CDI-E: An Elastic Cloud Service for Data Engineering

Prakash Das
Informatica
pdas@informatica.com

Shivangi Srivastava
Informatica

Anant Mittal
Informatica
amittal@informatica.com

ABSTRACT

We live in the gilded age of data-driven computing. With public
clouds offering virtually unlimited amounts of compute and storage,
enterprises collecting data about every aspect of their businesses,
and advances in analytics and machine learning technologies, data
driven decision making is now timely, cost-effective, and therefore,
pervasive. Alas, only a handful of power users can wield today’s
powerful data engineering tools. For one thing, most solutions
require knowledge of specific programming interfaces or libraries.
Furthermore, running them requires complex configurations and
knowledge of the underlying cloud for cost-effectiveness.

We decided that a fundamental redesign is in order to democ-
ratize data engineering for the masses at cloud scale. The result
is Informatica Cloud Data Integration - Elastic (CDI-E). Since the
early 1990s, Informatica has been a pioneer and industry leader in
building no-code data engineering tools. Non-experts can express
complex data engineering tasks using a graphical user interface
(GUI). Informatica CDI-E is built to incorporate the simplicity of
GUTI in the design layer with an elastic and highly scalable run time
to handle data in any format without little to no user input using
automated optimizations. Users upload their data to the cloud in
any format and can immediately use them in conjunction with their
data management and analytic tools of choice using CDI-E GUIL
Implementation began in the Spring of 2017, and Informatica CDI-
E has been generally available since the Summer of 2019. Today,
CDI-E is used in production by a growing number of small and
large enterprises to make sense of data in arbitrary formats.

In this paper, we describe the architecture of Informatica CDI-E
and its novel no-code data engineering interface. The paper high-
lights some of the key features of CDI-E: simplicity without loss in
productivity and extreme elasticity. It concludes with lessons we
learned and an outlook of the future.

PVLDB Reference Format:

Prakash Das, Shivangi Srivastava, Valentin Moskovich, Anmol Chaturvedi,
Anant Mittal, Yonggin Xiao, and Mosharaf Chowdhury. CDI-E: An Elastic
Cloud Service for Data Engineering. PVLDB, 15(12): 3319 - 3331, 2022.
doi:10.14778/3554821.3554825

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554825

3319

Yongqin Xiao
Informatica
yxiao@informatica.com

Anmol Chaturvedi
Informatica

Valentin Moskovich
Informatica

ssrivastava@informatica.com vmoskovich@informatica.com achaturvedi@informatica.com

Mosharaf Chowdhury

University of Michigan
mosharaf@umich.edu

1 INTRODUCTION

The confluence of an exponential growth in data volumes and
the rapid rise of distributed cloud computing has fundamentally
transformed the computