_CHILD), the depth operator will initialize the weights of
this mapping tensor to be an identity tensor. i.e., this tensor will directly pass the output of its parent
tensors to the child tensors, in order to keep the same parent model’s output. Readers can refer to
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Figure 3.10: Width and depth operators to transform the parent model.

Net2Net [66] for more details. We note that both expanding operations, in theory, can preserve the
parent model information (i.e., with the same tensor output) for many tensor operators (e.g., the
wide-used full connection and convolution layers).

The pruning case, however, cannot preserve full parent model information, because we lose
some tensor weights of the parent model in transformation. Our solution is inspired by today’s
ML model pruning criteria [114]. Specifically, when we need to fit wider tensor weights (i.e., with
larger array dimensions) to a smaller dimensional tensor of the query model, the width operator will
progressively pick and copy the largest weight values of the parent model tensor to the mapping
tensor of the query model. This is because, intuitively and empirically, larger magnitude values often
have more impact on the model output [48]. From the depth perspective, when we skip transforming
(i.e., SKIP_PARENT) a parent model tensor, the depth operator will add noise to the weight values
of that tensor’s neighbors. It disturbs the affinity of trained parent model weights so that neighboring
tensors can still keep most information while being able to learn new weights [200].

Our transformation can be applied to various models for informed weight initialization. There-
after, training proceeds as normal, and the warmup model will gradually converge on the weight
values that fit its architecture the best. As a generic system, ModelKeeper can accommodate other
transformation techniques too as they become available. We provide a theoretical analysis of our
transformation in Appendix B.1.2, and empirically show performance improvements using our
transformation over its counterparts (§3.7.3).

3.5.3 Zoo Manager: Transform Effectively At Scale

In reality, cluster users register their trained models to the model zoo on the fly, leading
to scalability and performance challenges. First, while gathering more models increases the
opportunity to transform better parents, the ever-growing number of models (e.g., > 70K models
in the HuggingFace model hub of all tasks [14]) and model size (e.g., NLP models can be tens of
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Figure 3.11: Matcher clusters models into groups to reduce the search space, and then performs
model matching within groups.
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Figure 3.12: ModelKeeper can find the optimal number of clusters K∗ in hierarchical matching,
and can identify the most similar models with fewer zoo models (e.g., 5% in NASBench) needed to
explore.

GBs [58]) can lead to large matching overhead and storage costs. Moreover, models registering to
the zoo may have low accuracy (e.g., due to insufficient training), which can harm the effectiveness
of weight transformation. As such, ModelKeeper employs a Zoo Manager to support effective
transformation at scale under dynamics.

Two-Stage Hierarchical Model Matching Despite being able to match thousands of lightweight
CV models every minute (Figure 3.8), our pairwise matching heuristic can still be insufficient
for model zoos with tens of thousands of models or complicated model architectures (e.g., NLP
models). For example, to serve a query model using the HuggingFace model zoo for English
text generation (2.5K models), performing pairwise matching on these zoo models can take ∼17
minutes, namely, 2.5K models over the throughput (145 matching/minute). This long search time is
further exacerbated in today’s large cluster with sub-minute job arrivals [139], eventually hurting
the user experience.

To ensure an interactive service, Zoo Manager adaptively clusters zoo models into a well-defined

51



number of groups, whereby Matcher can perform two-stage matching to reduce the number of
matching pairs needed to identify more similar models. Intuitively, models with similar architectures
would have comparable model similarity to the same query model, so we may be able to cluster
zoo models into multiple groups, and then perform pairwise matching on the group members of top
similar model groups. However, it is non-trivial to decide what features to use for clustering models,
and how many groups are needed. Clustering too few groups does not scale down the problem
enough, while too many can lead to a large overhead in identifying which group to prioritize.

We deploy K-medoids clustering [201] to combine pairwise model matching and clustering to
find a sweet spot. K-medoids can directly take the distance of two points as input to minimize the
distance between data points and their cluster center. Here, models can be taken as different points,
and the distance is the reciprocal of their similarity. Compared to other clustering methods (e.g.,
K-means), K-medoids circumvents the need for embedding complicated model graphs, and it is
more compatible with pairwise model matching.

As shown in Figure 3.11, when a query model arrives, Matcher identifies its similarity to
each group medoid, and then conducts pairwise matching on the members of top similar groups.
Similarly, when a new model registers, Matcher measures its similarity to group medoids, and
assigns this new model to the group whose medoid is the most similar. This enables interactive
queries to the latest models. Later, Matcher periodically triggers K-medoids to update the clustering.

To select the most similar models for each query model, Matcher identifies the best group
medoid i by performing K pairwise matching, followed by Ki runs to match the members of group
i. Assuming a zoo of M models (M =

∑k
i Ki), to minimize the average matching runs on each

group (i.e., min
(
(K +Ki)/K

)
), we can get the optimal number of groups K∗ =

√
M . Figure 3.12

reports that, compared to the non-clustering design (i.e., K = 1), this two-stage design requires
matching only 5%-16% of all zoo models to identify the most similar models, thus reducing the
query hang time (§3.7.3).

Capping Zoo Size Hosting all zoo models can consume noticeable storage space. For example,
the HuggingFace model zoo takes tens of TBs of storage [14]. In fact and understandably, we notice
that a small portion of zoo models are more frequently repurposed than others (Figure 3.13). This is
because certain models contain more similar blocks to other models (e.g., ResNet50 is more likely
to be used to warm up other large ResNet models than ResNet18).

To harvest more warmup opportunities subject to the zoo capacity limit, we can formulate it as a
knapsack packing problem, where each item (model) is associated with a weight (model size) and
a value (repurposing frequency as the parent model), and our goal is to maximize the total value
achieved. Namely, warm up as many jobs as possible (aka maximum total repurposing frequency).
As such, solving this packing problem enables us to identify which item (model) to keep in the
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(b) NASBench model zoo.

Figure 3.13: A few zoo models are more frequently repurposed as the parent by Keeper. Numbers
are from our evaluations (§3.7.2).

knapsack (model zoo). But on the other hand, models that are popular to train can change over
time. For example, users incline to train more recent and/or advanced models. To account for the
temporal variation in the repurposing frequency of each zoo model, we take the moving average of
model values (e.g., decaying their repurposing frequency by 0.9 every day), and trigger the packing
solver upon reaching the storage limit. We show that ModelKeeper can perform well even under
severe storage limits (§3.7.4).

Avoiding Low-Accuracy Models Low accuracy models registering to the zoo (e.g., due to user
error) not only wastes storage but can harm the transformation, so we need to ensure the zoo uses
models with decent accuracy. To this end, other than selecting the model with better accuracy as
the parent using the bucketing design at query time, Zoo Manager evicts zoo models with outlier
accuracy at runtime. By default, we take the popular Z-score criteria (i.e., model accuracy below
the mean by more than two standard deviations) to identify outliers [221]. Moreover, for the same
model architecture, it only keeps the model with the best accuracy. We show that ModelKeeper
can accelerate training even in the presence of low accuracy models in unfavorable environments
(§3.7.4).

Complexity Analysis The complexity of pairwise model matching is O(|gp| × |gq|),3 and that of
model clustering is O(M2.5) for the zoo with M models. Mapper takes linear time to select and
transform the parent model. The magnitude of these factors is mostly within O(1K) (§3.7.1). Our
evaluations show that ModelKeeper incurs negligible overhead (§3.7.3).

3We omit the complexity in enumerating tensor parents (i.e., k ∈ parent(i)), since the node degree is orders of
magnitude smaller than |gp|.
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3.6 Implementation

We have implemented a system prototype of ModelKeeper, with around 2K lines of Python
code as the frontend library and 1K lines of C++ code as the backend. Our implementation provides
user-friendly APIs and supports many popular ML frameworks, such as Microsoft NNI [17],
AutoKeras [145], Ray [192], and MLflow [18], with few-lines-of-code plugins.

ModelKeeper Components ModelKeeper coordinator supports distributed deployment across
machines. Each coordinator controller processes a single scheduling thread to poll client requests
from its queue, and reserves a thread pool for Matcher. Matcher performs pairwise model matching
in parallel for each query model, and then Mapper creates a worker thread to transform parent model
weights using numpy format. Zoo Manager updates the model clustering every 5 minutes, and uses
ortools library to solve the knapsack problem. The client agent communicates with the coordinator
via TCP connections.

Fault Tolerance ModelKeeper uses Redis in the coordinator to store the metadata and model
weights in a fault-tolerant manner, and this metadata is cached in memory with small footprints.
Changes to the model zoo (e.g., registering new models) follow the write-ahead transaction to the
storage. At runtime, the coordinator runs a daemon process to monitor the liveness of the service,
which will create a new service process if the existing one crashes. The new process then fetches
the latest checkpoint from Redis to catch up.

Interfaces We pack interfaces into a Python library. The cluster manager can initiate the coordi-
nator in three lines:

from modelkeeper import ModelKeeperCoordinator

keeper_service = ModelKeeperCoordinator(config)

keeper_service.start()

Users can initiate the client agent in a few lines (Figure 3.6).

3.7 Evaluation

We evaluate the effectiveness of ModelKeeper on three mainstream frameworks for exploratory
and general DNN training, using five large-scale CV and NLP model zoos across thousands of
models. We summarize the results as follows:

• ModelKeeper saves 23%-77% total amount of training execution needed (i.e., 1.3×-4.3× faster
training) than the state-of-the-art without accuracy drop of models (§3.7.2).
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Category Task Workload # of Models Dataset
Avg. Time Avg. Acc.

Improvement Difference

Exploratory
Training

Grid Search NAS
NASBench [84] 1,000

CIFAR-100
2.9× 0.39%

Evolution NAS 2.4× 0.38%

Bayesian NAS [145] AutoKeras Zoo [145] 500 4.3× 0.31%

General
Training

Image Classification

Imgclsmob [26] 389 Flowers102 [203] 2.8× 0.23%

Imgclsmob-Small 179
CIFAR-10 2.1× 0.02%

CIFAR-100 1.6× 0.18%

ImageNet32 [72] 1.3× 0.03%

Ensemble Training V-Ensemble [253] 104 CIFAR-100 1.7× 0.08%

Language Modeling HuggingFace [14] 69 WikiText-103 [189] 1.8× -0.13 ppl

Table 3.1: Summary of improvements. ModelKeeper improves training execution time without
accuracy drop, by reducing the amount of training needed (i.e., GPU Saving). The accuracy
difference is defined by Acc.(Keeper) - Acc.(Baseline), and smaller perplexity (ppl) is better.

• ModelKeeper outperforms its counterparts by exploiting the parent model with high similarity
and better accuracy using different design components (§3.7.3).

• ModelKeeper improves performance over a wide range of parameters and practical cluster
setups in the wild (§3.7.4).

3.7.1 Methodology

Cluster setup. We evaluate ModelKeeper on an 80-node cluster (40 GPU nodes and 40 CPU
nodes). Each GPU node has a Tesla P100 GPU with 16 GB GPU memory and 16-core CPUs. Since
most HuggingFace NLP models exceed our GPU memory capacity, we resort to CPU nodes. Each
node has 32-core CPUs and 384 GB of memory. ModelKeeper coordinator runs on a 32-CPU server
with 10 Gbps bandwidth.

Workloads. We evaluate ModelKeeper using five widely-used CV/NLP model zoos and realistic
workloads (Table 6.2):

• NASBench [84]: an image classification model zoo with thousands of lightweight models for
NAS task.

• AutoKeras Zoo [145]: a CNN model zoo generated by AutoKeras during the Bayesian NAS
searching.

• Imgclsmob [26]: a popular zoo of state-of-the-art CV models (e.g., DenseNet [131]). Most
models are heavyweight.

• V-Ensemble [253]: a benchmarking workload for ensemble training, which has hundreds of
variants of VGG models.

55



• HuggingFace [14]: a collection of advanced HuggingFace NLP models (e.g., Bert [82]) for next
word prediction.

We train Imgclsmob-Small models on the CIFAR dataset and the ImageNet32 dataset for 32×32
small image inputs, Imgclsmob models on Flowers102 dataset for 224×224 large images, and
HuggingFace models on the large WikiText dataset. ImageNet32 is a downsampled 120-category
ImageNet dataset (e.g., smaller input size) for efficient computation.

To emulate practical cluster setups, NAS models are generated by the searching algorithm on
the fly, and training jobs are submitted following the arrival of Microsoft Trace [139]. The same
workload does not contain identical model architectures. ModelKeeper model zoo starts empty for
each workload, and jobs contribute (upload) their trained models to the zoo as they complete over
time.

Parameters. We follow the default setting specified in each model zoo: (1) CV models: the SGD
optimizer with a minibatch size 64 and an initial learning rate 0.01; and (2) NLP models: the AdamW
optimizer with a minibatch size 32 and an initial learning rate 8e-5. We use the ReduceLROnPlateau
scheduler to decay the learning rate by 0.5 once the training loss stagnates.

Baselines. We compare ModelKeeper to the following:

• Retiarii [286]: Microsoft’s training framework that relies on the lineage of graph mutation to
warm up NAS models.

• AutoKeras [145]: An advanced AutoML system based on Keras that applies lineage-based
warmup for NAS models.

• MotherNet [253]: An ad-hoc ensemble training algorithm that trains a model subnet, which
introduces intrusive overhead and implementation, to warm start models.

Existing efforts limit to individual NAS/ensemble jobs, while ModelKeeper can support various
tasks across jobs and users.

Metrics. We care about the training execution time needed to train to converge and the model

convergence accuracy.
We run with five realistic Microsoft Traces [212], and report the average over 5 runs.

3.7.2 End-to-End Performance

In this section, we evaluate how ModelKeeper (Keeper) is complementary to and benefits today’s
ML frameworks. Here, we run the NAS task using Microsoft NNI (with Retiarii backend [286]) and
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Figure 3.14: ModelKeeper outperforms existing warmup training.

AutoKeras, and other training tasks on Ray [192]. Table 6.2 summarizes the average improvement
on each training workload after applying ModelKeeper.

ModelKeeper outperforms existing warmup solutions. ModelKeeper outperforms existing
training warmup solutions in Retiarii, AutoKeras, and MotherNet by 1.7×-4.3× (Figure 3.14), by
saving 43.1%-76.7% total amount of training needed. Their inefficiency is due to two primary
reasons:

(i) Suboptimal parent model selection: Retiarii and AutoKeras track the lineage of graph
mutation and treat the base model in evolution as the parent model. However, as multiple layers
can be modified on the base model in searching new models, such rigid parent selection can miss
better parent models out of other explored NAS models. Similarly, MotherNet not only requires
additional training of the model subnet, but can not repurpose better-trained models on the fly.

(ii) Insufficient weight transformation: Their design, which simply copies the weights from the
parent model when two tensors are identical, is lossier than ModelKeeper. For example, inserting
randomly initialized prefix tensors can make the copy of subsequent tensors useless.

Meanwhile, they are limited to specific NAS or ensemble training tasks and cannot serve various

57



102 103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(a) CIFAR-100 (Imgclsmob-Small)

103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(b) ImageNet (Imgclsmob-Small)

102 103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(c) Flowers (Imgclsmob)

104 105

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(d) NLP (HuggingFace)

Figure 3.15: ModelKeeper improves general training tasks.

DNN training jobs on the fly in the cluster wide.

ModelKeeper accelerates ML training for various tasks. Figure 3.15 and Table 3.2 report
the performance of individual jobs. Compared to training from scratch, we observe that: (i)
ModelKeeper achieves 1.3×-4.3× faster training, saving 23%-77% training execution, across a
wide range of workloads. This improvement is more pronounced in a larger zoo because of having
more trained models to repurpose. (ii) Improvements on different workloads report a positive
correlation with the prevalence of model similarity in that model zoo. Here, ModelKeeper achieves
larger improvement on NASBench, which is consistent with the fact that this model zoo owns
higher inter-model similarities (Figure 3.2). (iii) Although ModelKeeper starts from an empty
zoo and jobs arrive on the fly, we can still save the training execution for 70%-95% individual
jobs (Table 3.2). We note that the 25th percentile improvement of small-scale model zoos (e.g.,
Imgclsmob) is inferior to others. This is because not all training models are warmed up due to the
cold start of this online setting, and the fact that ModelKeeper will not warm start the model that
does not have a similar parent (similarity > 0).
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Workload
Time Improvement Acc.(Keeper) - Acc.(Baseline)

25th 50th 75th 25th 50th 75th

NAS-Grid 1.5× 2.0× 3.1× 0.01% 0.25% 0.42%

NAS-Evol 1.2× 1.6× 3.0× 0.03% 0.19% 0.48%

Flowers102 1.2× 2.1× 3.3× 0.0% 0.16% 0.37%

CIFAR-100 1.1× 1.5× 2.0× -0.04% 0.08% 0.32%

ImageNet32 1.0× 1.2× 1.6× -0.07% 0.0% 0.11%

V-Ensemble 1.1× 1.5× 1.9× 0.02% 0.07% 0.65%

HuggingFace 1.2× 1.4× 2.1× 0.2 ppl -1.3 ppl -3.87 ppl

Table 3.2: Keeper saves training execution time of individual jobs without accuracy drop. Smaller
perplexity (ppl) is better.
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Figure 3.16: Breakdown of Keeper components.

ModelKeeper speeds up training without accuracy drop. Table 6.2 and Table 3.2 report
that, on average, ModelKeeper can achieve similar (or even slightly better) final model accuracy.
Intuitively, ModelKeeper should perform no worse than baseline accuracy, since the rest of the
training (e.g., data) remains the same. However, we note that this slightly better model performance
is consistent with the observations in ML network morphism [254], which interprets it as the internal
regularization ability. Specifically, by transferring from well-trained models, model weights have
been placed in a good position in the space, resulting in a more regularized network to reach a
better basin of the loss curvature [254, 89]. In contrast, training from scratch can get stuck in local
minima.

3.7.3 Performance Breakdown

In the rest of the evaluations, we refer to the improvement on V-Ensemble as that over training
from scratch for brevity.
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Breakdown of Components We break down ModelKeeper by disabling Matcher and Map-
per respectively: (1) Keeper w/o Matcher: remove our Matcher design, and instead resort to a
state-of-the-art graph matching strategy [218] to select a parent model with the most pairwise tensor
mappings; and (2) Keeper w/o Mapper: disable our Mapper design, so only transform the parent
model weight if and only if two tensors are identical. Figure 3.16 reports the improvement of these
variants. We notice: (i) the classic GED solution, in Keeper w/o Matcher, achieves suboptimal
performance, since model matching prefers to match prefixes, and partial matching allows better
overall similarity. (ii) transforming weights only for identical tensors, in Keeper w/o Mapper, is
inferior to Keeper information-preserving transformation. (iii) Matcher and Mapper contribute
comparable improvements.

Breakdown of Improvement Characteristics Figure 3.17 reports the average improvement after
categorizing training models by their similarity to the parent model. We note that: (1) Keeper
tends to achieve better execution saving for models with a higher parent model similarity. This
again supports our parent model selection criteria that prioritize models with higher architectural
similarity. (2) Improvements of different similarity regimes (e.g., [0.7, 0.8] vs. [0.8, 0.9]) are often
distinct, and this becomes vague as similarity over 0.8. Because most layers have been largely
warmed up, and deeper layers are too specific to the parent model to be transferable [272].

Overhead Analysis Figure 3.18 reports Keeper’s overhead, i.e., the time taken between initiating
the query and starting to train, over the training execution time. We report the average of all jobs,
and notice that Keeper introduces less than 1.5% overhead (< 43 s) across all workloads.
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3.7.4 Sensitivity and Ablation Studies

Impact of Low-Accuracy Models As a cluster-wide service, ModelKeeper should be robust to
unfavorable settings where the accuracy of user-registered zoo models can be low (e.g., due to
insufficient training). We follow the popular early-stop design in ML [167] to simulate unfavorable
setups, where model registration takes place when jobs run to at most X minutes. Figure 3.19
reports the improvement of execution time across different degrees of unfavorable settings. Here,
the x-axis value 40% indicates X is set to be the 60th percentile value in execution time distributions,
so only 40% zoo models are trained to converge. We observe that: (i) improvement decreases as
more zoo models have low accuracy. (ii) Keeper is more robust with our bucketing design as it
exploits the similarity-accuracy sweet spot.

Impact of Bucketing Figure 3.20 reports that ModelKeeper delivers consistent improvement
across a wide range of number of buckets B. Meanwhile, we notice that using the most accurate
parent model (i.e., ∼ B=2) or the most architecturally similar parent (i.e., ∼ B=20) achieves
suboptimal improvement, since it respectively undervalues the model similarity and accuracy in
selecting the parent model.

Impact of Zoo Capacity Figure 3.21 reports the average improvement under different zoo
capacities. The total size (i.e., 100%) of model zoos in NAS-Grid, V-Ensemble, and Flowers102
are 1.6GB, 17GB, and 31 GB, respectively. We observe that: (i) as expected, the improvement is
more pronounced as we allocate more storage to ModelKeeper’s model zoo, but (ii) we can still
achieve ∼2× improvement under severe capacity limits (e.g., 5% capacity aka < 2GB storage),
since Keeper adaptively evicts suboptimal zoo models.
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Cross-Dataset Training Warmup Figure 3.22 reports that ModelKeeper can benefit DNN training
across datasets. Here, we warm start the training of Imgclsmob-small models on CIFAR-100 using
zoo models from the ImageNet32 workload, and notice 2.5× faster training on average. This is
because front DNN layers capture general input features (e.g., color blobs of images), which are
transferable to similar datasets [272]. While picking which dataset to use as the source for warmup
is still an open ML problem [178, 288], ModelKeeper provides systems support for automated
warmup transformation across ML tasks and datasets using the given model zoo.

3.8 Discussion and Future Work

Support for Hyperparameter Tuning ModelKeeper by default automatically searches and
transforms the parent model for various training tasks. Meanwhile, the developer can specify
which parent model to repurpose using the tag configuration in their request too (Figure 3.6), while
enjoying the automated weights transformation. For example, we may want the same parent model
for hyperparameter tuning jobs to eliminate the comparison bias and/or to ensure reproducibility.
Moreover, as the training of the query model will be jump-started, it would be interesting to
investigate how to adapt to better job configurations (e.g., scaling the learning rate in terms of the
number of transformed layers [212, 254]) to further improve the training convergence.

Model Sharing in the Wild ModelKeeper repurposes a zoo of trained models to warm start the
new training job. These zoo models can be maintained by the cluster provider, and/or contributed
by users. For example, AWS SageMaker offers hundreds of pre-trained models for tasks like object
detection and natural language processing [22]; HuggingFace Model Hub has gathered ∼70K
models shared by the community [14]. The former is more managed but expensive to include
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extensive models and tasks, while the latter has good extensibility but can exhibit great uncertainties
(e.g., low-accuracy models). To the best of our knowledge, ModelKeeper moves the first step to
automatically warm start the cluster-wide model training. However, further investigations on how
to democratize it in the wild, such as for privacy and security concerns, are needed. To this end,
one possible approach is to develop differential privacy-like solutions [37] (e.g., adding noise to
the weights of the contributed models), which naturally leads to an interesting trade-off between
privacy and the model quality.

3.9 Related Work

Deep Learning Frameworks Recent ML efforts have made considerable progress toward ef-
ficient inter-job scheduling [108, 212, 192, 277], intra-job computation placement [197, 163],
communication optimization [210, 144], specialized execution backend [24, 67, 161], and timely
inference [109]. However, they are mostly in-execution optimizations, and/or the total amount
of training remains the same. Different from transforming tensors for faster computation (e.g.,
TASO [140] and PET [245]), ModelKeeper operates on model weights, and acts as a complementary
service to accelerate cluster-wide DNN training.

AutoML Systems Retiarii [286] and AutoKeras [145] rely on the lineage of graph mutation to
repurpose trained models, whereas they are limited to NAS tasks within individual jobs. Experiment
Graph [81] identifies the reusable ML scripts and artifacts in platforms to speed up repeated execu-
tions, so it focuses on the same job execution. As recent AutoML platforms, such as AzureML [234],
Amazon SageMaker [2] and MLflow [281], provide a collaborative environment to simplify ML
deployments, reusing artifacts can greatly speed up repeated executions (e.g., reuse scripts [81]).
ModelKeeper is the first automated training warmup system to accelerate cluster-wide DNN training
jobs across users, and improves Retiarii and AutoKeras further (§3.7.2).

Transfer Learning Transfer learning today mostly transfers the weight of the same model [272],
from one source task to another target to alleviate the need for large training data. For a given parent
model, network morphism [66, 254] introduces function-preserving transformation to construct
child models while preserving the parent information. MotherNet [253] further applies the network
morphism to warm start model training, but is limited to ensemble training tasks. ModelKeeper
tackles a more challenging scenario for various tasks in the wild, and achieves better performance
(§3.7.2).

Graph Matching Graph matching is one of the NP-hard fundamental problems in graph anal-
ysis [237]. To speed up the matching, DAF [113] decomposes the graph into forests. Similarly,
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AED [218] divides global matching into local matching, and then aggregates the local matching
decisions. However, they are insufficient due to the novel properties of DNN graphs, where pair-
wise matching prefers ordered alignment and allows partial weights transformation. ModelKeeper
outperforms them in training speedup and throughput (§3.7.3).

3.10 Summary

In this chapter, we introduce ModelKeeper to enable automated warmup of DNN training jobs
at the cluster scale. ModelKeeper manages a collection of already-trained models from different
developers and/or frameworks. Before training a model, it selects a high-quality trained parent model
and performs structure-aware transformation of parent model weights to warm up the weights of
new training models. Our evaluations across thousands of CV/NLP models show that ModelKeeper
achieves 1.3×-4.3× faster training completion.
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CHAPTER 4

Minimizing Model Size via In-Training Model Pruning

So far we have considered how to leverage the large number of trained models to optimize
training execution before training starts. Yet, the surging model size, which can span tens of
terabytes, significantly escalates the cost of model training. Next, we target a dominant model type
in production, deep learning recommendation models (DLRMs), and propose an in-training pruning
system to reduce ML resource demands during training.

The remainder of this chapter is organized as follows. We begin by presenting state-of-the-art
DLRMs prevalent in big companies. Section 4.2 sketches the design of AdaEmbed, aiming to
support efficient in-training pruning. The motivations behind AdaEmbed, drawn from the analysis of
industrial DLRMs, are explored in Section 4.3. We follow this up with AdaEmbed’s design overview
in Section 4.4, an in-depth look at its scalable pruning in flight in Section 4.5, and implementation in
Section 4.6. We then evaluate AdaEmbed’s performance in industrial settings at Meta in Section 4.7
and survey related work in Section 4.8.

4.1 Background

Deep learning recommendation models (DLRMs) are important to many online services, includ-
ing Google advertisement display [76, 68], Netflix movie recommendations [101, 157], and Amazon
e-commerce [231], and comprise up to 65% of AI cycles in Meta’s datacenters [111, 88]. Unlike
conventional machine learning (ML) counterparts that train models on continuous input features
(e.g., color values of images), DLRM inputs consist of continuous dense features (e.g., timestamp)
and categorical sparse features (e.g., video genres). Each sparse feature is often associated with
an embedding table, where each instance of that feature is represented by a trainable embedding
row (weight vector). In the forward and backward passes of model execution, the model reads and
updates the embedding weights of accessed rows.

Because the accuracy of a DLRM typically increases with larger embeddings (e.g., by consider-
ing more feature instances), modern DLRM embedding size is ever growing (up to terabytes and
billions of embeddings [283, 88]). This introduces multiple challenges. First, DLRMs often have
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stringent throughput and latency requirements for (online) training and inference [262, 154], but
gigantic embeddings make computation [193], communication [38, 229] and memory optimiza-
tions [290, 88] challenging. To achieve the desired model throughput, practical deployments often
have to use hundreds of GPUs to hold embeddings [194]. Meanwhile, designing better embeddings
(e.g., number of per-feature embedding rows and which embedding weights to retain) remains
challenging because the exploration space increases with larger embeddings and requires intensive
manual efforts [271, 176].

Unlike existing DLRM efforts that have primarily focused on optimizing the model’s execution
speed for the given embeddings – e.g., by balancing embedding sharding [194, 290], accelerating
embedding retrieval [261, 229], compressing embeddings [112, 270], or elastic resource scal-
ing [262, 289] – we explore a complementary opportunity: Can we fundamentally reduce the size of

embedding needed for the same accuracy, by dynamically optimizing the per-feature embedding

during model training? Or, equivalently, can we improve model accuracy for the given embedding

size? This is because unlike classic ML models, the DLRM model output (accuracy) is determined
by the input data (e.g., accessed instances) and their embedding weights, and the input data is
typically organized chronologically during training to account for the diverse and non-stationary
user preferences [294]. Therefore, the access patterns and the weights of embeddings vary across
embedding rows and the training process (§4.3.2). This implies an opportunity to admit and prune
embedding rows based on their heterogeneous importance to improve model accuracy.

4.2 Solution Outlines

In this chapter, we introduce an automated in-training pruning system to Adaptively optimize
per-feature Embeddings (AdaEmbed) for better model accuracy. For the given embedding size,
AdaEmbed scalably identifies and retains embeddings that have larger importance to model accuracy
at particular times during training. As a result, not only does it reduce human effort in embedding
design, but it also cuts down the embedding size, thus the computational, network, and memory
resources, needed to achieve the same accuracy. AdaEmbed is complementary to and supports
existing DLRM efforts with a few lines of code changes (§4.4).

Unfortunately, identifying important embeddings out of billions is non-trivial. To maximize the
overall model accuracy, we should retain the embedding rows that affect model inputs more often
(e.g., are frequently accessed) and that affect model outputs the most (e.g., have larger weights)
(§4.5.1). However, the non-stationary data distribution during training leads to the spatiotemporal
variation in the access frequency of different embeddings. e.g., new videos are posted and become
popular, while some old ones lose popularity. Moreover, embedding weights change over training
iterations and so does their impact. Once we prune an embedding’s weights from the GPU memory,
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we cannot accurately capture their importance to model accuracy as training moves on. Based on
our analytical insights, embeddings with larger runtime gradients and higher access frequencies
tend to accumulate larger embedding weights, and AdaEmbed prioritizes them when deciding
which ones to retain. Moreover, we group features with similar feature-level characteristics (e.g.,
vector dimensions), and then identify important embeddings across feature groups to optimize the
per-feature embedding size and which embedding to retain (§4.5.1).

Enforcing in-training pruning after identifying important embeddings is not straightforward
either. Pruning for practical DLRMs can require reallocating millions of embedding rows and tens
of gigabytes of embedding weights per training iteration, whereas each iteration takes only a few
hundred milliseconds [38, 194]. While frequent pruning allows admitting important embeddings
in a timely manner, thereby improving model accuracy, it can slow down model training by
many hundred times (§4.5.2). To achieve a sweet spot between timely pruning and low overhead,
AdaEmbed initiates pruning selectively when perceiving big changes in the importance distribution
of all embeddings, thus reducing the number of pruning rounds needed while ensuring high accuracy.
However, existing DLRM systems face difficulty in dynamically admitting and pruning embeddings
at scale because they often rely on static and/or fixed-size embedding storage [36, 33, 13, 261].
AdaEmbed introduces a shim layer, Virtually Hashed Physically Indexed (VHPI) embedding, to
support various embedding designs. VHPI decouples the management of embeddings from their
physical weights, whereby it recycles the weight vector of embeddings to avoid intense memory
allocation (§4.5.3).

We have implemented a system prototype of AdaEmbed (§4.6) and evaluated it using five
industry models and months of data across hundreds of GPUs (§4.7). Our evaluations show that
AdaEmbed can reduce 35-60% embedding size, implying comparable resource savings, and improve
model execution speed by 11-34% without compromising model accuracy. Meanwhile, it achieves
noticeable accuracy gains under the same embedding size, thus being able to reduce manual efforts
by automatically finding better per-feature embeddings.

Overall, we make the following contributions in this chapter:

1. We propose an in-training pruning system, AdaEmbed, to automatically optimize DLRM
embeddings.

2. We introduce embedding importance to capture important embeddings and employ VHPI
embedding to enforce scalable pruning, with few changes to existing designs.

3. We evaluate AdaEmbed in various real-world settings to show its resource savings and accuracy
gains.
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Figure 4.1: DLRM models consist of large embedding tables.

4.3 Motivation

We start with a quick primer on DLRMs (§4.3.1), followed by the challenges it faces and
inefficiencies of the state-of-the-art based on our analysis of real-world experiments (§4.3.2). Next,
we highlight the opportunities that motivate our work (§4.3.3).

4.3.1 Deep Learning Recommendation Models

As shown in Figure 4.1, a DLRM consists of a combination of fully connected multiple-layer
perceptrons (MLPs) to capture continuous dense features (e.g., timestamp), and a set of embedding
tables to map various categorical sparse features (e.g., user and video IDs) to a dense representation.
DLRMs can contain up to thousands of sparse features: each feature is typically associated with an
embedding table, and each table can have millions of rows [290, 101, 194]. Each embedding row
is a multi-dimensional weight vector (e.g., 128 floats) corresponding to a specific feature instance
(e.g., a specific user ID of feature "User IDs").

DLRMs differ from traditional computer vision (CV) and natural language processing (NLP)
models in that they require training on large volumes of data organized chronologically, to keep
up with the latest recommendation trends. Hence, the distribution of training data changes over
the training process. In the forward pass of model computation, each input sample includes a set
of embedding IDs for each table to extract the corresponding embedding weights (vectors). To
reduce the computation complexity, embedding weights of a sample will be pooled per table using
the element-wise pooling operator, which typically takes the sum or maximum along each vector
dimension (Figure 4.1). The pooled embedding weights of mini-batch samples are packed together
with their intermediate outputs of dense features, forming a batch input to deeper layers. In the
backward pass, the weights of the accessed embeddings are updated using the gradient.
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Figure 4.2: The number of sparse feature instances (IDs) increases rapidly over time, while the
lifespan of instances is heterogeneous.

Due to the enormous number of sparse feature instances, their embedding weights can occupy
more than 99% size of a commonly used model (up to several terabytes) [118]; so DLRMs exhibit
much larger memory intensity than conventional ML models (e.g., ResNet). As such, practical
DLRM deployments use a combination of model parallelism for sparse feature layers and data
parallelism for MLPs. The former allocates different embedding partitions across workers to avoid
replicating them, and the latter enables concurrent processing of dense feature inputs [88]. Even so,
model deployments often require hundreds of GPUs to achieve the desired model throughput (a few
hundred milliseconds per iteration) [38, 194].

4.3.2 Challenges in DLRM Deployment

Due to its significant impact on revenue and numerous iterations needed to train a DLRM
model, DLRM deployments follow the “achieve better accuracy and run as fast as possible”
paradigm [194, 262, 290]. The execution speed and accuracy of a DLRM model are respectively
measured by Query-Per-Second (QPS) throughput and Normalized Entropy (NE) loss [121]. Larger
QPS and smaller NE indicate better performance, and any relative > 0.02% NE gain is considered
to be significant [88, 265]. However, optimizing both aspects leads to novel tussles and challenges
in real-world deployments.

Larger embedding sizes improve NE Embedding size of modern DLRMs is ever-growing to
accommodate more embedding rows for sparse features and their instances [194, 261]. Figure 4.2
reports the size of the instance set over 15 days’ data in a real-world DLRM system. We observe
that even though a small portion of the trained instances will seldom be accessed again in later days
(Figure 4.2(a)), the total number of unique instances increases by 1.5× every week (Figure 4.2(b)).
As DLRMs are often trained on months of data and retrained over time, the size of the instance set
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Figure 4.3: Compared to the full (1×) model, smaller embedding sizes hurt model NE (i.e., larger
NE regression), but improve QPS. 0.25× and 0.5× denote using 25% and 50% of the full model
size, respectively.

will eventually far exceed the embedding size. To cap the embedding size, existing designs often
perform hashing on the raw instance IDs, and then use the hashed IDs to access their embedding
rows [33].

Intuitively, using more embedding rows implies more instances are considered, thus enabling
better data coverage for better NE. Figure 4.3(a) reports the impact of the embedding size on the NE
regression at different times of training. NE regression denotes the accuracy degradation of using a
smaller embedding size w.r.t.the full-size model.We notice that (i) using a smaller embedding size
can greatly hurt NE. For example, reducing the number of embedding rows by 75% (i.e., 0.25×
model) results in ∼0.02% NE regression on Day 2; Worse, (ii) this NE regression inflates as the
training evolves over time as more instances are spawned.

Large embedding sizes hurt QPS However, using more embeddings can slow down model
execution and consume more machine resources in multiple execution phrases: (i) slower embedding
access if we can not retain all embeddings in high-bandwidth GPUs; (ii) longer communication as
we may need to transfer more embeddings over the network [38, 283]; and (iii) longer computation
as more embeddings need to be computed on. Figure 4.3(b) shows, compared to the full model, 0.5×
model achieves 1.4× QPS speedup in the same resource setting. Here, we note that state-of-the-art
DLRM optimizations [194, 261], which cache and prefetch the embeddings to be accessed in future
batches, cannot eliminate the QPS drop (Figure 4.3(b)). More importantly, they can be insufficient
for online training and model serving as we may not know the input data in advance.
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Figure 4.4: Embedding access varies across IDs and over time, leading to distinct table utilization
in existing embedding designs.

4.3.3 Opportunities for In-Training Pruning

For a given DLRM, recent advances have made considerable progress for efficient communi-
cation [38, 112, 229] and/or computation [154, 194, 88]. Instead, we focus on a complementary
opportunity that reduces the embedding size needed without NE regression, by adaptively pruning

embeddings during model training. Our approach is based on the following observations.

Handcrafted embeddings are suboptimal Designing optimal embeddings (e.g., deciding the
number of per-feature embedding rows and which embedding weights to retain) is as yet an open
problem in the ML community [100]. Hence, DLRM systems often decide the embedding size
using human-defined rules, e.g., by estimating the feature popularity [100] and/or hyper-parameter
tuning by model experts before training takes place [290]. Not only does this require great human
effort and resources to explore, but it can also be suboptimal due to limited adaptivity at runtime
(e.g., deciding which instance’s embedding to retain if many instances are generated).

Worse, existing DLRM systems often treat per-feature embedding tables individually for ease
of management. This can underutilize or overload individual tables as data distribution changes
over time. Indeed, when we analyze the table utilization in a one-day training window (i.e.,
number of accessed embeddings over the total number of embeddings on that day), we notice large
heterogeneity (Figure 4.4(a)). Intuitively, tables that are fully utilized can degrade NE because
many instances are hashed to the same embedding row, leading to hash collisions. However,
underutilized tables cannot trade in their space during training because of the suboptimal pre-
determined embedding size and inelastic embedding designs.

Embeddings have heterogeneous characteristics Figure 4.4(b) zooms into individual embedding
rows, where the sampled IDs (i.e., x-axis) are ordered based on their access frequency on Day 1.
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We notice that the access frequency of embeddings varies across embedding IDs and over time,
since user preferences change over time. We have similar observations on embedding weights
too (§4.5.1). Since the model output (accuracy) is determined by the input instance (e.g., which
embedding is accessed) and embedding weights, this implies a potential to identify and retain more
important embeddings during training to maximize final model accuracy.

4.4 AdaEmbed Overview

In this chapter, we introduce an automated in-training pruning system, AdaEmbed, to adaptively
optimize per-feature embeddings at scale for better model accuracy. Unlike existing efforts for
model pruning, which focus on conventional models [85, 115, 62] and/or prune model size when
training completes [176], AdaEmbed automatically identifies and retains important embeddings
for the given embedding size to improve performance while training is ongoing. Our evaluations
in industrial settings show that in addition to saving resources throughout training, AdaEmbed
provides superior model accuracy to its post-training pruning counterparts (§4.7.4).

AdaEmbed is a complementary system that acts as a shim layer atop today’s embedding designs
(Figure 4.5). It has a central coordinator and a set of distributed on-worker agents:

• AdaEmbed Coordinator: It gathers the embedding information from agents, determines the
global pruning decision, and orchestrates the agent to enforce the pruning.

• Memory Manager: It is located inside each AdaEmbed agent and manages the physical memory
for today’s embedding designs. At runtime, it receives the pruning decision from the coordinator
and executes pruning on local embedding weights.

• Embedding Monitor: It resides along with the memory manager to track embedding importance
and reports the profiling results of the importance to the coordinator.

Figure 4.6 illustrates the interface of AdaEmbed, which supports existing DLRM systems in a
few lines of code.

Training Lifecycle Similar to current DLRM deployments, 1 each worker is in charge of a
subset of sparse features, which is determined by the embedding partition of model parallelism. The
worker processes the input data (i.e., a list of embedding IDs) of those features. 2 However, the
inputs are first forwarded to AdaEmbed agent to look up the physical address of each embedding’s
weights (Line 12). 3 The physical address is then used to fetch the embedding weights for read
and write operations. The rest of model training adheres to existing designs. 4 After each training
iteration, the embedding monitor updates the embedding importance with the training feedback
(Line 16). Periodically, it samples the importance of different embedding rows and notifies the
coordinator of the profiling results. The coordinator determines how to prune embeddings subject to
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the total embedding size and guides the memory manager to admit and prune embeddings at scale.

4.5 AdaEmbed Design

Practical DLRMs often contain hundreds of sparse features and up to billions of embedding
rows [283, 88]. They run across hundreds of GPUs on non-stationary model inputs to get the desired
model execution speed [194, 38]. These lead to the following challenges toward practical in-training
pruning of embedding rows:

• Heterogeneity: The characteristics of embeddings (e.g., data distribution and embedding weights)
vary across instances of the same feature. This, as well as the physical size of the embedding
row, differs across features too. How to measure which embeddings are important to retain for
better model accuracy (§4.5.1)?

• Dynamics and Scalability: The importance of individual embeddings varies over iterations at a
sub-second speed. As such, improving model accuracy requires pruning in a timely manner to
maximize the number of important embeddings. However, identifying important embeddings out
of billions distributed across hundreds of workers, and then pruning on terabytes of embedding
weights can lead to large overhead. How to orchestrate pruning under training dynamics
(§4.5.2)? Additionally, how to efficiently enforce pruning on each worker’s memory to avoid
throughout degradation (§4.5.3)?

• Extensibility: Existing systems are built atop a variety of embedding designs, such as key-value
storage [290, 261] or highly optimized but fixed-size tensors [36, 33]. How to provide generic
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1 import AdaEmbed
2
3 def dlrm_model_training():
4 # Wrap existing embedding modules
5 emb_agent = AdaEmbed.create_agent(
6 emb_tables=model.embs, pruning_config=config)
7
8 for _ in range(num_iterations):
9 input_ids = get_next_data_batch()

10
11 # Look up physical embedding address
12 emb_physical_ids = emb_agent.look_up(input_ids)
13 feedback = model.train_step(emb_physical_ids)
14
15 # Update embedding importance with feedback
16 emb_agent.update_importance(input_ids, feedback)

Figure 4.6: AdaEmb supports existing DLRMs with minor changes.

systems support to minimize modifications to existing DLRM systems (§4.5.3)?

4.5.1 Embedding Monitor: Identify Important Embeddings

Given the embedding size, we aim to trade the less important embedding rows for the more
important ones. This requires us to consider the importance of each embedding row in terms of
the contribution of its embedding weights to model accuracy, as well as its physical size. However,
determining the optimal pruning strategy during training is challenging. First, the model output
(accuracy) is affected by the complex interplay between input feature instances (e.g., which item IDs
appear) and their embedding weights. Even with full model information after training completes,
pruning is still a fundamental open problem in the ML literature [85, 176]. Second, during model
training, this interplay becomes more intractable because of the large spatiotemporal variations in
the distribution of model inputs and embedding weights (Figure 4.7(a)). Worse, once we prune an
embedding’s weight vector, it is difficult to assess its impact on model accuracy as training moves
on. These challenges are amplified by the need to account for feature-level heterogeneity too (e.g.,
different weight vector sizes across features).

AdaEmbed employs the embedding monitor to capture the embedding importance of individual
rows within the feature, and then extends it to identify important rows across features.

Intra-Feature Embedding Importance For embeddings of the same feature, we introduce a
data- and model-aware importance metric EI(i) to capture the importance of each row i to model
accuracy. Instead of relying on the embedding weights that become stale after being pruned,
EI(i) is the runtime combination of access frequency and gradient, i.e., EI(i) = freqt(i) ×
∥∇gt(i)∥. ∥∇gt(i)∥ is the L2-norm of i’s gradient in iteration t, and freqt(i) is the access frequency.
So the embedding with a higher access frequency and a larger gradient norm is deemed more
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Figure 4.7: (a) Embedding gradient and access frequency are heterogeneous, (b) while their
combination reports a larger correlation to the embedding weights. A correlation value > 0.4
indicates a positive, medium to strong association.

important. Here, collecting EI(i) introduces negligible overhead, because the embedding gradient
is already generated during back-propagation of training regardless of AdaEmbed. Since the
gradient is generated and shared by mini-batch samples [194], the importance of pruned-but-
accessed embeddings will continue to be updated.

Our importance design is motivated by multiple factors:

• Intuitively, the output of sparse feature layers (i.e., pooled embedding weights) is often derived
by taking the sum or maximum of input embedding weights (§4.3.1); so we should retain the
embeddings that affect many model inputs (i.e., frequently accessed) and that affect model
outputs more (i.e., larger weights). While we do not have information about future weights
after pruning an embedding, we observe a strong correlation between our frequency-gradient
combined metric and the final embedding weights when training converges (Figure 4.7). This is
because frequent weight updates with large gradients typically result in larger weights.

• Theoretically, embedding rows are designed for training different bins of data instances: each
bin holds only one type of category instance (i.e., a specific ID), and bins can have different data
volumes (i.e., different access frequencies of IDs). Now, we want to select and retain certain
bins (embeddings). This, in concept, is similar to the importance sampling problem in the ML
literature [153, 103]: To improve model convergence by selecting the right bins to train the
model, the optimal solution is to select bin i with a probability proportional to the aggregate
gradients of training all that bin’s data. In our formulation, the training samples within the same
bin are identical, because they correspond to the same specific ID. Therefore, the aggregate
gradients herein is equivalent to the product of the number of training samples and the gradient
of the individual sample (i.e., EI(i) = freqt(i)× ∥∇gt(i)∥).
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Figure 4.8: Magnitudes of embedding access frequencies and gradients vary across features, making
it hard to compare EI(i).

Empirically, our fleet-wide evaluations show that our importance design outperforms its alternatives
(§4.7.4).

Since the gradient and access frequency can fluctuate during training (e.g., due to the randomness
in sampling mini-batches), we need to account for these uncertainties in EI(i). Here, the embedding
monitor considers EI(i)t = freqt(i) × ∥∇gt(i)∥ + EI(i)t−1, whereby we reduce uncertainties
in individual iterations and only need to update the importance of accessed embeddings. This is
because the importance of not accessed embeddings remains unchanged as freqt(i) = 0. In reality,
only a subset of embeddings are accessed, so we can reduce the overhead significantly (§4.5.2).
Moreover, to account for the temporal variation, we use a moving average that decays EI(i) by a
factor of 0.8 every T iterations.

Inter-Feature Group Pruning Retaining important embeddings subject to the total size naturally
leads to a global pruning design, in which we hope to allocate different embedding sizes to individual
features. However, the values of embedding importance can vary across features by orders of
magnitude. This can be due to features with fewer instances often having larger average access
frequencies per embedding, and/or different initialization mechanisms of the embedding weights
leading to gradients of different magnitudes (Figure 4.8). As such, directly using the intra-feature
embedding importance for comparison across features can result in a large bias, as embeddings
with greater importance values are not necessarily more important than those of other features.
Moreover, as the dimension of embedding vectors of different features can vary (Figure 4.8(c)),
deciding which embeddings are more valuable to retain becomes intricate when large embedding
importance and vector size are in conflict.

Because we rely on the relative ranking of importance to determine pruning (e.g., prune the
tail 40% less important embeddings), we can tackle the comparison bias across features using the
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Figure 4.9: (a) Each iteration accesses millions of embeddings. (b) Pruning needs to reallocate a
large amount of embedding weights.

popular normalization philosophy [102]; i.e., by normalizing each embedding’s importance by
that feature’s distribution of all embeddings’ importance. This way, the embedding importance of
different features takes on similar ranges of values, and the more important embeddings of each
feature are still prioritized because of having larger relative importance values after normalization.
The embedding monitor normalizes the embedding importance of each feature by the 95th percentile
of its distribution (i.e., EI(i)/EI95th(feature(i))) to avoid outliers.

Next, to account for different weight vector sizes across features, AdaEmbed groups features
with the same embedding dimension and then performs global pruning within the feature group. In
reality, DLRMs are configured with only a handful of distinct embedding dimensions (Figure 4.8(c))
to reduce hyper-parameter tuning and/or to achieve better parallelism (e.g., balancing embedding
sharding [194, 290]). This implies a big opportunity to group many features, which already forms
a large shared embedding size for inter-feature group pruning. By default, AdaEmbed initializes
the per-group embedding size based on the number of in-group features and the total embedding
size (i.e., num_group_features×group_feature_dim

num_features×avg_feature_dim × total_size) to uniformly allocate the space to each
dimension. Note that unused embedding storage will be picked up by other groups (§4.5.3). When
developers have more advanced information about features (e.g., feature importance), AdaEmbed
provides APIs for customizing feature groups and sizes (§4.6).

Our evaluations show that with importance normalization and group pruning, AdaEmbed
achieves better resource savings and model accuracy (§4.7.3).

4.5.2 AdaEmbed Coordinator: Prune at Right Time

In real-world DLRM systems, each training iteration involves updating the importance of
millions of embedding rows in terabyte-sized models (Figure 4.9(a)). At that scale, orchestrating
hundreds of workers to prune leads to a trade-off between the pruning overhead and quality. Frequent
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1: weight_table← EmbWeights() ▷ Physical weight tables
2: emb_meta← Init(weight_table) ▷ VHPI metadata
3: pruning_start← false ▷ Enforce pruning or not

4: Function UpdateEmbs(input_ids, feedback):
/* Monitor: Update embedding importance asynchronously to model training. */

5: UpdateImport(input_ids, feedback)
6: if pruning_start == true then
7: EnforcePruning() ▷ Stall training
8: pruning_start← false

9: Function MonitorImportance(ProfilingInterval ∆):
/* Coordinator: asynchronously inspect big changes in importance distribution via profiling

across workers. */
10: last_dist← null
11: while training == true do
12: if mod(current_time, ∆) == 0 then
13: cur_dist← ProfileImportance()
14: pruning_start←Diff(last_dist, cur_dist) > p
15: last_dist← cur_dist

16: Function EnforcePruning():
/* Memory manager: Identify embedding rows to admit and prune subject to the given

embedding size. */
17: admit_emb, evict_emb← IdentifyRecycleEmbs(
18: emb_meta, weight_table.size)

/* Redistribute the lookup mapping from the embedding ID to the weight vector, whereby
admitted embedding rows can recycle the weight vector of pruned ones. */

19: RedistLookup(emb_meta, admit_emb, evict_emb)

/* Reset embedding weights for admitted embeddings. */
20: weight_table.ResetEmbs(admit_emb)

Algorithm 4.1: Pseudo-code of AdaEmbed runtime

pruning allows for better decision quality, i.e., maximizing the number of important embeddings all
the time for potentially better model accuracy. Yet, pruning can require cleaning up and creating
tens of gigabytes of embedding weights, which can take many seconds and significantly slow down
the sub-second training iterations (Figure 4.9(b)). This trade-off becomes more intractable as a
result of training dynamics; e.g., stochastic gradient descent can introduce large noise to embedding
gradients, thus the embedding importance. As such, pruning too frequently can also be suboptimal
(§4.7.4).

To find the sweet spot between pruning overhead and quality, AdaEmbed Coordinator decides
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Figure 4.10: Profiling can get accurate results with little overhead.

the right time to prune to reduce the number of pruning rounds needed, and instructs the memory
manager to minimize the overhead in each pruning round when pruning embedding weights (§4.5.3).
Algorithm 4.1 outlines how AdaEmbed Coordinator orchestrates efficient embedding pruning. The
embedding monitor updates the importance of accessed embeddings after each training iteration
(Line 4), and periodically profiles embedding importance (Line 9). The results of the profiling will
be sent to the coordinator. In the event of big changes in the importance distribution, the coordinator
initiates a new pruning round and notifies the memory manager of the pruning decision (Line 9).
The memory manager on each worker then executes pruning and admits new embedding weights at
scale (Line 16).

Intuitively, pruning cares about the importance ranking of individual embeddings instead of their
dynamic importance. Therefore, AdaEmbed coordinator relies on the importance distribution of all
embeddings again, and initiates pruning if the importance distribution has changed greatly since the
last pruning round. To effectively gather the importance distribution across hundreds of machines,
each local agent samples a small portion, P , of embedding importance values on that agent. The
coordinator then can estimate how many embeddings have crossed the pruning boundary, i.e., the
number of embedding rows whose importance ranking has fallen below or risen above the Xth

percentile of the distribution since the last pruning round. Xth is the cut-off importance boundary
determined by the size limit (i.e.,

∑
emb∈top_Xth size(emb) < total_size), and the agent will prune

the weight vector of the embeddings whose importance value is smaller than the cut-off importance.
As shown in Figure 4.10, while more samples, P , allow for a more precise estimate of Xth

importance, this will also increase the coordination overhead, such as in collecting importance
distributed across hundreds of machines and then computing distribution changes. In fact, we
can use the concentration theorem in the probability sampling [266] to decide the right number of
samples.1 This gives us ∼ 5M embedding rows out of billions to sample on each machine, in order

1The minimum number of samples P needed to ensure Pr[|X̄ − E[X̄]| < ϵ] > δ is P = (Xmax−Xmin)
2 ln (2/δ)

2ϵ2 for
the distribution of variable X . E[X̄], Xmax and Xmin are the expectation, maximum and minimum of X , respectively.
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to ensure a deviation from the global ground truth of less than 1%. In addition to having a smaller
computation overhead, this results in negligible network traffic, 5M × 4bytes ∼ 20 megabytes as
EI(i) is a 4-byte float, over tens of Gbps network to the coordinator. As suggested by today’s data
validation systems [57, 182], we consider a big change to have occurred and initiate pruning when
more than c =5% of the total embeddings cross the boundary (i.e., we need to prune and admit
more than c% embeddings), and issue this lightweight profiling per minute. This avoids the large
overhead caused by pruning in each training iteration, while ensuring that the current embedding
allocation is at most c% worse than what we can achieve through pruning in each iteration. We show
that profiling achieves a small deviation and little overhead (i.e., the 5M sample size in Figure 4.10).

Convergence Analysis As described in §4.5.1, our design of embedding importance draws
inspiration from importance sampling, which has been shown in ML theory [153, 103, 175] for its
ability to reduce gradient variance and accelerate training convergence. Empirically, our extensive
evaluations using months of real-world data and models demonstrate that AdaEmbed consistently
improves model accuracy by pruning at the right time, as opposed to pruning too frequently or
infrequently (§4.7.4).

4.5.3 Memory Manager: Prune Weights at Scale

As the reallocation of embedding weights is hundreds of times slower than each training
iteration (Figure 4.9(b)), reducing the number of pruning rounds needed is still far from achieving
negligible overhead in practice (§4.7.2). To avoid intense memory reallocation, the memory
manager of AdaEmbed employs a Virtually Hashed Physically Indexed (VHPI) design to decouple
the management of embeddings from their physical weight vectors, whereby AdaEmbed can recycle
the weight vectors of different embeddings to enable efficient pruning for a variety of existing
embedding designs.

VHPI primarily consists of two parts (Figure 4.11):

• Lookup table: It stores the metadata information of each embedding instance, including the
embedding importance (a float32), and the physical address (a int64) to that embedding’s
weight vector. Compared to the weight vector, often a vector of 128 float, this payload
information introduces a negligible memory footprint ( 3

128
∼ 2%).

• Weight table: It is a monolithic physical table for embedding weight vectors. It remains the
same as the embedding table of today’s DLRM systems, but it is shared across features under
the orchestration of the memory manager.

Weights vectors of the pruned embeddings are not retained, while the metadata of all embeddings
is always maintained in the lookup table. So the lookup table can include more entries (i.e.,
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Figure 4.11: VHPI employs lookup table to link each embedding to the weight vector, and recycles
the vector of pruned embeddings without intense memory allocation.

embedding IDs) than the weight table. This allows us to adaptively determine the link between
embeddings and weight vectors to recycle weight vectors. Moreover, this can improve model
accuracy by reducing hash collision (§4.7.4), as we can make the lookup table very large to
accommodate many embedding entries without expanding the weight table.

The memory manager performs two primitive operations for weight pruning at runtime (Fig-
ure 4.11):

• Address lookup: It looks up the physical weight address for each embedding ID to access its
embedding weights. 1 If that embedding row is pruned, to avoid breaking existing designs
(e.g., missing weights due to pruning), the lookup returns a shared physical address that points
to a weights vector containing constant zeros. Access to this dummy vector will be folded on
the execution backend due to the same entry, reducing redundant execution.

• Weight allocation: It executes the pruning decision to prune and admit embeddings. 2 To
prune an embedding row, VHPI first de-links and reclaims the current physical address of that
embedding’s weight. It then sets the address of the pruned embedding’s lookup entry to the
address of the shared dummy vector, redirecting the future access. 3 To admit an embedding,
VHPI pops an available physical address and links this address with the lookup entry, thereby
recycling the physical memory. Meanwhile, the memory manager resets the weight vector
values to clean up the previously pruned weight state.

However, it is not straightforward to reset (i.e., reinitialize) the weight values for admitted em-
beddings, because the model herein is partially trained and the values of embedding weights already
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Figure 4.12: Zero initialization performs better (0.5× model).
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(a) Control-plane overhead.
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Figure 4.13: VHPI operations introduce little overhead.

differ by orders of magnitude (Figure 4.7(a)). Improper initialization (e.g., random initialization)
can introduce a large amount of noise to the retained embeddings. Eventually, this will hurt model
accuracy, especially considering the noise from millions of admitted embeddings in each pruning
round.

Here, we investigated four popular strategies to reset weight vectors (Figure 4.12): (1) w/o

reset: inherit the weights of pruned embeddings without resetting them; (2) weight restore: evict
previously pruned weights to extra storage (e.g., disk) and reinstate the weights when that embedding
is reclaimed; (3) original initialization: randomly initialize embedding weights as at the start of
training; and (4) zero initialization: reset embedding weights to zeros. Intuitively, the restored
weights will become too stale since they were pruned (often thousands of iterations ago). Original
initialization and w/o reset can introduce large noise, as the weights have already been of differing
magnitudes. Here, we advocate resetting the weight vector values to zeros, as this can avoid
large noise while allowing the admitted embedding to learn from scratch. Indeed, our real-world
evaluations report that zero initialization outperforms its alternatives (Figure 4.12).
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Model
# of Sparse Features Raw Emb Size

# of GPUs
w/ Same Model NE w/ Same Emb Size

(Approximate Value) (Approximate Value) Memory Saving QPS Speedup Avg. NE Gain (%) QPS Overhead

Model-XS 1000 200 GB 32 ≈ 35% 1.1× 0.015 0.4%

Model-S 600 350 GB 32 ≈ 45% 1.2× 0.018 0.2%

Model-M 1000 1 TB 64 ≈ 40% 1.2× 0.028 1.6%

Model-L 1000 1.1 TB 64 ≈ 55% 1.3× 0.021 1.3%

Model-XL 800 1.5 TB 128 ≈ 60% 1.3× 0.026 1.1%

Table 4.1: Summary of improvements. AdaEmbed reduces the embedding size needed for the
same model accuracy (NE), while improving NE using the same embedding size. We report the
approximate memory savings, since evaluating all memory settings is unaffordable.

Overhead Analysis Among all the operations involved in VHPI, address lookup and importance
update to the lookup table take place every iteration and consume a few milliseconds (Figure 4.13(a)).
Weight pruning to the weight table consumes a few hundred milliseconds (Figure 4.13(b)), but it
occurs every hundreds of iterations. Overall, these operations lead to little end-to-end overhead in
large-scale deployments (§4.7.2).

4.6 Implementation

We implemented a system prototype of AdaEmbed to support distributed DLRM deployment
across GPUs. Our implementation requires minor changes to existing DLRM systems.

AdaEmbed Backend AdaEmbed backend is implemented as GPU operators for fast execution.
The VHPI metadata (e.g., embedding importance and weight address) are hosted on GPUs to process
embeddings in parallel. The address lookup and importance update operations require no change to
existing DLRM systems. As we need to reset the weight vector, the weight allocation operation
requires existing frameworks to expose an API to access their weight table, but this requires a few
lines of code change. The local agent interacts with the coordinator via TCP connections.

Fault Tolerance As a shim layer, AdaEmbed can be integrated into existing DLRM checkpoints
by adding its state information to the model state. This not only minimizes the modification to
existing designs, but also ensures that the saved AdaEmbed state conforms to the embedding
weights at that time. When training is resumed, the model reloads the checkpoint, which restores the
AdaEmbed state too. At runtime, AdaEmbed runs a lightweight daemon to back up VHPI metadata
after each pruning round, and to resume its components if the current instances crash.

Interfaces AdaEmbed exposes Python APIs as the frontend (Figure 4.6), and it can also take json

as input (Figure 4.14).
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1 "adaembed_configs": {
2 "total_emb_size": "1 TB",// Total embedding size
3 "feature_configs": {
4 "default_group": {...},
5 "group_1": { // Features to use group pruning
6 "features": ["feature1", ...],
7 "total_emb_size": "200 GB",
8 } ... // Other feature groups
9 }

10 }

Figure 4.14: Example embedding configuration in AdaEmbed.

4.7 Evaluation

We evaluate AdaEmbed in real-world DLRM systems across hundreds of GPUs. Our evaluation
results on different industrial models and months of data are summarized as follows:

• AdaEmbed can reduce 35-60% embedding size and improve model execution speed by 11-34%
without compromising model accuracy (§4.7.2).

• AdaEmbed can reduce manual efforts by automatically finding better per-feature embeddings,
achieving noticeable accuracy improvements (§4.7.2-§4.7.3);

• AdaEmbed improves performance over a wide range of settings and outperforms its design
counterparts (§4.7.4);

4.7.1 Methodology

Experimental setup We use models and data from industry DLRM systems in the evaluation.
Table 6.2 depicts high-level statistics of the model. They span different scales and recommendation
tasks, including click-through rate prediction and ranking. We train each model on 14 days’ data to
obtain the model lifetime NE, which indicates the cumulative model accuracy throughout training,
and then test the model on the 15th day’s data to get the evaluation NE. Each day has many terabytes
of data input.

The training batch size of each model is 65536, requiring tens of GPU nodes for the desired QPS.
Each GPU node has 8 A100 GPUs with 40 GB of GPU memory. The GPUs are interconnected
using 200 Gbps RoCE NICs.

Baselines To the best of our knowledge, AdaEmbed is the first system to support in-training
embedding pruning, and is complementary to existing DLRM efforts. Our evaluations cover two
primary baselines: (i) w/o AdaEmbed: an industry DLRM system without AdaEmbed support.
Based on the access frequency of embedding rows in previous days, rows that are less frequently
accessed are removed before training starts. This generates a pruned model derived from the full
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model; and (ii) different variants of AdaEmbed with changes in the pruning algorithm (§4.7.4).
Here, we focus on the performance improvement of the w/ AdaEmbed setup, i.e., the setup using
AdaEmbed.

Metrics We care about the (i) memory saving to achieve the same model accuracy as with the full
model (i.e., without NE regression)2, because we want to minimize the embedding size for better
model throughput and resource savings in deployment; (ii) NE gain that we can achieve using the
same embedding size, since it not only minimizes manual efforts in configuring DLRM embeddings,
but also implies higher revenues; and (iii) overhead that AdaEmbed introduces in model execution
speed (i.e., QPS).

4.7.2 End-to-End Performance

Table 6.2 summarizes the key memory saving, NE gain, and overhead of five models at different
scales. Meanwhile, Figure 4.15 zooms into three representative models and reports their performance
under different target embedding sizes. In our evaluations, NE regression measures the accuracy loss
w.r.t.the full model (i.e., 1× model), and any > 0.02% NE gap is considered to be significant [88,
290, 172].

AdaEmbed cuts resource needs and improves QPS We first evaluate how many embedding
sizes we can reduce without sacrificing model NE. Yet, evaluating all embedding sizes to get
accurate memory saving is unaffordable because training with each setup takes thousands of GPU
hours. So, we enumerate 0.7× (i.e., cut the embedding size by 30%), 0.6×, 0.5×, 0.4×, and 0.3×
of the full model size to approximate this embedding saving with no accuracy drop. Table 6.2
reports that (i) AdaEmbed reduces the model embedding size by 35-60% with no reduction in model
accuracy. This implies that we can reduce the machine usage by nearly the same amount (e.g., using
50% fewer GPUs); (ii) the resource savings are more encouraging for large models (e.g., Model-XL
vs. Model-XS). One reason behind this is that large models provide gigantic GPU memory for
AdaEmbed to reallocate embeddings via inter-feature group pruning (§4.7.3); and (iii) alternatively,
reducing the fundamental embedding size provides 1.1-1.3× faster model execution speed (i.e.,
QPS) when running the model on the same machines.

AdaEmbed achieves better NE under the same size Figure 4.15 illustrates that with AdaEmbed,
models can achieve 0.011-0.077% better NE using the same embedding size. We notice that (i)
AdaEmbed achieves consistently better NE across models and under different target embedding
sizes than the baseline; (ii) we can achieve NE gains with smaller embedding sizes (e.g., 0.7×

2A smaller Normalized Entropy (NE) loss indicates better model accuracy.
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(b) Model-XS (Eval NE).
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(c) Model-M (Lifetime NE).
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Figure 4.15: AdaEmbed achieves better lifetime NE and evaluation NE. Better lifetime NE implies
potentially better model accuracy for online learning deployment, while better evaluation NE
indicates better accuracy after offline training (i.e., prior to launching online training). Both NEs
are important metrics.

models) even when compared to the full model. This is because AdaEmbed can automatically learn
better per-feature embeddings, like the size and which embeddings to retain. Meanwhile, pruning
less important embeddings can reduce model overfitting, thereby improving model generalization
(accuracy) [48]; and (iii) the lifetime NE gain is more prominent than that of the evaluation NE,
because the former is closer to the online deployment (i.e., retraining on real-time data), where
AdaEmbed is able to adapt to the latest data distribution.

AdaEmbed introduces negligible overhead As shown in Table 6.2, compared to the same-size
model in the baseline, AdaEmbed introduces negligible (< 2%) QPS overhead across scales of the
deployment (e.g., from 32 to 128 GPUs and 200 GB to 1.5 TB models), because (i) AdaEmbed
largely parallelizes operations (e.g., asynchronous importance update and multi-threading); (ii)
coordinator selectively initiates pruning rounds; and (iii) the memory manager introduces VHPI
to avoid intense reallocation of the physical weight. Note that the memory overhead is ∼2% as
AdaEmbed introduces only two small buffers (i.e., the lookup address and embedding importance)
in VHPI lookup table (§4.5.3).
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Figure 4.16: Models with AdaEmbed achieve consistently better NE over time. Troughs are due to
data distribution shifting over days.
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Figure 4.17: For the same NE w.r.t.1× model, AdaEmbed learns better per-feature embedding
configuration using smaller size.

4.7.3 Performance Breakdown

We next break down AdaEmbed performance by time, the characteristics of sparse features, and
design components.

Breakdown by Time Figure 4.16 breaks down model NE by time, with each data point on the
line representing the moving average of the NE over hourly data (i.e., window NE regression). The
training encompasses 14 days of data. We observe that with AdaEmbed, we can achieve consistently
small NE regression than the baseline over time.

Moreover, we notice that this NE regression exhibits diurnal variation (e.g., in Model-XS and
Model-M). This is because the data distribution (e.g., user preference) of recommendation tasks can
change drastically over days. As such, at the beginning of training on a new day’s data, the smaller
model (e.g., 0.3×model) will experience a larger NE regression as it has less space to accommodate
new embedding IDs. However, as the model gradually adapts to the new distribution, this regression
tones down. We note that AdaEmbed experiences less NE fluctuation due to its ability to identify
and retain important embeddings on the fly.
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Figure 4.18: For the same size (0.5× model), AdaEmbed retains more important embeddings to
achieve better NE (Model-XS).

Breakdown by Embedding Features We next investigate whether AdaEmbed can reduce manual
efforts by learning to use better embedding configurations. First, in achieving the same NE as the
1× model, AdaEmbed learns to use smaller embeddings for many features (Figure 4.17). Moreover,
using the same embedding size w.r.t.the 0.5× model, AdaEmbed gathers larger average embedding
importance on each feature than the handcrafted setup (Figure 4.18), implying that more important
embeddings are retained under the same total size. More importantly, we notice that (i) our group
pruning shares similar preferences to the handcrafted configuration. Specifically, AdaEmbed tends
to allocate more embeddings to those features that the model expert also values highly. However,
(ii) some features are allocated fewer embeddings, but AdaEmbed eventually achieves better NE,
indicating that AdaEmbed can automatically find better embedding configurations.

Breakdown by Components We break down our design into two variants (i) (AdaEmbed w/o
Norm): disable importance normalization in group pruning; and (ii) (AdaEmbed w/o Group):
completely disable group pruning, so the per-feature embedding size is resized to X% of the full
model. We notice that both normalization and group pruning contribute to better NE (Figure 4.19).
This is because (i) group pruning allows greater flexibility to resize the per-feature embedding using
the shared gigantic weight table; and (ii) importance normalization helps to reduce the inter-feature
heterogeneity by prioritizing important embeddings of each feature when comparing embedding
importance globally.

4.7.4 Sensitivity and Ablation Studies

Impact of pruning frequency AdaEmbed Coordinator initiates a pruning round when the im-
portance distribution radically changes. Next, we evaluate the impact of pruning frequency by
deterministically enforcing pruning after training every-minute (∼ 50 training iterations) and
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Figure 4.20: AdaEmbed achieves improvement across settings.

every-day data (∼ 70K training iterations). Figure 4.20(a) reports that pruning too frequently and
infrequently (i.e., pruning every one-minute and one-day data) both lead to suboptimal NE. The
former is due to large training noise affecting instantaneous embedding importance, while the latter
is due to AdaEmbed missing to admit important embeddings in a timely manner. Instead, the
selective pruning of AdaEmbed achieves better performance by relying on the overall importance
distribution at runtime.

Impact of different data Figure 4.20(b) reports the NE performance of model-S on three distinct
datasets. Each training spans 10 days’ training data, and we report the evaluation NE on the data of
day 11. While the NE gain varies slightly as the data distribution varies across dates, AdaEmbed
consistently achieves 50% memory savings with no NE regression.

Alternatives of embedding importance We next experiment with different embedding impor-
tance designs in training 10 days’ data. Here, we consider using the frequency, gradient, and their
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combination (i.e., AdaEmbed design) as the embedding importance. We notice our frequency-
gradient combination outperforms the alternatives. We note that this is consistent with the results of
our Pearson analysis too, i.e., their combination has a stronger correlation to final embedding weights
(Figure 4.8(b)). Instead, the access frequency and gradient only consider the data distribution and
model characteristics, respectively, while DLRM accuracy depends on both aspects.

In-training vs. post-training pruning We compare AdaEmbed to its post-training pruning (PTP)
counterpart like [115]. After model training is complete, PTP reduces the embedding size by
pruning less important embeddings, as measured by our importance design. In fact, deploying
PTP in real is often impractical (e.g., due to the need for online learning), and cannot achieve
memory savings and/or QPS improvement during model training. Moreover, Figure 4.22 reports
that AdaEmbed (i.e., in-training embedding pruning) can achieve better NE than PTP under the
same embedding size, as the in-training design can adapt to the model performance at runtime and
continuously optimize embeddings.

4.8 Related Work

Deep Learning Recommendation Systems Existing systems primarily focus on accelerat-
ing DLRM execution. NEO [111] co-optimizes embedding sharding and data parallelism. AI-
Box [290] and HierPS [289] overlap training execution on CPUs (using solid-state drives) and GPUs.
Ekko [229] accelerates DLRM training over wide-area networks. TT-Rec [270] replaces embedding
tables with matrix products to reduce memory footprints. Check-N-Run [88] reduces the bandwidth
consumption for model checkpoints. Fleche [261] and Kraken [262] share the idea of sharing the
weight table across features, but they focus on caching frequently accessed embeddings. AdaEmbed
goes one step further by identifying the heterogeneous embedding importance to improve model
accuracy during model training.
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Optimizations for Deep Learning Recent ML advances have proposed various innovations
for deep learning. TASO [140] and PET [246] perform tensor optimizations to improve model
computation. Superneurons [250] and PipeSwitch [46] optimize instantaneous GPU memory by
prefetching model layers based on their computation order. Similarly, ByteScheduler [210] and
BytePS [144] accelerate the communication of distributed DNN training. ModelKeeper [159]
warms up model training to reduce the amount of training execution needed. Egeria [251] adaptively
freezes the training of model layers and bypasses their computation. These existing works focus
primarily on conventional models, whereas DLRM models are often bottlenecked by memory-
intensive embeddings. Moreover, AdaEmbed is complementary to these efforts as AdaEmbed can
further improve their optimized DLRM models.

Model Pruning Model pruning has been extensively studied to reduce model computation during
training [85, 176], or to generate smaller models after training completes [225, 62]. Importance
sampling [163, 153] performs weighted sampling on training data to achieve faster training con-
vergence. Existing pruning systems and theories primarily focus on conventional CV and/or NLP
counterparts by pruning only the dense layers [85, 204, 115]. However, in DLRMs, the gigantic
embedding tables have become the bottleneck. This difference introduces novel challenges since
the dense layers and embedding tables are distinct components with unique characteristics. For
instance, dense layers are shared and accessed by all input samples, whereas each embedding row
corresponds to a specific feature instance and is only accessed by it, leading to the heterogeneous
importance of embeddings. Therefore, existing solutions are ill-suited for DLRMs.

4.9 Summary

This chapter introduces AdaEmbed, an in-training embedding pruning system for better DLRM
accuracy. AdaEmbed identifies embedding rows with larger importance to model accuracy, and
then adaptively prunes less important embeddings to cap the total embedding size at scale. Our
evaluations demonstrate that AdaEmbed can reduce manual efforts by automatically learning to use
better per-feature embeddings, whereby it saves 35-60% embedding size needed in deployment,
and achieves noticeable improvements on model accuracy and model execution speed.
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CHAPTER 5

Minimizing Data Collection via Enabling Cross-Device Federated Learning

While the previous three chapters zeroed in on minimizing ML resource demands in cloud
or multi-cloud environments, the proliferation of end-user devices and applications makes the
traditional way to improve cloud ML, by collecting real-life data from the edge, prohibitively
expensive. Exploding data volumes and tightening regulations regarding privacy concerns further
exacerbate this data collection process. To minimize the cost of data collection, machine learning
today is experiencing a paradigm shift from cloud ML toward edge-based federated learning
(FL) [55, 148].

Though cloud ML and FL share similar model architectures and goals (e.g., less training time
and better model accuracy), the underlying model training and testing in FL are orchestrated by a
logically centralized coordinator, spanning across potentially millions of devices in the wild [55,
148]. Understandably, this presents new fundamental challenges due to the heterogeneity and
dynamics of client system performance and data distribution, as well as the massive scale of clients.
All these raise important questions: What are the key characteristics of this new workload? And
how can we develop a platform to effectively evaluate and deploy FL efforts?

Starting from this chapter, we extend today’s ML training stage and deployment stage up to the
global scale. Herein, we first study these questions through a comprehensive analysis of realistic FL
system and data traces (Section 5.3). Then, we develop an easily deployable platform designed to
simplify FL deployment (Section 5.4).

5.1 Introduction

Federated learning (FL) is an emerging ML setting that enables model training and evaluation
on end-user data, while circumventing high costs and privacy risks in gathering the raw data from
clients (Figure 5.1). Large companies such as Google and Apple deploy FL for computer vision
(CV) and natural language processing (NLP) tasks across user devices [83, 269, 7, 117]; NVIDIA
applies FL to create medical imaging AI [171]; smart cities perform in-situ image training and
testing on AI cameras to avoid expensive data migration [127, 143, 179]; and video streaming and
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Figure 5.1: Standard FL protocol.

networking communities use FL to interpret and react to network conditions [29, 264].
In the presence of heterogeneous execution speeds of client devices as well as non-IID data

distributions, existing efforts have focused on optimizing different aspects of FL: (1) System

efficiency: reducing computation load (e.g., using smaller models [224]) or communication traffic
(e.g., local SGD [187]) to achieve shorter round duration; (2) Statistical efficiency: designing data
heterogeneity-aware algorithms (e.g., client clustering [99]) to obtain better training accuracy with
fewer training rounds; (3) Privacy and security: developing reliable strategies (e.g., differentially
private training [147]) to make FL more privacy-preserving and robust to potential attacks.

A comprehensive benchmark to evaluate an FL solution must investigate its behavior under the
practical FL setting with (1) data heterogeneity and (2) device heterogeneity under (3) heterogeneous

connectivity and (4) availability conditions at (5) multiple scales on a (6) broad variety of ML tasks.
While the first two aspects are oft-mentioned in the literature [169], realistic network connectivity
and the availability of client devices can affect both types of heterogeneity (e.g., distribution
drift [87]), impairing model convergence. Similarly, evaluation at a large scale can expose an
algorithm’s robustness, as practical FL deployment often runs across thousands of concurrent
participants out of millions of clients [269]. Overlooking any one aspect can mislead FL evaluation
(§5.2).

Unfortunately, existing FL benchmarks often fall short across multiple dimensions (Table 5.1).
First, they are limited in the versatility of data for various real-world FL applications. Indeed, even
though they may have quite a few datasets and FL training tasks (e.g., LEAF [59]), their datasets
often contain synthetically generated partitions derived from conventional datasets (e.g., CIFAR)
and do not represent realistic characteristics. This is because these benchmarks are mostly borrowed
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Features LEAF TFF Flower FedScale

Heter. Client Dataset ⃝ ✗ ⃝ ✔

Heter. System Speed ✗ ✗ ⃝ ✔

Client Availability ✗ ✗ ✗ ✔

Scalable Platform ✗ ✔ ✔ ✔

Real FL Runtime ✗ ✗ ✗ ✔

Flexible APIs ✗ ✔ ✔ ✔

Table 5.1: Comparing FedScale with existing FL benchmarks and libraries. ⃝ implies limited
support.

from traditional ML benchmarks (e.g., MLPerf [185]) or designed for simulated FL environments
like TensorFlow Federated (TFF) [31] or PySyft [23]. Second, existing benchmarks often overlook
system speed, connectivity, and availability of the clients (e.g., Flower [50]). This discourages FL
efforts from considering system efficiency and leads to overly optimistic statistical performance
(§5.2). Third, their datasets are primarily small-scale, because their experimental environments
are unable to emulate large-scale FL deployments. While real FL often involves thousands of
participants in each training round [148, 269], most existing benchmarking platforms can merely
support the training of tens of participants per round. Finally, most of them lack user-friendly APIs
for automated integration, resulting in great engineering efforts for benchmarking at scale. We
attach a detailed comparison of existing benchmarks against FedScale in Appendix C.3.

Contributions We introduce an FL benchmark and accompanying runtime, FedScale, to enable
comprehensive and standardized FL evaluations:

• To the best of our knowledge, FedScale presents the most comprehensive collection of FL
datasets for evaluating different aspects of real FL deployments. It currently has 20 realistic
FL datasets with small, medium, and large scales for a wide variety of task categories, such as
image classification, object detection, word prediction, speech recognition, and reinforcement
learning. To account for practical client behaviors, we include real-world measurements of
mobile devices and associate each client with their computation and communication speeds, as
well as the availability status over time.

• We present an automated evaluation platform, FedScale Runtime, to simplify and standardize
FL evaluation in more realistic settings. FedScale Runtime provides a mobile backend to enable
on-device FL evaluation and a cluster backend to benchmark various practical FL metrics (e.g.,
real client round duration) on GPUs/CPUs using real FL statistical and system datasets. The
cluster backend can efficiently train thousands of clients in each round on a handful of GPUs.
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Figure 5.2: Existing benchmarks can be misleading. We train ShuffleNet on OpenImage classifica-
tion (Detailed setup in Section 5.5).

FedScale Runtime is also extensible, allowing easy deployment of new algorithms and ideas
with flexible APIs.

• We perform systematic experiments to show how FedScale facilitates comprehensive FL bench-
marking and highlight the pressing need for co-optimizing system and statistical efficiency,
especially in tackling system stragglers, accuracy bias, and device energy trade-offs.

5.2 Background

Existing efforts toward practical FL To tackle heterogeneous client data, FedProx [169],
FedYoGi [216] and Scaffold [150] introduce adaptive client/server optimizations that use control
variates to account for the ‘drift’ in model updates. Instead of training a single global model, some
efforts enforce guided client selection [163], train a mixture of models [227, 93], or cluster clients
over training [99]; To tackle the scarce and heterogeneous device resource [161], FedAvg [187]
reduces communication cost by performing multiple local SGD steps, while some works compress
the model update by filtering out or quantizing unimportant parameters [222, 151]; After realizing
the privacy risk in FL [97, 247], DP-SGD [98] enhances the privacy by employing differential
privacy, and DP-FTRL [147] applies the tree aggregation to add noise to the sum of mini-batch
gradients. These FL efforts often navigate accuracy-computation-privacy trade-offs. As such, a
realistic FL setting is crucial for comprehensive evaluations.

Existing FL benchmarks can be misleading Existing benchmarks often lack realistic client
statistical and system behavior datasets and/or fail to reproduce large-scale FL deployments. As a
result, they are not only insufficient for benchmarking diverse FL optimizations but can even mislead
performance evaluations. For example, (1) As shown in Figure 5.2(a), statistical performance
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becomes worse when encountering realistic client behavior (e.g., training failures and availability
dynamics), which indicates existing benchmarks that do not have systems traces can produce overly
optimistic statistical performance; (2) FL training with hundreds of participants each round performs
better than that with tens of participants (Figure 5.2(b)). As such, existing benchmark platforms can
under-report FL optimizations as they cannot support the practical FL scale with a large number of
participants.

5.3 FedScale Dataset: Realistic FL Workloads

We next introduce how we curate realistic datasets in FedScale to fulfill the desired properties
of FL datasets.

5.3.1 Client Statistical Dataset

Category Name Data Type #Clients #Instances Example Task

CV

OpenImage Image 13,771 1.3M Classification, Object detection
Google Landmark Image 43,484 3.6M Classification

Charades Video 266 10K Action recognition
VLOG Video 4,900 9.6K Classification, Object detection

Waymo Motion Video 496,358 32.5M Motion prediction

NLP

Europarl Text 27,835 1.2M Text translation
Reddit Text 1,660,820 351M Word prediction

LibriTTS Text 2,456 37K Text to speech
Google Speech Audio 2,618 105K Speech recognition
Common Voice Audio 12,976 1.1M Speech recognition

Misc ML
Taobao Text 182,806 20.9M Recommendation

Puffer Streaming Text 121,551 15.4M Sequence prediction
Fox Go Text 150,333 4.9M Reinforcement learning

Table 5.2: Statistics of partial FedScale datasets (the full list with more details is available in
Appendix C.2). Currently, FedScale has 20 real-world federated datasets; each dataset is partitioned
by its real client-data mapping, and we have removed sensitive information in these datasets.
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Figure 5.3: Non-IID client data.

FedScale currently has 20 realistic FL datasets (Table 6.1) across diverse practical FL scenarios
and disciplines. For example, the Puffer dataset [264] is from FL video streaming deployed to edge
users over the Internet. The raw data of FedScale datasets is collected from different sources and
stored in various formats. We clean up the raw data, partition them into new FL datasets, streamline
new datasets into consistent formats, and categorize them into different FL use cases. Moreover,
FedScale provides standardized APIs, a Python package, for the user to easily leverage these datasets
(e.g., using different distributions of the same data or new datasets) in other frameworks.

Realistic data and partitions We target realistic datasets with client information, and partition
the raw dataset using the unique client identification. For example, OpenImage is a vision dataset
collected by Flickr, wherein different mobile users upload their images to the cloud for public
use. We use the AuthorProfileUrl attribute of the OpenImage data to map data instances to each
client, whereby we extract the realistic distribution of the raw data. Following the practical FL
deployments [269], we assign the clients of each dataset into the training, validation, and testing
groups, to get its training, validation, and testing set. Here, we pick four real-world datasets – video
(Charades), audio (Google Speech), image (OpenImage), and text (Reddit) – to illustrate practical
FL characteristics. Each dataset consists of hundreds or up to millions of clients and millions of data
points. Figure 5.3 reports the Probability Density Function (PDF) of the data distribution, wherein
we see a high statistical deviation (e.g., wide distribution of the density) across clients not only in
the quantity of samples (Figure 5.3(a)) but also in the data distribution (Figure 5.3(b)).1 We notice
that realistic datasets mostly have unique Non-IID patterns, implying the impracticality of existing
artificial FL partitions.

1We report the pairwise Jensen–Shannon distance of the label distribution between two clients.
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Figure 5.5: Client availability is dynamic.

Different scales across diverse task categories To accommodate diverse scenarios in practical
FL, FedScale includes small-, medium-, and large-scale datasets across a wide range of tasks, from
hundreds to millions of clients. Some datasets can be applied in different tasks, as we enrich their
use cases by deriving different metadata from the same raw data. For example, the raw OpenImage
dataset can be used for object detection, and we extract each object therein and generate a new
dataset for image classification. Moreover, we provide APIs for the developer to customize their
dataset (e.g., enforcing new data distribution or taking a subset of clients for evaluations with a
smaller scale).

5.3.2 Client System Behavior Dataset

Client device system speed is heterogeneous We formulate the system trace of different clients
using AI Benchmark [1] and MobiPerf Measurements [19] on mobiles. AI Benchmark provides the
training and inference speed of diverse models (e.g., MobileNet) across a wide range of device
models (e.g., Huawei P40 and Samsung Galaxy S20), while MobiPerf has collected the available
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cloud-to-edge network throughput of over 100k world-wide mobile clients. As specified in real FL
deployments [55, 269], we focus on mobile devices that have larger than 2GB RAM and connect
with WiFi; Figure 5.4 reports that their compute and network capacities can exhibit order-of-
magnitude differences. As such, how to orchestrate scarce resources and mitigate stragglers is
paramount.

Client device availability is dynamic We incorporate a large-scale user behavior dataset spanning
across 136k users [268] to emulate the behaviors of clients. It includes 180 million trace items of
client devices (e.g., battery charge or screen lock) over a week. We follow the real FL setting, which
considers the device in charging to be available [55] and observe great dynamics in their availability:
(i) the number of available clients reports diurnal variation (Figure 5.5(a)). This confirms the
cyclic patterns in the client data, which can deteriorate the statistical performance of FL [87]. (ii)
the duration of each available slot is not long-lasting (Figure 5.5(b)). This highlights the need of
handling failures (e.g., clients become offline) during training, as the round duration (also a few
minutes) is comparable to that of each available slot. This, however, is largely overlooked in the
literature.

5.4 FedScale Runtime: Execution Platform

Existing FL evaluation platforms are poor at reproducing practical, large-scale FL deployment
scenarios. Worse, they often lack user-friendly APIs and require significant developer effort to intro-
duce new plugins. We introduce, FedScale Runtime, an automated, extensible, and easily-deployable
evaluation platform equipped with mobile and cluster backends, to simplify and standardize FL
evaluation under realistic settings.

5.4.1 FedScale Runtime: Mobile Backend

FedScale Runtime deploys a mobile backend to enable on-device FL evaluation on smartphones.
The first principle in building our mobile backend is to minimize any engineering effort for the
developer (e.g., without reinventing their Python code) to benchmark FL on mobiles. To this end,
FedScale mobile backend [230] is built atop the Termux app [32], an Android terminal that supports
Linux environment.
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Figure 5.7: FedScale Runtime can benchmark the mobile runtime of power, energy, and latency.
We train Resnet34 and Shufflenet on ImageNet and CIFAR-10 on Xiaomi mi10 and Samsung S10e.

1 from fedscale.core.client import Client

2
3 class Mobile_Client(Client):

4 def train(self,client_data,model,conf):

5 for local_step in range(conf.local_steps):

6 optimizer.zero_grad()

7 ...

8 loss.backward()

9 optimizer.step()

10
11 # Results will be sent to cloud aggregator via gRPC

12 return gradient_update

Figure 5.6: Training on mobile client.

Figure 5.6 shows a snippet of code running on FedScale mobile backend. By integrating
with Termux, FedScale Runtime allows the developer to run an unmodified version of Python
script (e.g., PyTorch) built from source on the mobile device; the full-operator set (e.g., PyTorch
modules) is available too. This speeds up the deployment cycle: FL models and algorithms that
were prototyped on server GPUs/CPUs can also be deployed using FedScale Runtime. We are
currently implementing the Google Remote Procedure Call (gRPC) for distributed mobile devices
to interface with FedScale Runtime cloud server.

Benchmarking the mobile backend FedScale mobile backend enables developers to benchmark
realistic FL training/testing performance on mobile phones. For example, Figure 5.7 reports the
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performance metrics of training ShuffleNet and ResNet34 on one mini-batch (batch size 32), drawn
from the ImageNet and CIFAR-10 datasets, on Xiaomi Mi10 and Samsung S10e Android devices.
We benchmark the average training time. We notice that ResNet34 runs at higher instantaneous
power than ShuffleNet on both devices, but it requires less total energy to train since it takes shorter
latency. ImageNet takes longer than CIFAR-10 per mini-batch, as the larger training image sizes
lead to longer execution. The heterogeneity in computational capacity is evident as the Xiaomi
Mi10 device outperforms the Samsung S10e device due to a more capable processor. As such,
we believe that FedScale mobile backend can facilitate future on-device FL optimizations (e.g.,
hardware-aware neural architecture search [122]).

5.4.2 FedScale Runtime: Cluster Backend

FedScale Runtime provides an automated cluster backend that can support FL evaluations in
real deployments and in-cluster simulations. In the deployment mode, FedScale Runtime acts as
the cloud aggregator and orchestrates FL executions across real devices (e.g., laptops, mobiles, or
even cloud servers). To enable cost-efficient FL benchmarking, FedScale Runtime also includes a
simulation mode that performs FL training/testing on GPUs/CPUs, while providing various practical
FL metrics by emulating realistic FL behaviors, such as computation/communication cost, latency,
and wall clock time. To the best of our knowledge, FedScale Runtime is the first platform that
enables FL benchmarking with practical FL runtime on GPUs/CPUs. More importantly, FedScale
Runtime can run the same code with a few changes in both modes to minimize the migration
overhead.

Throughout the rest of the chapter, we focus on the simulation mode as benchmarking is the
primary focus of this chapter.

Module API Name Example Use Case

Aggregator round_completion_handler() Adaptive/secure aggregation

Simulator client_completion_handler() Straggler mitigation

Client select_participants() Client selection

Manager select_model_for_client() Adaptive model selection

Client train() Local SGD/malicious attack

Simulator serialize_results() Model compression

Table 5.3: Some example APIs. FedScale provides APIs to deploy new plugins for various designs.
We omit input arguments for brevity here.
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Figure 5.8: FedScale Runtime enables the developer to benchmark various FL efforts with practical
FL data and metrics.

1 from fedscale.core.client import Client

2
3 class Customized_Client(Client):

4 # Redefine training (e.g., for local SGD/gradient compression)

5
6 def train(self,client_data,model,conf):

7 # Code of plugin

8 ...

9
10 # Results will be serialized, and then sent to aggregator

11 return training_result

Figure 5.9: Add plugins by inheritance.

Overview of the simulation mode FedScale Runtime consists of three primary components
(Figure 5.8):

• Aggregator Simulator: It acts as the aggregator in practical FL, which selects participants,
distributes execution profiles (e.g., model weight), and handles result (e.g., model updates)
aggregation. In each round, its client manager uses the client behavior trace to monitor whether
a client is available; then it selects the specified number of clients to participate in that round.
Once receiving new events, the event monitor activates the handler (e.g., aggregation handler
to perform model aggregation), or the gRPC communicator to send/receive messages. The
communicator records the size (cost) of every network traffic, and its runtime latency in FL
wall-clock time ( traffic_size

client_bandwidth
).
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• Client Simulator: It works as an FL client. FedScale data loader loads the federated dataset
of that client and feeds this data to the compute engine to run real training/testing. The
computation latency is determined by (#_processed_sample× latency_per_sample), and the
communicator handles network traffic and records the communication latency ( traffic_size

client_bandwidth
).

The device monitor will terminate the simulation of a client if the current FL runtime exceeds
his available slot (e.g., client drops out), as indicated by the availability trace.

• Resource Manager: It orchestrates the available physical resources for evaluation to maximize
resource utilization. For example, when the number of participants/round exceeds the resource
capacity (e.g., simulating thousands of clients on a few GPUs), the resource manager queues
the overcommitted tasks of clients and schedules new client simulation from this queue once
resources become available. Note that this queuing will not affect the simulated FL runtime, as
this runtime is controlled by a global virtual clock, and the event monitor will manage events in
the correct runtime order.

Note that capturing runtime performance (e.g., wall clock time) is rather slow and expensive
in practical FL – each mobile device takes several minutes to train a round – but our simulator
enables fast-forward simulation, as training on CPUs/GPUs takes only a few seconds per round,
while providing simulated runtime using realistic traces.

FedScale Runtime enables automated FL simulation FedScale Runtime incorporates realistic
FL traces, using the aforementioned trace by default or the developer-specified profile from the
mobile backend, to automatically emulate the practical FL workflow: 1 Task submission: FL
developers specify their configurations (e.g., model and dataset), which can be federated training
or testing, and the resource manager will initiate the aggregator and client simulator on available
resources (GPU, CPU, other accelerators, or even smartphones); 2 FL simulation: Following the
standardized FL lifecycle (Figure 5.1), in each training round, the aggregator inquires the client
manager to select participants, whereby the resource manager distributes the client configuration
to the available client simulators. After the completion of each client, the client simulator pushes
the model update to the aggregator, which then performs the model aggregation. 3 Metrics output:
During training, the developer can query the practical evaluation metrics on the fly. Figure 5.8 lists
some popular metrics in FedScale.

FedScale Runtime is easily deployable and extensible with plugins FedScale Runtime provides
flexible APIs, which can accommodate with different execution backends (e.g., PyTorch) by design,
for the developer to quickly benchmark new plugins. Table 5.3 illustrates some example APIs
that can facilitate diverse FL efforts, and Figure 5.9 dictates an example showing how these APIs
help to benchmark a new design of local client training with a few lines of code by inheriting the
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Figure 5.10: FedScale Runtime can run thousands of clients/round on 10 GPUs where others
fail.3More results are in Appendix C.3.

base Client module. Moreover, FedScale Runtime can embrace new realistic (statistical client or
system behavior) datasets with the built-in APIs. For example, the developer can import his own
dataset of the client availability with the API (load_client_availability), and FedScale
Runtime will automatically enforce this trace during evaluations. We provide more examples and a
comparison with other frameworks, in Appendix C.4 to show the ease of evaluating various today’s
FL work in FedScale – a few lines are all we need [163, 165]!

FedScale Runtime is scalable and efficient In the simulation mode, FedScale Runtime can per-
form large-scale simulations (thousands of clients per round) in both standalone (single CPU/GPU)
and distributed (multiple machines) settings. This is because: (1) FedScale Runtime uses GPU shar-
ing techniques [276] to divide GPU among tasks so that multiple client simulators can co-locate on
the same GPU; (2) our resource manager monitors the fine-grained resource utilization of machines,
queues the overcommitted execution requests, adaptively dispatches requests of the client across
machines to achieve load balance, and then orchestrates the simulation based on the client virtual
clock. Instead, state-of-the-art platforms can hardly support the practical FL scale, due to their
limited support for distributed evaluations (e.g., FedJax [219]), and/or the reliance on the traditional
ML architecture that trains on a few workers with long-running computation, whereas FedScale
Runtime minimizes the overhead (e.g., frequent data serialization) in the fleet training of FL clients.
As shown in Figure 5.10 4, other than being able to evaluate the practical FL runtime, FedScale
Runtime not only runs faster than FedML [119] and Flower [50], but it can support large-scale
evaluations efficiently.

3We finished these evaluations in Dec. 2021.
4We train ShuffleNet on OpenImage classification task on 10 GPU nodes. Detailed experimental setups are available

in Appendix C.1.
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Task Dataset Model IID FedAvg FedProx FedYoGi

FEMNIST ResNet-18 86.40% 78.50% 78.40% 76.30%
ShuffleNet-V2 81.37% 70.27% 69.54% 74.04%Image Classification

OpenImage
MobileNet-V2 80.83% 70.09% 70.34% 75.25%

Text Classification Amazon Review Logistic Regression 66.10% 65.80% 65.10% 65.30%

Language Modeling Reddit Albert 73.5 ppl 77.3 ppl 76.6 ppl 81.6 ppl

Speech Recognition Google Speech ResNet-34 72.58% 63.37% 63.25% 62.67%

Table 5.4: Benchmarking of different FL algorithms across realistic FL datasets. We report the
mean test accuracy over 5 runs.
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Figure 5.11: FedScale can benchmark the statistical FL performance. (c) shows existing benchmarks
can under-report the FedYoGi performance as they cannot support a large number of participants.

5.5 Experiments

In this section, we show how FedScale can facilitate better benchmarking of FL efforts over its
counterparts.

Experimental setup We use 10 NVIDIA Tesla P100 GPUs in our evaluations. Following the real
FL deployments [55, 269], the aggregator collects updates from the first N completed participants
out of 1.3N participants to mitigate system stragglers in each round, and N = 100 by default. We
experiment with representative FedScale datasets in different scales and tasks (detailed experiment
setup in Appendix C.1).

5.5.1 How Does FedScale Help FL Benchmarking?

Existing benchmarks are insufficient to evaluate the various metrics needed in today’s FL. We
note that the performance of existing benchmarks and FedScale are quite close in the same settings
if we turn off the optional system traces in FedScale. Because the underlying training and FL
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Figure 5.12: FedScale can benchmark realistic FL runtime. (a) and (b) report FedYoGi results
on OpenImage with different number of local steps (K); (b) reports the FL runtime to reach
convergence.

protocols in evaluations are the same. However, the limited scalability can mislead the practical FL
performance. Next, we show the effectiveness of FedScale in benchmarking different FL aspects
over its counterparts.

Benchmarking FL statistical efficiency. FedScale provides various realistic client datasets to
benchmark the FL statistical efficiency. Here, we experiment with state-of-the-art optimizations
(FedAvg, FedProx and FedYoGi) – each aims to mitigate the data heterogeneity – and the traditional
IID data setting. Figure 5.11 and Table 5.4 report that: (1) the round-to-accuracy performance
and final model accuracy of the non-IID setting is worse than that of the IID setting, which is
consistent with existing findings [148]; (2) different tasks can have different preferences on the
optimizations. For example, FedYoGi performs the best on OpenImage, but it is inferior to FedAvg
on Google Speech. With much more FL datasets, FedScale enables extensive studies of the sweet
spot of different optimizations; and (3) existing benchmarks can under-report the FL performance
due to their inability to reproduce the FL setting. Figure 5.11(c) reports the final model accuracy
using FedML and FedScale, where we attempt to reproduce the scale of practical FL with 100
participants per round in both frameworks, but FedML can only support 30 participants because of
its suboptimal scalability, which under-reports the FL performance that the algorithm can indeed
achieve.

Benchmarking FL system efficiency. Existing system optimizations for FL focus on the practical
runtime (e.g., wall-clock time in real FL training) and the FL execution cost. Unfortunately, existing
benchmarks can hardly evaluate the FL runtime due to the lack of realistic system traces, but we
now show how FedScale can help such benchmarking: (1) FedScale Runtime enables fast-forward
evaluations of the practical FL wall-clock time with fewer evaluation hours. Taking different number
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of local steps K in local SGD as an example [187], Figure 5.12(a) and Table 5.12(b) illustrate that
FedScale can evaluate this impact of K on practical FL runtime in a few hours. This allows the
developer to evaluate large-scale system optimizations efficiently; and (2) FedScale Runtime can
dictate the FL execution cost by using realistic system traces. For example, Figure 5.12(c) reports
the practical FL communication cost in achieving the performance of Figure 5.11, while Figure 5.15
reports the system duration of individual clients. These system metrics can facilitate developers to
navigate the accuracy-cost trade-off.

Benchmarking FL privacy and security. FedScale can evaluate the statistical and system
efficiency for privacy and security optimizations more realistically. Here, we give an example of
benchmarking DP-SGD [98, 147], which applies differential privacy to improve the client privacy.
We experiment with different privacy targets σ (σ=0 indicates no privacy enhancement) and different
number of participants per round N . Figure 5.13 shows that the scale of participants (e.g., N=30)
that today’s benchmarks can support can mislead the privacy evaluations too: for σ=0.01, while
we notice great performance degradation (12.8%) in the final model accuracy when N=30, this
enhancement is viable in practical FL (N=100) with decent accuracy drop (4.6%). Moreover,
FedScale is able to benchmark more practical FL metrics, such as wall-clock time, communication
cost added in privacy optimizations, and the number of rounds needed to leak the client privacy
under realistic individual client data and Non-IID distributions.

As for benchmarking FL security, we follow the example setting of recent backdoor attacks [232,
247] on the OpenImage, where corrupted clients flip their ground-truth labels to poison the training.
We benchmarked two settings: one without security enhancement, while the other clips the model
updates as [232]. As shown in Figure 5.14, while state-of-the-art optimizations report this can
mitigate the attacks without hurting the overall performance on their synthesized datasets, large
accuracy drops can occur in more practical FL settings.

5.5.2 Opportunities for Future FL Optimizations

Next, we show FedScale can shine light on the need for yet unexplored optimizations owing to
its realistic FL settings.

Heterogeneity-aware co-optimizations of communication and computation Existing optimiza-
tions for the system efficiency often apply the same strategy on all clients (e.g., using the same
number of local steps [187] or compression threshold [222]), while ignoring the heterogeneous
client system speed. When we outline the timeline of 5 randomly picked participants in training
of the ShuffleNet (Figure 5.15), we find: (1) system stragglers can greatly slow down the round
aggregation in practical FL; and (2) simply optimizing the communication or computation efficiency
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may not lead to faster rounds, as the last participant can be bottlenecked by the other resource.
Here, optimizing the communication can greatly benefit Client 4, but it achieves marginal improve-
ment on the round duration as Client 5 is computation-bound. This implies an urgent need of
heterogeneity-aware co-optimizations of communication and computation efficiency.

Co-optimizations of statistical and system efficiency Most of today’s FL efforts focus on either
optimizing the statistical or the system efficiency, whereas we observe a great opportunity to jointly
optimize both efficiencies: (1) As the system behavior determines the availability of client data,
predictable system performance can benefit statistical efficiency. For example, in alleviating the
biased model accuracy (Figure 5.16), we may prioritize the use of upcoming offline clients to curb
the upcoming distribution drift of client data; (2) Statistical optimizations should be aware of the
heterogeneous client system speed. For example, instead of applying one-fit-all strategies (e.g.,
local steps or gradient compression) for all clients, faster workers can trade more system latency for
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more statistical benefits (e.g., transferring more traffics with less intensive compression).

FL design-decisions considering mobile environment Existing efforts have largely overlooked
the interplay of client devices and training speed (e.g., using a large local steps to save communica-
tion [187]), however, as shown in Figure 5.7, running intensive on-device computation for a long
time can quickly drain the battery, or even burn the device, leading to the unavailability of clients.
Therefore, we believe that a power and temperature-aware training algorithm (e.g., different local
steps across clients or device-aware NAS) can be an important open problem.

5.6 Summary

To enable scalable and reproducible FL research, we introduce FedScale, a diverse set of realistic
FL datasets in terms of scales, task categories, and client system behaviors, along with a scalable
and extensible evaluation platform, FedScale Runtime. FedScale Runtime performs fast-forward
evaluation of the practical FL runtime metrics needed in today’s works. More importantly, FedScale
Runtime provides ready-to-use realistic datasets and flexible APIs to allow more FL applications,
such as benchmarking NAS, model inference, and a broader view of federated computation (e.g.,
multi-party computation). FedScale is open-source, and we hereby invite the community to develop
and contribute state-of-the-art FL efforts.
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CHAPTER 6

Minimizing Cloud-Fed ML Accuracy Gap via Guided Participant Selection

In the pursuit of FedScale, we realize a new system component in the FL software stack, i.e.,
the client manager. This is because as the underlying execution in FL spans across millions of
heterogeneous clients, how to orchestrate FL client participation in each execution round can lead
to distinct statistical efficiency (e.g., round-to-accuracy performance) and system efficiency (e.g.,
duration of each round). This chapter propounds the minimalist philosophy – do less to gain more
– to minimize the performance gap between cloud ML and federated learning by cherry-picking
FL participants. Our approach takes into account both the client’s data toward improving model
accuracy and its system’s capability to run execution efficiently.

We start by analyzing how state-of-the-art FL optimizations can be far from optimal in Sec-
tion 6.3, due to the deficiency of existing client orchestration strategies. Section 6.4 outlines our
system called Oort, which performs guided participant selection by exploring and exploiting those
clients who contribute more toward improving model performance (Section 6.5 and Section 6.6).
We then evaluate Oort’s performance across diverse FL deployment scales and tasks in Section 6.8.

6.1 Background

Similar to the life cycle of traditional ML, the FL developer often first prototypes model
architectures and hyperparameters with a proxy dataset. After selecting a suitable configuration, she
can use federated training to improve model performance by training across a crowd of participants
[55, 148]. The wall clock time for training a model to reach an accuracy target (i.e., time-to-
accuracy) is still a key performance objective, even though it may take significantly longer than
centralized training [148]. To circumvent biased or stale proxy data in hyperparameter tuning [191],
to inspect these models being trained, or to validate deployed models after training [264, 263],
developers may want to perform federated testing on the real-life client data, wherein enforcing their
requirements on the testing set (e.g., N samples for each category or following the representative
categorical distribution1) is crucial for them to reason about model performance under different data

1A categorical distribution is a discrete probability distribution showing how a random variable can take the result
from one of K possible categories.
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characteristics [57, 191].
Unfortunately, clients may not all be simultaneously available for FL training or testing [148];

they may have heterogeneous data distributions and system capabilities [129, 55]; and including
too many may lead to wasted work and suboptimal performance [55] (§6.3). Consequently, a
fundamental problem in practical FL is the selection of a “good” subset of clients as participants,
where each participant locally processes its own data, and only their results are collected and
aggregated at a (logically) centralized coordinator.

Existing works optimize for statistical model efficiency (i.e., better training accuracy with
fewer training rounds) [248, 169, 209, 65] or system efficiency (i.e., shorter rounds) [187, 233],
while randomly selecting participants. Although random participant selection is easy to deploy,
unfortunately, it results in poor performance of federated training because of large heterogeneity in
device speed and/or data characteristics. Worse, random participant selection can lead to biased
testing sets and loss of confidence in results. As a result, developers often resort to more participants
than perhaps needed [249, 191], leading to wasteful FL training and testing.

6.2 Solution Outlines

We present Oort for FL developers to enable guided participant selection throughout the life
cycle of an FL model (§6.4). Specifically, Oort cherry-picks participants to improve time-to-
accuracy performance for federated training, and it enables developers to specify testing criteria
for federated model testing. It makes informed participant selection by relying on the information
already available in existing FL solutions [148] with little modification.

Selecting participants for federated training is challenging because of the trade-off between
heterogeneous system and statistical model utilities both across clients and of any specific client
over time (as the trained model changes). First, simply picking clients with high statistical utility can
lead to longer training rounds due to the coupled nature of client data and system performance. The
challenge is further exacerbated by the large population, as capturing the latest utility of all clients
is impractical. As such, we identify clients with high statistical utility, which is measured in terms
of their most recent aggregate training loss, adjusted for spatiotemporal variations, and penalize the
utility of a client if her system speed is likely to elongate the duration necessary to complete global
aggregation. To navigate the sweet spot of jointly maximizing statistical and system efficiency, we
adaptively allow for longer training rounds to admit clients with higher statistical utility. We then
employ an online exploration-exploitation strategy to probabilistically select participants among
high-utility clients for robustness to outliers. Our design can accommodate diverse selection criteria
(e.g., fairness), and deliver improvements while respecting privacy (§6.5).

Although FL developers often have well-defined requirements on their testing data, satisfying
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these requirements is not straightforward. Similar to traditional ML, developers may request a
testing dataset that follows the global distribution to avoid testing on all clients [130, 191]. However,
clients’ data characteristics in some private FL scenarios may not be available [98, 269]. To preserve
the deviation target of participant data from the global, Oort performs participant selection by
bounding the number of participants needed. Second, for cases where clients’ data characteristics
are provided [179], developers can specify specific distribution of the testing set to debug model
efficiency (e.g., using balanced distribution) [45, 274]. At scale, satisfying this requirement in
FL suffers from large overhead. Therefore, we propose a scalable heuristic to efficiently enforce
developer requirements, while optimizing the duration of testing (§6.6).

We have integrated Oort with PySyft (§6.7) and evaluated it across various FL tasks with
real-world workloads (§6.8). 2 Compared to the state-of-the-art selection techniques used in today’s
FL deployments [249, 269, 64], Oort improves time-to-accuracy performance by 1.2×-14.1×
and final model accuracy by 1.3%-9.8% for federated model training, while achieving close to
upper-bound statistical performance. For federated model testing, Oort can efficiently respond to
developer-specified data distribution across millions of clients, and improves the end-to-end testing
duration by 4.7× on average over state-of-the-art solutions.

Overall, we make the following contributions in this chapter:

1. We highlight the tension between statistical and systems efficiency when selecting FL partici-
pants and present Oort to effectively navigate the tradeoff.

2. We propose participant selection algorithms to improve the time-to-accuracy performance of
training and to scalably enforce developers’ FL testing criteria.

3. We implement and evaluate these algorithms at scale in Oort, showing both statistical and
systems performance improvements over the state-of-the-art.

6.3 Motivation

While existing FL solutions have made considerable progress in tackling some of the above
challenges (§6.9), they mostly rely on hindsight – given a pool of participants, they optimize model
performance [209, 170] or system efficiency [187] to tackle data and system heterogeneity. However,
the potential for curbing these disadvantages by cherry-picking participants before execution has
largely been overlooked. For example, FL training and testing today still rely on randomly picking
participants [55], which leaves large room for improvements.

Suboptimality in maximizing efficiency. We first show that today’s participant selection un-
derperforms for FL solutions. Here, we train two popular image classification models tailored

2Oort is available at https://github.com/SymbioticLab/Oort.

112

https://github.com/SymbioticLab/Oort


Breakdown-Round to accuracy (Prox)

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 87.5 89.4 0.6 0.3

YoGi 75.7 77.6 0.7 0.6

Prox 74.9 76.1 0.4 0.4 52.9 53.3 53.0 54.4 53.6 54.5

Breakdown-Round to accuracy-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6

Kuiper 122 107 7 6 130 115 122 105 115 102

Kuiper - Pacer 130 110 9 10 125 136 131 98 113 121

Kuiper - Sys 113 97 8 9 124 105 112 90 95 108

Random 248 194 12 14

Target: 53.1

Breakdown-Round to accuracy (Prox)-1
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Figure 6.1: Existing works are suboptimal in: (a) round-to-accuracy performance and (b) final
model accuracy. (a) reports number of rounds required to reach the highest accuracy of Prox on
MobileNet (i.e., 74.9%).

for mobile devices (i.e., MobileNet [224] and ShuffleNet [287]) with 1.6 million images of the
OpenImage dataset, and randomly pick 100 participants out of more than 14k clients in each
training round. We consider a performance upper bound by creating a hypothetical centralized case
where images are evenly distributed across only 100 clients, and train on all 100 clients in each
round. As shown in Figure 6.1, even with state-of-the-art optimizations, such as YoGi [216] and
Prox [169],3 the round-to-accuracy and final model accuracy are both far from the upper-bound.
Moreover, overlooking the system heterogeneity can elongate each round, further exacerbating the
suboptimality of time-to-accuracy performance.

Inability to enforce data selection criteria. While an FL developer often fine-tunes her model
by understanding the input dataset, existing solutions do not provide any systems support for her to
express and reason about what data her FL model was trained or tested on. Even worse, existing
participant selection not only inflates the execution, but can lead to bias and loss of confidence in
results [57, 129].

To better understand how existing works fall short, we take the global categorical distribution as
an example requirement, and experiment with the above pre-trained ShuffleNet model. Figure 6.2(a)
shows that: (i) even for the same number of participants, random selection can result in noticeable
data deviations from the target distribution; (ii) while this deviation decreases as more participants
are involved, it is non-trivial to quantify how it varies with different number of participants, even if
we ignore the cost of enlarging the participant set. Worse, when even selecting many participants,
developers can not enforce other distributions (e.g., balanced distribution for debugging [45])
with random selection. One natural effect of violating developer specification is bias in results

3These two adapt traditional stochastic gradient descent algorithms to tackle the heterogeneity of the client datasets.
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Figure 6.2: Participant selection today leads to (a) deviations from developer requirements, and thus
(b) affects testing result. Shadow indicates the [min, max] range of y-axis values over 1000 runs
given the same x-axis input; each line reports the median.

(Figure 6.2(b)), where we test the accuracy of the same model on these participants. We observe
that a biased testing set results in high uncertainties in testing accuracy.

6.4 Oort Overview

Oort improves FL training and testing performance by judiciously selecting participants while
enabling FL developers to specify data selection criteria. In this section, we provide an overview of
how Oort fits in the FL life cycle to help the reader follow the subsequent sections.

6.4.1 Architecture

At its core, Oort is a participant selection framework that identifies and cherry-picks valuable
participants for FL training and testing. It is located inside the coordinator of an FL framework and
interacts with the driver of an FL execution (e.g., PySyft [23] or Tensorflow Federated [31]). Given
developer-specified criteria, it responds with a list of participants, whereas the driver is in charge of
initiating and managing execution on the Oort-selected remote participants.

Figure 6.3 shows how Oort interacts with the developer and FL execution frameworks. 1
Job submission: the developer submits and specifies the participant selection criteria to the FL
coordinator in the cloud. 2 Participant selection: the coordinator enquires the clients meeting
eligibility properties (e.g., battery level), and forwards their characteristics (e.g., liveness) to Oort.
Given the developer requirements (and execution feedbacks in case of training 2a ), Oort selects
participants based on the given criteria and notifies the coordinator of this participant selection (2b ).
3 Execution: the coordinator distributes relevant profiles (e.g., model) to these participants, and
then each participant independently computes results (e.g., model weights in training) on her data;
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Figure 6.3: Oort architecture. The driver of the FL framework interacts with Oort using a client
library.

4 Aggregation: when participants complete the computation, the coordinator aggregates updates
from participants.

During federated training, where the coordinator initiates the next training round after aggregat-
ing updates from enough number of participants [55], it iterates over 2 - 4 in each round. Every
few training rounds, federated testing is often used to detect whether the cut-off accuracy has been
reached.

6.4.2 Oort Interface

Oort employs two distinct selectors that developers can access via a client library during FL
training and testing.

Training selector. This selector aims to improve the time-to-accuracy performance of federated
training. To this end, it captures the utility of clients in training, and efficiently explores and selects
high-utility clients at runtime.

Figure 6.4 presents an example of how FL developers and frameworks interact with Oort during
training. In each training round, Oort collects feedbacks from the engine driver, and updates the
utility of individual clients (Line 15-17). Thereafter, it cherry-picks high-utility clients to feed the
underlying execution (Line 20). We elaborate more on client utility and the selection mechanism in
Section 6.5.

Testing selector. This selector currently supports two types of selection criteria. When the
individual client data characteristics (e.g., categorical distribution) are not provided, the testing
selector determines the number of participants needed to cap the data deviation of participants
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1 import Oort
2
3 def federated_model_training():
4 selector = Oort.create_training_selector(config)
5
6 # Train to target testing accuracy
7 while federated_model_testing() < target:
8
9 # Train 50 rounds before testing

10 for _ in range(50):
11 # Collect feedbacks of last round
12 feedbacks = engine.get_participant_feedback()
13
14 # Update the utility of clients
15 for clientId in feedbacks:
16 selector.update_client_util(
17 clientId, feedbacks[clientId])
18
19 # Pick 100 high-utility participants
20 participants = selector.select_participant(100)
21 ... # Activate training on remote clients

Figure 6.4: Code snippet of Oort interaction during FL training.

from the global. Otherwise, it cherry-picks participants to serve the exact developer-specified
requirements on data while minimizing the duration of testing. We elaborate more on selection for
federated testing in Section 6.6.

6.5 Federated Model Training

In this section, we first outline the trade-off in selecting participants for FL training (§6.5.1), and
then describe how Oort quantifies the client utility while respecting privacy (§6.5.2 and §6.5.3), how
it selects high-utility clients at scale despite staleness in client utility as training evolves (§6.5.4).

6.5.1 Tradeoff Between Statistical and System Efficiency

Time-to-accuracy performance of FL training relies on two aspects: (i) statistical efficiency:
the number of rounds taken to reach target accuracy; and (ii) system efficiency: the duration of
each training round. The data stored on the client and the speed with which it can perform training
determine its utility with respect to statistical and system efficiency, which we respectively refer to
as statistical and system utility.

Due to the coupled nature of client data and system performance, cherry-picking participants
for better time-to-accuracy performance requires us to jointly consider both forms of efficiency.
We visualize the trade-off between these two with our breakdown experiments on the MobileNet
model with OpenImage dataset (§6.8.2.1). As shown in Figure 6.5, while optimizing the system
efficiency (“Opt-Sys. Efficiency”) can reduce the duration of each round (e.g., picking the fastest
clients), it can lead to more rounds than random selection as that client data may have already been
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Figure 6.5: Existing FL training randomly selects participants, whereas Oort navigates the sweet
point of statistical and system efficiency to optimize their circled area (i.e., time to accuracy).
Numbers are from the MobileNet on OpenImage dataset (§6.8.2.1).

overrepresented by other participants over past rounds. On the other hand, using a client with high
statistical utility (“Opt-Stat. Efficiency”) may lead to longer rounds if that client turns out to be the
system bottleneck in global model aggregation.

Challenges. To improve time-to-accuracy performance, Oort aims to find a sweet spot in the
trade-off by associating with every client its utility toward optimizing each form of efficiency
(Figure 6.5). This leads to three challenges:

• In each round, how to determine which clients’ data would help improve the statistical efficiency
of training the most while respecting client privacy (§6.5.2)?

• How to take a client’s system performance into account to optimize the global system efficiency
(§6.5.3)?

• How to account for the fact that we don’t have up-to-date utility values for all clients during
training (§6.5.4)?

Next, we integrate system designs with ML principles to tackle the heterogeneity, the massive
scale, the runtime uncertainties and privacy concerns of clients for practical FL.

6.5.2 Client Statistical Utility

An ideal design of statistical utility should be able to efficiently capture the client data utility
toward improving model performance for various training tasks, and respect privacy.

To this end, we leverage importance sampling used in the ML literature [146, 153]. Say
each client i has a bin Bi of training samples locally stored. Then, to improve the round-to-
accuracy performance via importance sampling, the optimal solution would be to pick bin Bi with a
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probability proportional to its importance |Bi|
√

1
|Bi|

∑
k∈Bi
∥ ∇f(k) ∥2, where ∥ ∇f(k) ∥ is the

L2-norm of the unique sample k’s gradient∇f(k) in bin Bi. Intuitively, this means selecting the
bin with larger aggregate gradient norm across all of its samples.

However, taking this importance as the statistical utility is impractical, since it requires an extra
time-consuming pass over the client data to generate the gradient norm of every sample,4 and this
gradient norm varies as the model updates.

To avoid extra cost, we introduce a pragmatic approximation of statistical utility instead. At
its core, the gradient is derived by taking the derivative of training loss with respect to current
model weights, wherein training loss measures the estimation error between model predictions and
the ground truth. Our insight is that a larger gradient norm often attributes to a bigger loss [146].
Therefore, we define the statistical utility U(i) of client i as U(i) = |Bi|

√
1

|Bi|
∑

k∈Bi
Loss(k)2,

where the training loss Loss(k) of sample k is automatically generated during training with
negligible collection overhead. As such, we consider clients that currently accumulate a bigger loss
to be more important for future rounds.

Our statistical utility can capture the heterogeneous data utility across and within categories
and samples for various tasks. We present the theoretical insights for its effectiveness over random
sampling in Appendix D.1, and empirically show its close-to-optimal performance (§6.8.2.2).

How Oort respects privacy? Training loss measures the prediction confidence of a model without
revealing the raw data and is often collected in real FL deployments [117, 269]. We further provide
three ways to respect privacy. First, we rely on aggregate training loss, which is computed locally
by the client across all of her samples without revealing the loss distribution of individual samples
either. Second, when even the aggregate loss raises a privacy concern, clients can add noise to
their loss value before uploading, similar to existing local differential privacy [98]. Third, we later
show that Oort can flexibly accommodate other definitions of statistical utility used in our generic
participant selection framework (§6.5.4). We provide detailed theoretical analyses for each strategy
(e.g., using gradient norm of batches) of how Oort can respect privacy (e.g., amenable under noisy
utility value) in Appendix D.2, while empirically showing its superior performance even under
noisy utility value (§6.8.2.3).

6.5.3 Trading off Statistical and System Efficiency

Simply selecting clients with high statistical utility can hamper the system efficiency. To
reconcile the demand for both efficiencies, we should maximize the statistical utility we can achieve
per unit time (i.e., the division of statistical utility and its round duration). As such, we formulate

4ML models generate the training loss of each sample during training, but calculate the gradient of the mini-batch
instead of individual samples.
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the utility of client i by associating her statistical utility with a global system utility in terms of the
duration of each training round:

Util(i) = |Bi|
√

1

|Bi|
∑
k∈Bi

Loss(k)2︸ ︷︷ ︸
Statistical utility U(i)

× (
T

ti
)1(T<ti)×α︸ ︷︷ ︸

Global sys utility

(6.1)

where T is the developer-preferred duration of each round, ti is the amount of time that client i
takes to process the training, which has already been collected by today’s coordinator from past
rounds,5 and 1(x) is an indicator function that takes value 1 if x is true and 0 otherwise. This way,
the utility of those clients who may be the bottleneck of the desired speed of current round will be
penalized by a developer-specified factor α, but we do not reward the non-straggler clients because
their completions do not impact the round duration.

This formulation assumes that all samples at a client are processed in that training round. Even
if the estimated ti for a client is greater than the desired round duration T , Oort might pick that
client if the statistical utility outweighs its slow speed. Alternatively, if the developer wishes to cap
every round at a certain duration [187], then either only clients with ti < T can be considered (e.g.,
by setting α→∞) or a subset of a participant’s samples can be processed [169, 216], and only the
aggregate training loss of those trained data in that round is considered in measuring the statistical
utility.

Navigating the trade-off. Determining the preferred round duration T in Equation (6.1), which
strikes the trade-off between the statistical and system efficiency in aggregations, is non-trivial.
Indeed, the total statistical utility (i.e.,

∑
U(i)) achieved by picking high utility clients can decrease

round by round, because the training loss decreases as the model improves over time. If we persist
in suppressing clients with high statistical utility but low system speed, the model may converge to
suboptimal accuracy (§6.8.2.2).

To navigate the optimal trade-off – maximizing the total statistical utility achieved without
greatly sacrificing the system efficiency – Oort employs a pacer to determine the preferred duration
T at runtime. The intuition is that, when the accumulated statistical utility in the past rounds
decreases, the pacer allows a larger T ← T +∆ by ∆ to bargain with the statistical efficiency again.
We elaborate more in Algorithm 6.1.

5We only care whether a client can complete by the expected duration T . So, a client can even mask its precise
speed by deferring its report.
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6.5.4 Adaptive Participant Selection

Given the above definition of client utility, we need to address the following practical concerns
in order to select participants with the highest utility in each training round.

• Scalability: a client’s utility can only be determined after it has participated in training; how to
choose from clients at scale without having to try all clients once?

• Staleness: since not every client participates in every round, how to account for the change in a
client’s utility since its last participation?

• Robustness: how to be robust to outliers in the presence of corrupted clients (e.g., with noisy
data)?

To tackle these challenges, we develop an exploration-exploitation strategy for participant
selection (Algorithm 6.1).

Online exploration-exploitation of high-utility clients. Selecting participants out of numerous
clients can be modeled as a multi-armed bandit problem, where each client is an “arm” of the bandit,
and the utility obtained is the “reward” [44]. In contrast to sophisticated designs (e.g., reinforcement
learning), the bandit model is scalable and flexible even when the solution space (e.g., number of
clients) varies dramatically over time. Next, we adaptively balance the exploration and exploitation
of different arms to maximize the long-term reward.

Similar to the bandit design, Oort efficiently explores potential participants under spatial
variation, while intelligently exploiting observed high-utility participants under temporal variation.
At the beginning of each selection round, Oort receives the feedback of the last training round, and
updates the statistical utility and system performance of clients (Line 6). For the explored clients,
Oort calculates their client utility and narrows down the selection by exploiting the high-utility
participants (Line 9-15). Meanwhile, Oort samples ϵ(∈ [0, 1]) fraction of participants to explore
potential participants that had not been selected before (Line 16), which turns to full exploration as
ϵ → 1. Although we cannot learn the statistical utility of not-yet-tried clients, one can decide to
prioritize the unexplored clients with faster system speed when possible (e.g., by inferring from
device models), instead of performing random exploration (Line 16).

Exploitation under staleness in client utility. Oort employs two strategies to account for the
dynamics in client utility over time. First, motivated by the confidence interval used to measure
the uncertainty in bandit reward, we introduce an incentive term, which shares the same shape
of the confidence in bandit solutions [142], to account for the staleness (Line 10), whereby we
gradually increase the utility of a client if she has been overlooked for a long time. So those clients
accumulating high utility since their last trial can still be repurposed again. Second, instead of
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Input: Client set C, sample size K, exploitation factor ϵ, pacer step ∆, step window W ,
penalty α

Output: Participant set P

/* Initialize global variables. */
1: E← ∅; U← ∅ ▷ Explored clients and statistical utility.
2: L← ∅; D← ∅ ▷ Last involved round and duration.
3: R← 0; T ← ∆ ▷ Round counter and preferred round duration.

/* Participant selection for each round. */
4: Function SelectParticipant(C, K, ϵ, T , α)
5: Util ← ∅; R← R + 1

/* Update and clip the feedback; blacklist outliers. */
6: UpdateWithFeedback(E, U, L, D)

/* Pacer: Relaxes global system preference T if the statistical utility achieved decreases in last
W rounds. */

7: if
∑

U(R− 2W : R−W ) >
∑

U(R−W : R) then
8: T ← T +∆

/* Exploitation #1: Calculate client utility. */
9: for client i ∈ E do

10: Util(i)← U(i) +
√

0.1 logR
L(i) ▷ Temporal uncertainty.

11: if T < D(i) then ▷ Global system utility.
12: Util(i)← Util(i)× ( T

D(i))
α

/* Exploitation #2: admit clients with greater than c% of cut-off utility; then sample (1− ϵ)K

clients by utility. */
13: Util ← SortAsc(Util)
14: W← CutOffUtil(E, c× Util((1− ϵ)×K))
15: P← SampleByUtil(W, Util, (1− ϵ)×K)

/* Exploration: sample unexplored clients by speed. */
16: P← P ∪ SampleBySpeed(C− E, ϵ×K)

17: return P

Alg. 6.1: Participant selection w/ exploration-exploitation.

picking clients with top-k utility deterministically, we allow a confidence interval c on the cut-off
utility (95% by default in Line 13-14). Namely, we admit clients whose utility is greater than the
c% of the top ((1− ϵ)×K)-th participant. Among this high-utility pool, Oort samples participants
with probability proportional to their utility (Line 15). This adaptive exploitation mitigates the
uncertainties in client utility by prioritizing participants opportunistically, thus relieving the need
for accurate estimations of utility as we do not require the exact ordering among clients, while
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1 def federated_model_testing():
2 selector = Oort.create_testing_selector()
3
4 # Type 1: subset w/ < X deviation from the global
5 participants = selector.select_by_deviation(
6 dev_target, range_of_capacity, total_num_clients)
7
8 # Provide individual client data characteristics
9 selector.update_client_info(client_id, client_info)

10 # Type 2: [5k, 5k] samples of category [i, j]
11 participants = selector.select_by_category(
12 request_list, testing_config)

Figure 6.6: Key Oort APIs for supporting federated testing.

preserving a high quality as a whole.

Robust exploitation under outliers. Simply prioritizing high utility clients can be vulnerable
to outliers in unfavorable settings. For example, corrupted clients may have noisy data, leading to
high training loss, or even report arbitrarily high training loss intentionally. For robustness, Oort
(i) removes the client in selection after she has been picked over a given number of rounds. This
helps to remove the perceived outliers in terms of participation (Line 6); (ii) clips the utility value
of a client by capping it to no more than an upper bound (e.g., 95% value in utility distributions).
With probabilistic participant selection among the high-utility client pool (Line 15), the chance
of selecting outliers is significantly decreased under the scale of clients in FL. We show that Oort
outperforms existing mechanisms while being robust (§6.8.2.3).

Accommodation to diverse selection criteria. Our adaptive participant selection is generic for
different utility definitions of diverse selection criteria. For example, developers may hope to
reconcile their demand for time-to-accuracy efficiency and fairness, so that some clients are not
underrepresented (e.g., more fair resource usage across clients) [148, 170]. Although developers
may have various fairness criterion fairness(·), Oort can enforce their demands by replacing the
current utility definition of client i with (1 − f) × Util(i) + f × fairness(i), where f ∈ [0, 1]

and Algorithm 6.1 will naturally prioritize clients with the largest fairness demand as f → 1.
For example, fairness(i) = max_resource_usage− resource_usage(i) motivates fair resource
usage for each client i. Note that existing participant selection provides no support for fairness,
and we show that Oort can efficiently enforce diverse developer-preferred fairness while improving
performance (§6.8.2.3).
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6.6 Federated Model Testing

Enforcing developer-defined requirements on data distribution is a first-order goal in FL testing,
whereas existing mechanisms lead to biased testing results (§6.3). In this section, we elaborate on
how Oort serves the two primary types of queries. As shown in Figure 6.6, we start with how Oort
preserves the representativeness of testing set even without individual client data characteristics
(§6.6.1), and how it efficiently enforces developer’s testing criteria for specific data distribution
when the individual information is provided (§6.6.2).

6.6.1 Preserving Data Representativeness

Learning the individual data characteristics (e.g., categorical distribution) can be too expensive or
even prohibited [220, 91]. Without knowing data characteristics, the developer has to be conservative
and selects many participants to gain more confidence for query “a testing set with less than X%

data deviation from the global", as selecting too few can lead to a biased testing result (§6.3).
However, admitting too many may inflate the budget and/or take too long because of the system
heterogeneity. Next, we show how Oort can enable guided participant selection by determining the
number of participants needed to guarantee this deviation target.

We consider the deviation of the data formed by all participants from the global dataset (i.e.,
representative) using L1-distance, a popular distance metric in FL [129, 191, 130]. For category X ,
its L1-distance (|X̄ − E[X̄]|) captures how the average number of samples of all participants (i.e.,
empirical value X̄) deviates from that of all clients (i.e., expectation E[X̄]). Note that the number
of samples Xn that client n holds is independent across clients. Namely, the number of samples that
one client holds will not be affected by the selection of any other clients at that time, so it can be
viewed as a random instance sampled from the distribution of variable X .

Given the developer-specified tolerance ϵ on data deviation and confidence interval δ (95% by
default [188]), our goal is to estimate the number of participants needed such that the deviation
from the representative categorical distribution is bounded (i.e., Pr[|X̄ − E[X̄]| < ϵ] > δ). To this
end, we formulate it as a problem of sampling stochastic variables, and apply the Hoeffding bound
[47] to capture how this data deviation varies with different number of participants.

Estimating the number of participants to cap deviation. Even when the individual data charac-
teristics are not available, the developer can specify her tolerance ϵ on the deviation from the global
categorical distribution, whereby Oort outputs the number of participants needed to preserve this
preference. To use our model, the developer needs to input the global range (i.e., global maximum
- global minimum) of the number of samples that one client can hold, and the total number of
clients. Learning this global information securely is well-established [75, 220], and the developer
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can assume a plausible limit (e.g., according to the capacity of device models) too.
Our model does not require any collection of the distribution of global or participant data. As

a straw-man participant selection design, the developer can randomly distribute her model to this
Oort-determined number of participants. After collecting results from this number of participants,
she can confirm the representativeness of computed data.

6.6.2 Enforcing Diverse Data Distribution

When the individual data characteristics are provided (e.g., FL across enterprise AI cameras [179,
130]), Oort can enforce the exact data preference on specific categorical distribution, and improve
the duration of testing by cherry-picking participants.

Satisfying queries like “[5k, 5k] samples of class [x, y]" can be viewed as a multi-dimensional
bin covering problem, where a subset of data bins (i.e., participants) are selected to cover the
requested quantity of data. For each category i(∈ I) of interest, the developer has preference pi

(preference constraint), and an upper limit B (referred to as budget) on how many participants she
can have [45]. Each participant n(∈ N) can contribute ni samples out of her capacity cn

i (capacity
constraint). Given her compute speed sn, the available bandwidth bn and the size of data transfers
dn, we aim to minimize the duration of model testing:

min

{
max
n∈N

(∑
i∈I ni

sn
+ dn

bn

)}
▷ Minimize duration

s.t. ∀i ∈ I,
∑
n∈N

ni = pi ▷ Preference Constraint

∀i ∈ I,∀n ∈ N, ni ≤ cin ▷ Capacity Constraint

∀i ∈ I,
∑
n∈N

1(ni > 0) ≤ B ▷ Budget Constraint

The max-min formulation stems from the fact that testing completes after aggregating results
from the last participant. While this mixed-integer linear programming (MILP) model provides
high-quality solutions, it has prohibitively high computational complexity for large N .

Scalable participant selection. For better scalability, we present a greedy heuristic to scale down
the search space of this strawman. We (1) first group a subset of feasible clients to satisfy the
preference constraint. To this end, we iteratively add to our subset the client which has the most
number of samples across all not-yet-satisfied categories, and deduct the preference constraint on
each category by the corresponding capacity of this client. We stop this greedy grouping until
the preference is met, or request a new budget if we exceed the budget; and (2) then optimize job
duration with a simplified MILP among this subset of clients, wherein we have removed the budget
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constraint and reduced the search space of clients. We show that our heuristic can outperform the
straw-man MILP model in terms of the end-to-end duration of model testing owing to its small
overhead (§6.8.3.2).

6.7 Implementation

We have implemented Oort as a Python library, with 2617 lines of code, to friendly support FL
developers. Oort provides simple APIs to abstract away the problem of participant selection, and
developers can import Oort in their application codebase and interact with FL engines (e.g., PySyft
[23] or TensorFlow Federated [31]).

We have integrated Oort with PySyft. Oort operates on and updates its client metadata (e.g.,
data distribution or system performance) fed by the FL developer and PySyft at runtime. The
metadata of each client in Oort is an object with a small memory footprint. Oort caches these
objects in memory during executions and periodically backs them up to persistent storage. In case
of failures, the execution driver will initiate a new Oort selector, and load the latest checkpoint to
catch up. We employ Gurobi solver [12] to solve the MILP. The developer can also initiate a Oort
application beyond coordinators to avoid resource contention. We use xmlrpc library to connect to
the coordinator, and these updates will activate Oort to write these updates to its metastore. In the
coordinator, we use the PySyft API model.send(client_id) to direct which client to run given the
Oort decision, and model.get(client_id) to collect the feedback.

6.8 Evaluation

We evaluate Oort’s effectiveness for four different ML models on four CV and NLP datasets.
We organize our evaluation by the FL activities with the following key results.

FL training results summary:

• Oort outperforms existing random participant selection by 1.2×-14.1× in time-to-accuracy
performance, while achieving 1.3%-9.8% better final model accuracy (§6.8.2.1).

• Oort achieves close-to-optimal model efficiency by adaptively striking the trade-off between
statistical and system efficiency with different components (§6.8.2.2).

• Oort outperforms its counterpart over a wide range of parameters and different scales of
experiments, while being robust to outliers (§6.8.2.3).

FL testing results summary:

• Oort can serve testing criteria on data deviation while reducing costs by bounding the number
of participants needed without individual data characteristics (§6.8.3.1).
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Dataset # of Clients # of Samples

Google Speech [252] 2,618 105,829

OpenImage-Easy [11] 14,477 871,368

OpenImage [11] 14,477 1,672,231

StackOverflow [28] 315,902 135,818,730

Reddit [25] 1,660,820 351,523,459

Table 6.1: Statistics of the dataset in evaluations.

• With the individual information, Oort improves the testing duration by 4.7× w.r.t. Mixed Integer
Linear Programming (MILP) solver, and is able to efficiently enforce developer preferences
across millions of clients (§6.8.3.2).

6.8.1 Methodology

Experimental setup. Oort is designed to operate in large deployments with potentially millions of
edge devices. However, such a deployment is not only prohibitively expensive, but also impractical
to ensure the reproducibility of experiments. As such, we resort to a cluster with 68 NVIDIA
Tesla P100 GPUs, and emulate up to 1300 participants in each round. We simulate real-world
heterogeneous client system performance and data in both training and testing evaluations using
FedScale: (1) Heterogeneous device runtimes of different models, network throughput/connectivity,
device model and availability are emulated using data from AI Benchmark [1] and Network Mea-
surements on mobiles [19]; (2) We distribute each real dataset to clients following the corresponding
raw placement (e.g., using <authors_ID> to allocate OpenImage), where client data can vary in
quantities, distribution of outputs and input features; (3) The coordinator communicates with clients
using the parameter server architecture. These follow the PySyft and real FL deployments. To
mitigate stragglers, we employ the widely-used mechanism specified in real FL deployments [55],
where we collect updates from the first K completed participants out of 1.3K participants in each
round, and K is 100 by default. We report the simulated clock time of clients in evaluations.

Datasets and models. We run three categories of applications with four real-world datasets of
different scales, and Table 6.1 reports the statistics of each dataset:

• Speech Recognition: the small-scale Google speech dataset [252]. We train a convolutional
neural network model (ResNet-34 [120]) to recognize the command among 35 categories.

• Image Classification: the middle-scale OpenImage [11] dataset, with 1.5 million images span-
ning 600 categories, and a simpler dataset (OpenImage-Easy) with images from the most popular
60 categories. We train MobileNet [224] and ShuffleNet [287] models to classify the image.
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Task Dataset
Accuracy

Model
Speedup for Prox [169] Speedup for YoGi [216]

Target Stats. Sys. Overall Stats. Sys. Overall

OpenImage-Easy [11] 74.9%
MobileNet [224] 3.8× 3.2× 12.1× 2.4× 2.4× 5.7×

Image ShuffleNet [287] 2.5× 3.5× 8.8× 1.9× 2.7× 5.1×

Classification
OpenImage [11] 53.1%

MobileNet 4.2× 3.1× 13.0× 2.3× 1.5× 3.3×

ShuffleNet 4.8× 2.9× 14.1× 1.8× 3.2× 5.8×

Language Modeling
Reddit [25] 39 perplexity Albert [164] 1.3× 6.4× 8.4× 1.5× 4.9× 7.3×

StackOverflow [28] 39 perplexity Albert 2.1× 4.3× 9.1× 1.8× 4.4× 7.8×

Speech Recognition Google Speech [252] 62.2% ResNet-34 [120] 1.1× 1.1× 1.2× 1.2× 1.1× 1.3×

Table 6.2: Summary of improvements on time to accuracy.7We tease apart the overall improvement
with statistical and system ones, and take the highest accuracy that Prox can achieve as the target,
which is moderate due to the high task complexity and lightweight models.

• Language Modeling: the large-scale StackOverflow[28] and Reddit[25] dataset. We train next
word predictions with Albert model [164] using the top-10k popular words.

These applications are widely used in real end-device applications [263], and these models are
designed to be lightweight.

Parameters. The minibatch size of each participant is 16 in speech recognition, and 32 in
other tasks. The initial learning rate for Albert model is 4e-5, and 0.04 for other models. These
configurations are consistent with those reported in the literature [116]. In configuring the training
selector, Oort uses the popular time-based exploration factor [44], where the initial exploration
factor is 0.9, and decreased by a factor 0.98 after each round when it is larger than 0.2. The step
window of pacer W is 20 rounds. We set the pacer step ∆ in a way that it can cover the duration of
next W ×K clients in the descending order of explored clients’ duration, and the straggler penalty
α to 2. We remove a client from Oort’s exploitation list once she has been selected over 10 times.

Metrics. We care about the time-to-accuracy performance and final model accuracy of model
training tasks on the testing set. For model testing, we measure the end-to-end testing duration,
which consists of the computation overhead of the solution and the duration of actual computation.

For each experiment, we report the mean value over 5 runs, and error bars show the standard
deviation.

6.8.2 FL Training Evaluation

In this section, we evaluate Oort’s performance on model training, and employ Prox [169]
and YoGi [216]. We refer Prox as Prox running with existing random participant selection, and
Prox + Oort is Prox running atop Oort. We use a similar denotation for YoGi. Note that Prox and

127



0 10 20 30 40
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)
Prox
YoGi
Oort + Prox
Oort + YoGi

(a) MobileNet (Image).

0 10 20 30 40
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Prox
YoGi
Oort + Prox
Oort + YoGi

(b) ShuffleNet (Image).

0 10 20 30 40 50
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Prox
YoGi
Oort + Prox
Oort + YoGi

(c) ResNet (Speech).

0 20 40 60 80
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Prox
YoGi

Oort + Prox
Oort + YoGi

(d) Albert (LM).

Figure 6.7: Time-to-Accuracy performance. A lower perplexity is better in the language modeling
(LM) task.

YoGi optimize the statistical model efficiency for the given participants, while Oort cherry-picks
participants to feed them.

6.8.2.1 End-to-End Performance

Table 6.2 summarizes the key time-to-accuracy performance of all datasets. In the rest of
the evaluations, we report the ShuffleNet and MobileNet performance on OpenImage, and Albert
performance on Reddit dataset for brevity. Figure 6.7 reports the timeline of training to achieve
different accuracy.

Oort improves time-to-accuracy performance. We notice that Oort achieves large speedups
to reach the target accuracy (Table 6.2). Oort reaches the target 3.3×-14.1× faster in terms of
wall clock time on the middle-scale OpenImage dataset; speedup on the large-scale Reddit and
StackOverflow dataset is 7.3×-9.1×. Understandably, these benefits decrease when the total number

7We set the target accuracy to be the highest achievable accuracy by all used strategies, which turns out to be Prox
accuracy. Otherwise, some may never reach that target.
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Figure 6.8: Breakdown of Time-to-Accuracy performance with YoGi, when using different partici-
pant selection strategies.

of clients is small, as shown on the small-scale Google Speech dataset (1.2×-1.3×).
These time-to-accuracy improvements stem from the comparable benefits in statistical model

efficiency and system efficiency (Table 6.2). Oort takes 1.8×-4.8× fewer training rounds on
OpenImage dataset to reach the target accuracy, which is better than that of language modeling
tasks (1.3×-2.1×). This is because real-life images often exhibit greater heterogeneity in data
characteristics than the language dataset, whereas the large population of language datasets leaves a
great potential to prioritize clients with faster system speed.

Oort improves final model accuracy. When the model converges, Oort achieves 6.6%-9.8%
higher final accuracy on OpenImage dataset, and 3.1%-4.4% better perplexity on Reddit dataset
(Figure 6.7). Again, this improvement on Google Speech dataset is smaller (1.3% for Prox and
2.2% for YoGi) due to the small scale of clients. These improvements attribute to the exploitation
of high statistical utility clients. Specifically, the statistical model accuracy is determined by the
quality of global aggregation. Without cherry-picking participants in each round, clients with poor
statistical model utility can dilute the quality of aggregation. As such, the model may converge to
suboptimal performance. Instead, models running with Oort concentrate more on clients with high
statistical utility, thus achieving better final accuracy.

6.8.2.2 Performance Breakdown

We next delve into the improvement on middle- and large-scale datasets, as they are closer to
real FL deployments. We break down our knobs designed for striking the balance between statistical
and system efficiency: (i) (Oort w/o Pacer): We disable the pacer that guides the aggregation
efficiency. As such, it keeps suppressing low-speed clients, and the training can be restrained among
low-utility but high-speed clients; (ii) (Oort w/o Sys): We further totally remove our benefits from
system efficiency by setting α to 0, so Oort blindly prioritizes clients with high statistical utility. We
take YoGi for analysis, because it outperforms Prox most of the time.
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Breakdown-Round to accuracy (Prox)

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 65.8 66.9 0.6 0.3

YoGi 55.6 57.3 0.7 0.6

Prox 53.1 54.1 0.4 0.4 52.9 53.3 53.0 54.4 53.6 54.5

Breakdown-Round to accuracy-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6

Kuiper 122 107 7 6 130 115 122 105 115 102

Kuiper - Pacer 130 110 9 10 125 136 131 98 113 121

Kuiper - Sys 113 97 8 9 124 105 112 90 95 108

Random 248 194 12 14

Target: 53.1

Breakdown-Round to accuracy (Prox)-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6 70 62 73 70 57 61

YoGi 248 194 12 14 245 265 234 197 206 180

Prox 341 363 27 37 330 380 315 330 345 415

(b
)  

Fi
na

l  
A

cc
ur

ac
y 

(%
)

0

35

70

MobileNet ShuffleNet

54.153.1
57.355.6

66.965.8

Centralized YoGi Prox

(a
)  

# 
 o

f  
R

ou
nd

s

0

150

300

450

MobileNet ShuffleNet

363

341

194

248

6268

248
194

341
363

# 
 o

f  
R

ou
nd

s

0

70

140

210

280

MobileNet ShuffleNet

62

68

Centralized Oort Oort w/o Pacer Oort w/o Sys Random

68

122

# 
 o

f  
R

ou
nd

s

0

350

700

Albert

374

Breakdown-Round to accuracy-1-1

Albert Std

Centralized 374 11 390 409 385

Kuiper 421 19 430 421 442

Kuiper - Pacer 485 23 478 497 481

Kuiper - Sys 403 13 395 403 411

Random 622 27 585 640

62

130
113

248

107 110 97

194

374
421

485
403

622

Malicious

0.00 5.00 10.00 15.00 20.00 25.00

Kuiper 62.04 62.18 59.25 57.51 55.96 52.62 0.50 0.36 0.48 0.38 0.50 0.42

Kuiper - 60.04 55.34 54.58 53.11 52.62 49.67 0.60 0.61 0.53 0.47 0.41 0.45

Random 56.70 55.63 53.98 52.37 50.34 48.91 0.30 0.35 0.30 0.61 0.41 0.50

1

Figure 6.9: Number of rounds to reach the target accuracy.
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Figure 6.10: Breakdown of final model accuracy.

Breakdown of time-to-accuracy efficiency. Figure 6.8 reports the breakdown of time-to-accuracy
performance, where Oort achieves comparable improvement from statistical and system optimiza-
tions. Taking Figure 6.8(b) as an example, (i) At the beginning of training, both Oort and (Oort
w/o Pacer) improve the model accuracy quickly, because they penalize the utility of stragglers and
select clients with higher statistical utility and system efficiency. In contrast, (Oort w/o Sys) only
considers the statistical utility, resulting in longer rounds. (ii) As training evolves, the pacer in
Oort gradually relaxes the constraints on system efficiency, and admits clients with relatively low
speed but higher statistical utility, which ends up with the similar final accuracy of (Oort w/o Sys).
However, (Oort w/o Pacer) relies on a fixed system constraint and suppresses valuable clients with
high statistical utility but low speed, leading to suboptimal final accuracy.

Oort achieves close to upper-bound statistical performance. We consider an upper-bound

statistical efficiency by creating a centralized case, where all data are evenly distributed to K

participants. Using the target accuracy in Table 6.2, Oort can efficiently approach this upper bound
by incorporating different components (Figure 6.9). Oort is within 2× of the upper-bound to achieve
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Figure 6.11: Oort outperforms in different scales of participants.
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Figure 6.12: Oort improves performance across penalty factors.

the target accuracy, and (Oort w/o Sys) performs the best in statistical model efficiency, because
(Oort w/o Sys) always grasps clients with higher statistical utility. However, it is suboptimal in
our targeted time-to-accuracy performance because of ignoring the system efficiency. Moreover,
by introducing the pacer, Oort achieves 2.4%-3.1% better accuracy than (Oort w/o Pacer), and is
merely about 2.7%-3.3% worse than the upper-bound final model accuracy (Figure 6.10).

6.8.2.3 Sensitivity Analysis

Impact of number of participants K. We evaluate Oort across different scales of participants
in each round, where we cut off the training after 200 rounds given the diminishing rewards. We
observe that Oort improves time-to-accuracy efficiency across different number of participants
(Figure 6.11), and having more participants in FL indeed receives diminishing rewards. This is
because taking more participants (i) is similar to having a large batch size, which is confirmed to
be even negative to round-to-accuracy performance [173]; (ii) can lead to longer rounds due to
stragglers when the number of clients is limited (e.g., K=1000 on OpenImage dataset).
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Figure 6.13: Oort still improves performance under outliers.

Impact of penalty factor α on stragglers. Oort uses the penalty factor α to penalize the utility
of stragglers in participant selection, whereby it adaptively prioritizes high system efficiency
participants. Figure 6.12 shows that Oort outperforms its counterparts across different α. Note that
Oort orchestrates its components to automatically navigate the best performance across parameters:
larger α (i.e., overemphasizing system efficiency) drives the Pacer to relax the system constraint T
more frequently to admit clients with higher statistical efficiency, and vice versa. As such, Oort
achieves similar performance across all non-zero α.

Impact of outliers. We investigate the robustness of Oort by introducing outliers manually.
Following the popular adversarial ML setting [94], we randomly flip the ground-truth data labels of
the OpenImage dataset to any other categories, resulting in artificially high utility. We consider two
practical scenarios with the ShuffleNet model: (i) Corrupted clients: labels of all training samples
on these clients are flipped (Figure 6.13(a)); (ii) Corrupted data: each client uniformly flips a subset
of her training samples (Figure 6.13(b)). We notice Oort still outperforms across all degrees of
corruption.

Impact of noisy utility. We next show the superior performance of Oort over its counterparts under
noisy utility value. In this experiment, we add noise from the Gaussian distribution Gaussian(0, σ2),
and investigate Oort’s performance with different σ. Similar to differential FL [98], we define
σ = ϵ ×Mean(real_value), where Mean(real_value) is the average real value without noise.
Note that we take this real_value as reference for the ease of presentations, and developers can
refer to other values. As such, a large ϵ implies larger variance in noise, thus providing better privacy
by disturbing the real value significantly. We report the statistical efficiency after adding noise to
the statistical utility (Fig 6.14(a) and Fig 6.14(c)), as well as the time-to-accuracy performance
(Fig 6.14(b) and Fig 6.14(d)). We observe that Oort still improves performance across different
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Figure 6.14: Oort improves performance even under noise.

amount of noise, and is robust even when the noise is large (e.g., ϵ = 5 is often considered to be
very large noise [37]).

Oort can respect developer-preferred fairness. In this experiment, we expect all clients should
have participated training with the same number of rounds (Table 6.3), implying a fair resource usage
[148]. We train ShuffleNet model on OpenImage dataset with YoGi. To this end, we sweep different
knobs f to accommodate the developer demands for the time-to-accuracy efficiency and fairness.
Namely, we replace the current utility definition of client i with (1−f)×Util(i)+f×fairness(i),
where fairness(i) = max_resource_usage − resource_usage(i). Understandably, time-to-
accuracy efficiency significantly decreases as f → 1, since we gradually end up with round-robin
participant selection, totally ignoring the utility of clients. Note that Oort still achieves better
time-to-accuracy even when f → 1 as it prioritizes high system utility clients at the beginning of
training, thus achieving shorter rounds. Moreover, Oort can enforce different fairness preferences
while improving efficiency across fairness knobs.
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Strategy TTA (h) Final Accuracy (%) Var. (Rounds)

Random 36.3 57.3 0.39

f = 0 5.8 64.2 6.52
f = 0.25 6.1 62.4 5.1
f = 0.5 13.1 59.7 2.03
f = 0.75 25.4 58.6 0.65
f = 1 30.1 57.2 0.31

Table 6.3: Oort improves time to accuracy (TTA) across different fairness knobs (f ). Random
reports the performance of random participant selection. The variance of rounds reports how fairness
is enforced in terms of the number of participating rounds across clients. A smaller variance implies
better fairness.
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Figure 6.15: Oort can cap data deviation for all targets. Shadow indicates the empirical [min, max]
range of the x-axis values over 1000 runs given the y-axis input.

6.8.3 FL Testing Evaluation

6.8.3.1 Preserving Data Representativeness

Oort can cap data deviation. Figure 6.15 reports Oort’s performance on serving different
deviation targets, with respect to the global distribution. We sweep the number of selected clients
from 10 to 4k, and randomly select each given number of participants over 1k times to empirically
search their possible deviation. We notice that for a given deviation target, (i) different workloads
require distinct number of participants. For example, to meet the target of 0.05 divergence, the
Speech dataset uses 6× less participants than the Reddit attributing to its smaller heterogeneity (e.g.,
tighter range of the number of samples); (ii) with the Oort-determined number of participants, no
empirical deviation exceeds the target, showing the effectiveness of Oort in satisfying the deviation
target, whereby Oort reduces the cost of expanding participant set arbitrarily and improves the
testing duration.
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Figure 6.16: Oort outperforms MILP in clairvoyant FL testing.
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Figure 6.17: Oort scales to millions of clients, while MILP did not complete on any query.

6.8.3.2 Enforcing Diverse Data Distribution

Oort outperforms MILP. We start with the middle-scale OpenImage dataset and compare the
end-to-end testing duration of Oort and MILP. Here, we generate 200 queries using the form
“Give me X representative samples”, where we sweep X from 4k to 200k and budget B from 100
participants to 5k participants. We report the validation time of MobileNet on participants selected
by these strategies.

Figure 6.16(a) shows the end-to-end testing duration. We observe Oort outperforms MILP by
4.7× on average. This is because Oort suffers little computation overhead by greedily reducing the
search space of MILP. As shown in Figure 6.16(b), MILP takes 274 seconds on average to complete
the participant selection, while Oort only takes 15 seconds.

Oort is scalable. We further investigate Oort’s performance on the large-scale StackOverflow and
Reddit dataset with millions of clients, where we take 1% of the global data as the requirement,
and sweep the number of interested categories from 1 to 5k. Figure 6.17 shows even though we
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gradually magnify the search space of participant selection by introducing more categories, Oort
can serve our requirement in a few minutes at the scale of millions of clients, while MILP fails to
generate the solution decision for any query.

6.9 Related Work

Federated Learning Federated learning [148] is a distributed machine learning paradigm in a
network of end devices, wherein Prox [169] and YoGi [216] are state-of-the-art optimizations in
tackling data heterogeneity. Recent efforts in FL have been focusing on improving communication
efficiency [187, 128] or compression schemes [39], ensuring privacy by leveraging multi-party
computation (MPC) [56] and differential privacy [98], or tackling heterogeneity by reinventing ML
algorithms [248, 170]. However, they underperform in FL because of the suboptimal participant
selection they rely on, and lack systems supports for developers to specify their participant selection
criteria.

Datacenter Machine Learning Distributed ML in datacenters has been well-studied [210, 197,
140], wherein they assume relatively homogeneous data and workers [180, 108]. While developer
requirements and models can still be the same, the heterogeneity of client system performance and
data distribution makes FL much more challenging. We aim at enabling them in FL. To accelerate
traditional model training, some techniques bring up importance sampling to prioritize important
training samples in selecting mini-batches for training [146, 153]. While bearing some resemblance
in prioritizing data, Oort adaptively considers both statistical and system efficiency in formulating
the client utility at scale.

Geo-distributed Data Analytics Federated data analytics has been a topic of interest in geo-
distributed storage [238] and data processing systems [284, 161] that attempt to reduce latency
[243] and/or save bandwidth [211, 244, 158]. Gaia [128] reduces network traffics for model training
across datacenters, while Sol [161] enables generic federated computation on data with sub-second
latency in the execution layer. These work back up Oort with cross-layer system support, whereas
Oort cherry-picks participants before execution.

Privacy-preserving Data Analytics To gather sensitive statistics from user devices, several
differentially private systems add noise to user inputs locally to ensure privacy [91], but this can
reduce the accuracy. Some assume a trusted third party, which only adds noise to the aggregated
raw inputs [53], or use MPC to enable global differential privacy without a trusted party [220].
While our goal is not to address the security and privacy issue in these solutions, Oort enables
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informed participant selection by leveraging the information already available in today’s FL, and
can reconcile with them (e.g., to deliver improvement under outliers while respecting privacy).

6.10 Summary

While today’s FL efforts have been optimizing the statistical model and system efficiency by
reinventing traditional ML designs, the participant selection mechanisms they rely on underperform
for federated training and testing, and fail to enforce diverse data selection criteria. In this chapter,
we present Oort to enable guided participant selection for FL developers. Compared to existing
mechanisms, Oort achieves large speedups in time-to-accuracy performance for federated training
by picking clients with high statistical and system utility, and it allows developers to specify their
selection criteria on data while efficiently serving their requirements on data distribution during FL
testing, even at the scale of millions of clients.
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CHAPTER 7

Conclusions

Over the past decade, skyrocketing data volumes, growing hardware capabilities, and the
revolution in ML theory have propelled the last leap forward in ML development. However,
enabling the next leap is facing scaling limits in hardware resources and data due to the plateauing of
hardware improvement, while resource demands and data volumes continue to grow exponentially.
How should we design systems to support the next leap?

This dissertation shows that the answer hinges on recognizing that not all ML components con-
tribute equally to ML performance, whereby we can embrace the minimalist philosophy – reducing
complexity and eliminating bloating features – to co-design ML, systems, and networking. The
minimalist systems introduced in this thesis span different stages of ML development, minimizing
ML resource demands and the need for data collection without sacrificing ML performance. Our
real-world deployments demonstrate that these minimalist systems not only improve ML efficiency
by orders of magnitude but also enable new advances in theory and applications up to the planetary
scale.

In the rest of this chapter, we summarize a few of the lessons distilled from this work, elaborate
on its broader impacts, and finally outline several avenues for future work.

7.1 Lessons Learned

Leveraging Cross-Layer Optimizations The main thread of this dissertation is discerning the
impact of underlying system execution on ML performance and leveraging this knowledge to
improve efficiency. In this process, we found that there exists a large headroom for improvement
through cross-layer optimizations, primarily due to the scaling law in ML [149] – even slight
accuracy improvements beyond certain thresholds can lead to substantial increases in system loads
(e.g., exponential growth in model size and training data). Despite – or perhaps, because of – the
fast evolution of ML algorithms, software, and hardware support, the ever-growing ML accuracy
demands have led to a scaling process yet without a well-crafted tradeoff between accuracy and costs.
Incidentally, the misalignment in the evolving speed of different ML layers further exacerbates this
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issue, leading to bloating system execution. For example, ML algorithms generally evolve faster
than the corresponding systems support.

As developing and democratizing large-scale and multi-modal ML models is likely to be the
biggest challenge in the coming decade, a multi-disciplinary approach is recommended to align
different layers rather than solely tailoring systems to fixed ML workloads.

Embracing Heterogeneity Today’s ML, both cloud-based and beyond, is witnessing increasing
heterogeneities in model, data, and the underlying execution environments. This arises from the
proliferation of specialized accelerators and their legacy (e.g., hardware degradation), diverse user
demands, and multi-tenancy deployments (e.g., resource contention), alongside the inherent hetero-
geneity of data [163] and model performance [159]. Over time, we found that this heterogeneity
implies varying importance of ML components, often following a long-tail distribution, thereby
enabling us to cherry-pick components.

In tandem with the aforementioned misalignment, we believe that this heterogeneity is expected
to expand, necessitating ML systems to automatically customize optimizations for different (cohorts
of) users and environments, thereby reducing the associated costs.

Capitalizing on ML Dynamics In the presence of heterogeneities, existing ML systems have
primarily focused on optimizing for specific user-defined resources, data, and many other settings.
This static space simplifies system designs, so most of the existing system optimizations take place
either pre-training (e.g., determining model parallelism) or post-training (e.g., compressing models).
However, we are reaching a tipping point where models are becoming more gigantic and dynamic.
For example, LLMs may employ mixture-of-expert (MoE) models to dynamically route model
input to different expert models [213]. Consequently, current static and user-specified paradigms
are no longer tenable.

The future calls for systems that can collect runtime feedback and adaptively optimize for peak

efficiency in real-time, supporting the growing demand for “no-code ML” – developers focus on
desired outcomes rather than the intricacies of achieving them. These self-adaptive systems can also
unlock huge optimization potential, as they tap into the heterogeneous importance of various ML
components to maximize overall performance. For example, when routing model input to different
expert models, can we consider their system load and training convergence to find the sweet spot of
ML and system efficiency?

Simplicity Increases Applicability Lastly, the growing adoption of our minimalist systems in the
open-source community and industry is attributed to their simplicity. Our implementations are pri-
marily built atop widely-used frameworks in today’s landscape and provide familiar interfaces. For
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example, Sol replaces the core execution engine of Apache Spark within the execution layer [278];
ModelKeeper serves as a lightweight plugin to Ray, offering efficient model management [192];
FedScale acts as an umbrella that bridges cloud ML and edge FL. These systems themselves
compose with each other and form a minimalist software stack that can be easily deployed in ML
lifecycle, while benefiting from ongoing advances without reinventing the wheel.

7.2 Broader Impact

Impact on Industry The software artifacts developed throughout this dissertation, largely open-
source, have garnered widespread attention and contributors from academic and industrial circles,
such as HKUST, University of Toronto, and LinkedIn. In terms of large-scale industrial deployments,
FedScale and Oort are deployed at LinkedIn to support efficient federated learning. Recently, Oort
is adopted by Cisco, while AdaEmbed is deployed at Meta, catering to millions of users.

Outreach and Societal Implications Ensuring data privacy while personalizing everything with
ML is likely to be the biggest challenge in the coming decade. This dissertation open-sources a
minimalist software stack, democratizing sustainable, pervasive, and private ML without having
to maintain large software engineering teams that only the likes of Google and Intel can afford.
It’s poised to influence sectors beyond tech; for example, the University of Michigan’s medical
school leverages FedScale for patient studies, ensuring data privacy; MakeMyLetters is integrating
FedScale, aiming to support a K-12 education app to help kid’s handwriting.

7.3 Future Work

In this section, we identify several avenues for future work. Whenever possible, we highlight
the primary challenges and possible solutions to address them.

7.3.1 Virtual Cloud for Pervasive Data Analytics

The data we want to make sense of is dispersed beyond traditional data centers. Although
cloud computing provides manageable resource provisioning, it grapples with costly data collection
and limited insights into sensitive data. Computing on the edge, however, is restricted by device
resources and faces challenges in orchestrating massive clients over the slow Internet. Consequently,
analytics on these data calls for methods that enable collaboration between the cloud and the edge
in the near future.

While federated learning sets a promising stage, realizing collaborative computing in the wild
remains intricate and open-ended. Challenges range from determining which edge data to collect
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Figure 7.1: LLaMA model weights are less sparse, but runtime attention weights are highly sparse.

to the cloud (e.g., for edge video analysis, augmented/virtual reality), how to minimize changes
to established applications, design and schedule tasks for faster execution (e.g., splitting models
between the cloud and the edge and co-training the model), personalize for large device populations
(e.g., using different models [174]), and find the sweet spot between edge privacy and the fidelity of
results (e.g., via differential privacy), are all areas needing exploration. Our preliminary results show
that solving these at scale requires significant effort in application-aware resource scheduling [273]
and on-device adaptation [126].

7.3.2 Systems for Self-Adaptive ML

The adaptive nature of ML, i.e., a stochastic process that learns an approximated function for the
data, presents a unique opportunity to co-design ML algorithms, models, software, and hardware to
alter the semantics of model execution. We should fundamentally rethink existing system designs to
make use of such adaptability in ML and prospective big data analytics.

Adaptive Model Training One possible direction involves leveraging the heterogeneous impor-
tance of data and model components to overall performance. Could we identify and prioritize the
use of more important data to accelerate model convergence during training [291]? What happens
if the model input data has dependencies (e.g., the input nodes of graph neural networks have
different neighboring nodes)? Similarly, is it possible to identify and fuse the less important pieces
of the model to reduce execution without losing final model accuracy (e.g., compress the model
gradients or perform partial model aggregation adaptively in terms of training convergence)? For
example, LLMs often report a high sparsity during execution (around 80% sparsity, as shown in
Figure 7.1(b)), suggesting potential reductions in computational and memory requirements.

Adaptive Model Inference Similarly, ML serving is undergoing a paradigm shift with models
catering to a wide range of tasks. For example, LLMs are capable of handling tasks such as text
classification, translation, and coding. Understandably, tasks often vary in terms of complexity,
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user’s quality of service agreements (e.g., latency and accuracy). So routing all requests to a single
LLM can result in substantial serving costs without delivering significant accuracy benefits.

As such, we can develop an inference scheduler that adaptively routes user requests to a zoo
of serving models, in order to reduce ML deployment costs for providers while preserving service
quality for users. This will be achieved through the following two designs:

• Efficient Model Personalization: Developing a zoo of models is the first step towards cherry-
picking models. However, training large models, in particular, is extremely expensive. We can
develop an automated training warmup system to transform the model weights of pretrained
models to accelerate model training. This will perform structure-aware model matching, such
as measuring the L1 distance of embedding weights and the number of transformable weights
in the model graph, to determine which pretrained model to repurpose. Additionally, when
transforming models across datasets, we will consider the data’s similarity.

• Effective Model Selection: Selecting which model to use for individual user requests is challeng-
ing due to the inherent heterogeneity of tasks and even of different requests within the same task
(e.g., unpredictable LLM output length). We can take inspiration from the large volume of daily
requests and the fact that requests often exhibit similarities, whereby we can apply latent-factor
collaborative filtering, a lightweight ML technique commonly used in recommender systems.
It characterizes requests in terms of latent (i.e., "hidden") features and then learns models’
performance on requests from past requests and user feedback. Thereafter, we can perform
request scheduling while considering the instantaneous workload of models.

7.3.3 ML for Self-Adaptive Systems

As workloads and system complexity increase, it becomes difficult to optimize systems. This is
further exacerbated by the dynamic nature of system deployment (e.g., the difficulty in predicting
new events in scheduling) and the large overhead in finding the optimal solution (e.g., scheduling
1000 jobs can take tens of minutes [198]). Existing solutions often resort to long-standing heuristics
for faster speed, leading to inferior performance.

In fact, optimizations over time and at a large scale are producing enormous amounts of data
that can be exploited using ML techniques. We could use ML to augment system optimizations
along three lines. First, can we achieve long-term benefits by taking the future into account? For
example, in designing the ML serving pipeline, we may use multi-armed bandit optimization to
determine the best collection of models on the fly for better accuracy and low latency, even if the
data distribution changes over time. Second, can learning from past decisions help reduce the

search ambit toward the optimal solution? As an example, we may apply contextual bandit to learn
which model to repurpose in ModelKeeper, with feedback from the warmup improvement, in order
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to consider advanced transfer learning techniques (e.g., knowledge distillation). Third, how can

we design an elastic ML technique that can quickly transfer knowledge to new environments (like

foundation models)? This is very likely to be the biggest challenge for applying ML to system
optimizations in the coming decade, particularly considering the dynamic nature and multi-tenancy
of system deployment (e.g., in serverless computing).
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APPENDIX A

Sol Appendix

A.1 Benefits of Pipelining

To investigate the benefit of pipelining the scheduling and data fetch of a downstream task, we
assume zero queuing time and emulate the inter-site coordinations with our measured latency across
44 datacenters on AWS, Azure and Google Cloud. We define the improvement as the difference
between the duration of the pull-based model and that of our proposed push-based model for every
data fetch (Figure 2.8). Our results in Figure A.1 report we can achieve an average improvement of
153 ms.
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Figure A.1: Improvement of Push-based Model in (§2.5.2) .

Understandably, such benefit is more promising in consideration of the task queuing time, as
pushing the remote data is even pipelined with the task spin-wait for scheduling.

A.2 Impact of Queue Length

We quantify the impact of queue size with the aforementioned three workloads (in (§2.5.2)). In
this experiment, we analyze three distinct sites, where the network latency from Site A, B and C to
the centralized coordinator is 130 ms, 236 ms and 398 ms, respectively. As shown in Figure A.2,
queuing up too many or too few tasks can hurt job performance.
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Figure A.2: Impact of Queue Size on Job Completion Time (JCT).
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Figure A.3: JCT performance with different utilization targets.

A.3 Determining the Queue Length

Lemma 1. For a given utilization level δ and confidence interval α (i.e., Pr[Util. > δ] > α), the

queue length K for S working slots satisfies:

K ≥M − C

2
+

1

2Davg

√
(CDavg)2 − 4MCDavg (A.1)

where D5th and D95th denote the 5th and 95th percentile of task durations respectively, and Davg

denotes the average task duration. M = δRTT×S
Davg

, C = 1
2

(
D95th−D5th

Davg

)2 · logα. The first term M

depicts the expectation, while the rest capture the skewness of distributions and confidence.

This is true for any distribution of task durations. Unfortunately, we omit the proof for brevity.
Davg, D5th and D95th are often stable in a large cluster, and thus available from the historical
data. α is the configurable confidence level, which is often set to 99% [188, 138], and δ is set
to ≥ 100% to guarantee full utilization. Note that from Eq. D.3, when task durations follow the
uniform distribution, our model ends up with the expectation M . Similarly, when the RTT becomes
negligible, this outputs zero queue length.

Our evaluations show that this model can provide encouraging performance, wherein we repeated
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the experiments with the workloads mentioned in §2.5.3. We provide the results for workloads
with Pareto and TPC-DS distributions by injecting different utilizations in theory, since results for
the Uniform distribution are concentrated on a single point (i.e., the expectation M ). As shown in
Figure A.3, the queue length with 100% utilization target locates in the sweet spot of JCTs.

Note that when more task information is available, one can refine this range better; e.g., the
bound of Eq. (D.3) can be improved with Chernoff’s inequality when the distribution of task
durations is provided.
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APPENDIX B

ModelKeeper Appendix

B.1 ModelKeeper Analysis

B.1.1 Design Criteria

At its core, ModelKeeper performs informed weight initialization for DNN models by repurpos-
ing a well-trained model’s weights. Intuitively, we note that

• This can be viewed as an instance of existing transfer learning (TL), where we transform the
weight of a model on one dataset to train on “another” dataset (i.e., the warmup model has
not viewed that dataset before its training takes place) [43]. More subtly, it is a simplified and
complementary TL scenario under homogeneous data distribution and features, so existing TL
theories can be applied to validate our effectiveness too.

• ModelKeeper transformation is an informed weight initialization, thus a special case of random
initialization. As the rest of the training remains the same, the model should be able to reach
similar final accuracy when the model converges.

Why ModelKeeper Can Help Convergence? We next present the theoretical analysis of model
convergence to show why ModelKeeper can achieve faster convergence.

Corollary 1.1. (Theorem 1 in [275]). Under widely-used DL assumptions (1) Smoothness: loss

function f(w) is L-Lipschitz smooth; (2) Bounded gradient variances: with constants G > 0, σ > 0,

we assume E[∥∇f(w)∥2] ≤ G2 and E[∥∇F (w)∥2−∇f(w)∥2] ≤ σ2; and (3) Unbiased estimation:

on mini-batch ξ, we have Eξ|w[∇f(w)] = ∇F (w).

With learning rate γ to 0 < γ ≤ 1

L
, then for iteration T , the model training convergence rate is:

1

T

T∑
t=1

E[∥∇f(wt−1)∥2] ≤ 2

γT
(f(w0)− f∗) + 4γ2I2G2L2 +

L

N
γσ2

Where N is the number of workers in synchronized data-parallel training, f ∗ is the optimal
training loss.
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From Corollary 1.1, we can notice that, for the same model, training achieves faster conver-
gence with a smaller initial loss value f(w0) in theory (similar to [272, 202]). Indeed, existing
gradient variance reduction techniques in the ML community report a similar theory analysis [40].
Here, we empirically show that the initial training loss of the warmup query model, f(w0), will
start from some basin of loss curvature (e.g., better accuracy in Figure 3.3 and smaller gradient
variance in Figure 3.4), and theoretically analyze why this enables starting from the loss basin in
Appendix B.1.2.

Admittedly, weight transformation can be lossy (e.g., due to incomplete matching), which breaks
the parent model information. We note that capturing the exact convergence comparison herein
is extremely challenging, which indeed is a fundamental open problem even in today’s transfer
learning [89]. Nevertheless, many empirical analyses have reported consistently encouraging
improvement [272], and transfer learning is widely-used. Intuitively, for front tensors that enjoy
full information-preserving transformation, we can consider them as a prefix subnet, and this
subnet holds the same output as the corresponding parent subnet. Therefore, these tensors can still
potentially achieve faster convergence according to Corollary 1.1.

How to Select Parent Models? In selecting the parent model, ModelKeeper prioritizes the
model with (1) better model accuracy: this is because parent models with better accuracy enable
smaller initial loss f(w0), thus allowing better convergence speed (Corollary 1.1); and (2) larger

architectural similarity and prefix preference: If we dive to the fundamental of model training,
the output activations of a specific model tensor i is yi = fi(y(i−1)Twi + bi). Here, assuming the
front l − 1 tensor are warmup, while wi is randomly initialized. The front subnet still enjoys better
convergence, so we prefer a model with architectural similarity to maximize this potential. In the
forward training propagation, wi leads to cascading information loss to subsequent tensors, so we
prioritize the match of prefixes to minimize this loss. On the other hand, training front tensors is
more difficult but more transferable, because gradient information becomes less informative as it
is backpropagated through more subsequent tensors [89], which requires us to match subsequent
tensors as many as possible to curb this divergence to the front tensors in backward propagation.

B.1.2 Information-Preserving Transformation

ModelKeeper employs width and depth operators to perform structure-aware weight trans-
formation, wherein expanding the parent model performs the same to Net2Net [66]. Net2Net
theoretically grounds that expanding transformation (e.g., more convolution channels or new
convolution tensors) can preserve the parent model information for a wide range of tensors. Specif-
ically, the depth operator tries to deepen a tensor yi = fi(y(i−1)Twi + bi) using two tensors
yi = fi

(
U(i)Tfi

(
y(i−1)Twi + bi

))
, where fi, wi, bi are the activation function, tensor weights, and

148



bias vectors, respectively. When matrix U is initialized to an identity matrix, adding U preserves
the same output of its input tensor if fi is chosen such that fi(Ufi(v)) = fi(v) for all vectors v.
This property, fi, holds for widely-used rectified linear activation in today’s DNN models. For
example, to insert a new convolution tensor, we should set the convolution kernels to be identity
filters. Readers can refer to Net2Net [66] for the theoretical analysis for the width operator. As
such, in expanding the parent model, we may preserve the full parent model information.
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APPENDIX C

FedScale Appendix

C.1 Experiment Setup

Scalability Evaluations We evaluate the scalability of FedScale Runtime, FedML (GitHub
commit@2ee0517) and Flower (v0.17.0 atop Ray v1.9.2) using a cluster with 10 GPU nodes. Each
GPU node has a P100 GPU with 12GB GPU memory and 192GB RAM. We train the ShuffleNet-V2
model on the OpenImage dataset. We set the minibatch size of each participant to 32, and the
number of local steps K to 20, which takes around 2800MB GPU memory for each model training.
As such, we allow each GPU node to run 4 processes in benchmarking these three frameworks.

Evaluation Setup Applications and models used in our evaluations are widely used on mobile
devices. We set the minibatch size of each participant to 32, and the number of local steps K to 20.
We cherry-pick the hyper-parameters with grid search, ending up with an initial learning rate 0.04
for CV tasks and 5e-5 for NLP tasks. The learning rate decays by 0.98 every 10 training rounds.
These settings are consistent with the literature. More details about the input dataset are available in
Appendix C.2.

C.2 Introduction of FedScale Datasets

FedScale currently has 20 realistic federated datasets across a wide range of scales and task
categories (Table C.1). Here, we provide the description of some representative datasets.

Google Speech Commands. A speech recognition dataset [252] with over ten thousand clips of
one-second-long duration. Each clip contains one of the 35 common words (e.g., digits zero to nine,
"Yes", "No", "Up", "Down") spoken by thousands of different people.

OpenImage. OpenImage [11] is a vision dataset collected from Flickr, an image and video hosting
service. It contains a total of 16M bounding boxes for 600 object classes (e.g., Microwave oven).
We clean up the dataset according to the provided indices of clients.
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Category Name Data Type #Clients #Instances Example Task

CV

iNature [15] Image 2,295 193K Classification
FEMNIST [73] Image 3,400 640K Classification
OpenImage [11] Image 13,771 1.3M Classification, Object detection

Google Landmark [256] Image 43,484 3.6M Classification
Charades [228] Video 266 10K Action recognition

VLOG [95] Video 4,900 9.6K Classification, Object detection
Waymo Motion [92] Video 496,358 32.5M Motion prediction

NLP

Europarl [156] Text 27,835 1.2M Text translation
Blog Corpus [226] Text 19,320 137M Word prediction
Stackoverflow [28] Text 342,477 135M Word prediction, Classification

Reddit [25] Text 1,660,820 351M Word prediction
Amazon Review [186] Text 1,822,925 166M Classification, Word prediction

CoQA [217] Text 7,685 116K Question Answering
LibriTTS [282] Text 2,456 37K Text to speech

Google Speech [252] Audio 2,618 105K Speech recognition
Common Voice [6] Audio 12,976 1.1M Speech recognition

Misc ML

Taxi Trajectory Text 442 1.7M Sequence prediction
Taobao [30] Text 182,806 20.9M Recommendation

Puffer Streaming [264] Text 121,551 15.4M Sequence prediction
Fox Go [9] Text 150,333 4.9M Reinforcement learning

Table C.1: Statistics of FedScale datasets. FedScale has 20 realistic client datasets, which are from
the real-world collection, and we partitioned each dataset using its real client-data mapping.

Reddit and StackOverflow. Reddit [25] (StackOverflow [28]) consists of comments from the
Reddit (StackOverflow) website. It has been widely used for language modeling tasks, and we
consider each user as a client. In this dataset, we restrict to the 30k most frequently used words, and
represent each sentence as a sequence of indices corresponding to these 30k frequently used words.

VLOG. VLOG [95] is a video dataset collected from YouTube. It contains more than 10k
Lifestyle Vlogs, videos that people purportedly record to show their lives, from more than 4k actors.
This dataset is aimed at understanding everyday human interaction and contains labels for scene
classification, hand-state prediction, and hand detection tasks.

LibriTTS. LibriTTS [282] is a large-scale text-to-speech dataset. It is derived from audiobooks
in LibriVox project. There are 585 hours of read English speech from 2456 speakers at a 24kHz
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sampling rate.

Taobao. Taobao Dataset [30] is a dataset of click rate prediction about display Ad, which is
displayed on the website of Taobao. It is composed of 1,140,000 users ad display/click logs for 8
days, which are randomly sampled from the website of Taobao.

Waymo Motion. Waymo Motion [92] is composed of 103,354 segments each containing 20
seconds of object tracks at 10Hz and map data for the area covered by the segment. These segments
are further broken into 9 second scenarios, and we consider each scenario as a client.

Puffer Streaming. Puffer is a Stanford University research study about using machine learning
(e.g., reinforcement learning [183]) to improve video-streaming algorithms: the kind of algorithms
used by services such as YouTube, Netflix, and Twitch. Puffer dataset [264] consists of 15.4M
sequences of network throughput on edge clients over time.

C.3 Comparison with Existing FL Benchmarks

In this section, we compare FedScale with existing FL benchmarks in more details.

Data Heterogeneity Existing benchmarks for FL are mostly limited in the variety of realistic
datasets for real-world FL applications. Even they have various datasets (e.g., LEAF [59]) and
FedEval [61]), their datasets are mostly synthetically derived from conventional datasets (e.g.,
CIFAR) and limited to quite a few FL tasks. These statistical client datasets can not represent
realistic characteristics and are inefficient to benchmark various real FL applications. Instead,
FedScale provides 20 comprehensive realistic datasets for a wide variety of tasks and across small,
medium, and large scales, which can also be used in data analysis to motivate more FL designs.

System Heterogeneity The practical FL statistical performance also depends on the system
heterogeneity (e.g., internet bandwidth [158] and client availability), which has inspired lots of
optimizations for FL system efficiency. However, existing FL benchmarks have largely overlooked
the system behaviors of FL clients, which can produce misleading evaluations, and discourage the
benchmarking of system efforts. To emulate the heterogeneous system behaviors in practical FL,
FedScale incorporates real-world traces of mobile devices, associates each client with his system
speeds, as well as the availability. Moreover, we develop a more efficient evaluation platform,
FedScale Runtime, to automate FL benchmarking.
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Scalability Existing frameworks, perhaps due to the heavy burden of building complicated system
support, largely rely on the traditional ML architectures (e.g., the primitive parameter-server
architecture of Pytorch). These architectures are primarily designed for the traditional large-batch
training on a number of workers, and each worker often trains a single batch at a time. However,
this is ill-suited to the simulation of thousands of clients concurrently: (1) they lack tailored
system implementations to orchestrate the synchronization and resource scheduling, for which
they can easily run into synchronization/memory issues and crash down; (2) their resource can be
under-utilized, as FL evaluations often use a much smaller batch size.

Tackling all these inefficiencies requires domain-specific system designs. Specifically, we built a
cluster resource scheduler that monitors the fine-grained resource utilization of machines, queues the
overcommitted simulation requests, adaptively dispatches simulation requests of the client across
machines to achieve load balance, and then orchestrates the simulation based on the client virtual
clock. Moreover, given a much smaller batch size in FL, we maximize the resource utilization by
overlapping the communication and computation phrases of different client simulations. The former
and the latter make FedScale more scalable across machines and on single machines, respectively.

Empirically, we have run the 20-GPU set up on different datasets and models in Figure 5.10
and Table C.2, and are aware of at least one group who ran FedScale Runtime with more than 60
GPUs [163].

Eval. Duration/Round vs. # of Clients/Round
10 100 1K 10K

FedScale 0.03 min 0.16 min 1.14 min 10.9 min
FedML 0.58 min 4.4 min fail to run fail to run
Flower 0.05 min 0.23 min 2.4 min fail to run

Table C.2: FedScale is more scalable and faster. Image classification on iNature dataset using
MobileNet-V2 on 20-GPU setting.

Modularity As shown in Table 5.1, some existing frameworks (e.g., LEAF and FedEval) do not
provide user-friendly modularity, which requires great engineering efforts to benchmark different
components, and we recognize that FedML and Flower provide the API modularity too.

On the other hand, FedScale Runtime’s modularity for easy deployments and broader use cases
is not limited to APIs (Figure 5.8): (1) FedScale Runtime Data Loader: it simplifies and expands the
use of realistic datasets. e.g., developers can load and analyze the realistic FL data to motivate new
algorithm designs, or imports new datasets/customize data distributions in FedScale evaluations; (2)
Client simulator: it emulates the system behaviors of FL clients, and developers can customize their
system traces in evaluating the FL system efficiency too; (3) Resource manager: it hides the system
complexity in training large-scale participants.
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1 from fedscale.core.client_manager import ClientManager
2 import Oort
3
4 class Customized_ClientManager(ClientManager):
5 def __init__(self, *args):
6 super().__init__(*args)
7 self.oort_selector = Oort.create_training_selector(*args)
8
9 # Replace default client selection algorithm w/ Oort

10 def select_participants(self, numOfClients, cur_time, feedbacks):
11 # Feed Oort w/ execution feedbacks
12 oort_selector.update_client_info(feedbacks)
13 selected_clients = oort_selector.select_participants(
14 numOfClients, cur_time)
15
16 return selected_clients

Figure C.1: Evaluate client selection algorithm [163].
1 from fedscale.core.client import Client
2
3 class Customized_Client(Client):
4 # Customize the training on each client
5 def train(self,client_data,model,conf):
6 # Get the training result from
7 # the default training component
8 training_result = super().train(
9 client_data, model, conf)

10
11 # Implementation of compression
12 compressed_result = compress_impl(

training_result)
13 return compressed_result

Figure C.2: Evaluate model compression [222].

1 from fedscale.core.client import Client
2
3 class Customized_Client(Client):
4 # Customize the training on each client
5 def train(self,client_data,model,conf):
6 training_result = super().train(
7 client_data, model, conf)
8
9 # Clip updates and add noise

10 secure_result = secure_impl(training_result)
11 return secure_result

Figure C.3: Evaluate security enhancement [232].

C.4 Examples of New Plugins

In this section, we demonstrate examples to show the ease of integrating today’s FL efforts in
FedScale evaluations.

At its core, FedScale Runtime provides flexible APIs on each module so that the developer
can access and customize methods of the base class. Table 5.3 illustrates some example APIs that
can facilitate diverse FL efforts. Note that FedScale Runtime will automatically integrate new
plugins into evaluations, and then produces practical FL metrics. Figure C.1 demonstrates that
we can easily evaluate new client selection algorithms, Oort [163], by modifying a few lines of
the clientManager module. Similarly, Figure C.2 and Figure C.3 show that we can extend the
basic Client module to apply new gradient compression [222] and enhancement for malicious
attack [232], respectively.

Comparison with other work Figure C.4 shows the same evaluation of gradient compres-
sion [222] as that in Figure C.2 using flower [50], which requires much more human efforts than
Figure C.2. The gray components in figure C.4 requires implementation. Flower falls short in
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1 import flwr as fl
2
3 def get_config_fn():
4 # Implementation of randomly selection
5 client_ids = random_selection()
6 config = {"ids": client_ids}
7 return config
8
9 # Customized Strategy

10 strategy = CustomizedStrategy(
11 on_fit_config_fn=get_config_fn())
12
13 fl.server.start_server(
14 config={"num_rounds":args.round},
15 strategy=strategy)
16

1 import flwr as fl
2
3 class Customized_Client():
4 def fit(self, config, net):
5 # Customization of client data
6 trainloader = select_dataset(
7 config["ids"][args.partition])
8 train(net, trainloader)
9 compressed_result = self.get_parameters()

10 # Implementation of compression
11 compressed_result = compress_impl(
12 training_result)
13 return compressed_result
14
15 fl.client.start_numpy_client(
16 args.address, client=CustomizedClient())
17

Figure C.4: Evaluate model compression with Flower [50]. The developer needs to implement the
functions in grey by his own. Note that each function can take tens of lines of code.

providing APIs for passing metadata between client and server, for example client id, which makes
server and running workers client-agnostic. To customized anything for clients during FL training,
developers have to go through the source code and override many components to share client meta
data between server and workers.
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APPENDIX D

Oort Appendix

D.1 Proving Benefits of Statistical Utility

We follow the proof of importance sampling to show the advantage of our statistical utility
in theory. The convergence speed of Stochastic Gradient Descent (SGD) can be defined as the
reduction R of the divergence of model weight w from its optimal w∗ in two consecutive round t

and t+ 1 [153, 146] :

R = E
[
∥ wt −w∗ ∥22 − ∥ wt+1 −w∗ ∥22

]
(D.1)

How does oracle sampling help in theory? If the learning rate of SGD is η and we use loss
function L to measure the training loss between input features x and the label y, then wt+1 =
wt − η∇L(wt(xi), yi). We now set the gradient Gt = ∇L(wt(xi), yi) for brevity, then from
Eq. (D.1):

R = −E
[
(wt+1 −w∗)T (wt+1 −w∗)− (wt −w∗)T (wt −w∗)

]
= −E

[
wT

t+1wt+1 − 2wt+1w
∗ −wT

t wt + 2wtw
∗]

= −E
[
(wt − ηGt)

T (wt − ηGt) + 2ηGT
t w

∗ −wt
Twt

]
= −E

[
− 2η(wt −w∗)Gt + η2GT

t Gt

]
= 2η(wt −w∗)E[Gt]− η2E[Gt]

T
E[Gt]− η2Tr(V[Gt]) (D.2)

It has been proved that optimizing the first two terms of Eq. (D.2) is intractable due to their
joint dependency on E[Gt], however, one can gain a speedup over random sampling by intelligently
sampling important data bins to minimize Tr(V[Gt]) (i.e., reducing the variance of gradients
while respecting the same expectation E[Gt]) [146, 153]. Here, the oracle is to pick bin Bi with
a probability proportional to its importance |Bi|

√
1

|Bi|
∑

k∈Bi
∥ G(k) ∥2, where ∥ G(k) ∥ is the

L2-norm of the unique sample k’s gradient G(k) in bin Bi (Please refer to [104] for detailed proof).
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How does loss-based approximation help? We have shown the advantage of importance sam-
pling by sampling the larger gradient norm data, and next we present the theoretical insights that
motivates our loss-based utility design.

Corollary 1.2. (Theorem 2 in [152]). Let ∥ G(k) ∥ denote the gradient norm of any sample k,

M = max ∥ G(k) ∥. There exists K > 0 and C < M such that 1
K
L(w(xk), yk) + C ≥∥ G(k) ∥.

This corollary implies that a bigger loss leads to a large upper bound of the gradient norm. To
sample data with a larger gradient norm, we prefer to pick the one with bigger loss. Moreover, it
has been empirically shown that sampling high loss samples exhibits similar variance reducing
properties to sampling according to the gradient norm, resulting in better convergence speed
compared to naive random sampling [153]. Readers can refer to the recent FL work [69] for the
detailed proof.

By taking account of the oracle and the effectiveness of loss-based approximation, we propose
our loss-based statistical utility design, whereby we achieve the close to upper-bound statistical
performance (§6.8.2.2).

D.2 Privacy Concern in Collecting Feedbacks

Depending on different requirements on privacy, we elaborate on how Oort respects privacy
while outperforming existing mechanisms (§6.5.2).

Compute aggregated training loss on clients locally. Our statistical utility of a client relies on
the aggregated training loss of all samples on that client. The training loss of each sample measures
the prediction uncertainties of model on every possible output (e.g., category), and even the one with
a correct prediction can generate non-zero training loss [86]. So it does not reveal raw data inputs.
Moreover, it does not leak the categorical distribution either, since samples of the same category
can own different training losses due to their heterogeneous input features. Note that even when we
consider homogeneous input features, a high total loss can be from several high loss samples, or
many moderate loss samples.

Add noise to hide the real aggregated loss. Even when clients have very stringent privacy
concerns on their aggregated loss, clients can add noise to the exact value. Similar to the popular
differentially private FL [98], clients can disturb their real aggregated loss by adding Gaussian noise
(i.e., noise from the Gaussian distribution). In fact, Oort can tolerate this noisy statistical utility
well, owing to its probabilistic selection from the pool of high-utility clients, wherein teasing apart
the top-k% utility clients from the rest is the key.
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We first prove that Oort is still very likely to select high-utility clients even in the presence
of noise. To pick K participants out of N all feasible clients, there are totally

(
N
K

)
possible

combinations. We denote these combinations as Xi and sort them X1 ≤ . . . ≤ Xn by the ascending
order of total utility. Adding noise to each client ends up with an accumulated noise on Xi.
Thereafter, Xi turns to random variables Xi that follow the distribution of accumulated noise.
Specifically, distribution of Xi is equivalent to shifting the distribution of noise horizontally by a
constant Xi. Given that noise added to Xi follows the same distribution, (i) Xi experiences the
same standard deviation for every i; (ii) the expectation of Xi is the sum of Xi and the expectation
of noise. Note that adding a constant (i.e., the expectation of noise here) to the inequality does not
change its properties, so we still have E[X1] ≤ . . . ≤ E[Xn]. As such, we are more likely to select
high-utility clients (i.e., combination Xi with higher E[Xi]) in sampling when picking i with the
highest value of Xi. Moreover, we have show the superior empirical performance of Oort over its
counterparts under noise in Section 6.8.2.3.

Rely on gradient norm of batches. For case where clients are even reluctant to report the noisy
loss, we introduce an alternative statistical utility to drive our exploration-exploitation based client
selection. Our intuition is to use the gradient norm of batches to approximate the gradient norm of
individual samples ∇f(k) in the oracle importance |Bi|

√
1

|Bi|
∑

k∈Bi
∥ ∇f(k) ∥2. In mini-batch

SGD, we have

wt+1 = wt − learning_rate× 1

batch_size
×

∑
k∈batch

∇f(k)

where wt is the model weights at time t. Now, we can use the gradient norm of batches (i.e.,
∥ wt+1 − wt ∥2) to approximate ∥ ∇f(k) ∥2, and they become equivalent when the batch size
is 1. Note that today’s FL is already collecting the model updates (i.e., wt+1 − wt), so we are
not introducing additional information. As such, we consider the client with larger accumulated
gradient norm of batches to be more important.

We report the empirical performance of this approximation and the loss-based statistical utility
using YoGi. As shown in Fig D.1, Oort achieves superior performance over the random selection,
and the loss-based utility is better than its counterparts. This is because the approximation accuracy
with the norm of batches decreases when using mini-batch SGD, whereas mini-batch SGD is more
popular than the single-sample batch in ML.
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Figure D.1: Oort outperforms with different utility definitions.

D.3 Determining Size of Participants

We next introduce Lemma 2, which captures how the empirical value of X̄ (i.e., average number
of samples of participants for category X) deviates from the expectation E[X̄] (i.e., average number
of samples of all clients) as the size of participants n varies.

Lemma 2. For a given tolerance on deviation ϵ and confidence interval δ for category X , the

number of participants n we need to achieve Pr[|X̄ − E[X̄]| < ϵ] > δ requires:

n ≥ (N + 1)× 1

1− 2N
log(1−δ)

× ( ϵ
max{X}−min{X})

2
(D.3)

where N is the total number of feasible clients, and max{X} and min{X} denote the global

maximum and minimum possible number of samples that all clients can hold, respectively.

Lemma 2 is a corollary of Hoeffding-Serfling Bound [47], and we omit the detailed proof for
brevity. Intuitively, when we have an extremely stringent requirement (i.e., ϵ → 0), we have to
include more participants (i.e., n→ N ). When more information of the client data characteristics is
available, one can refine this range better. For example, the bound of Eq. (D.3) can be improved
with Chernoff’s inequality [47] when the distribution of sample quantities is provided.

Similarly, the multi-category scenario proves to be an instance of multi-variate Hoeffding
Bound. Given the developer-specific requirement on each category, the developer may want to
figure out how many participants needed to satisfy all these requirements simultaneously (e.g.,
Pr[|X̄ −E[X̄]| < ϵx ∧ |Ȳ −E[Ȳ ]| < ϵy] > δ). More discussions are out of the scope of this paper,
but readers can refer to [49] for detailed discussions and a complete solution.
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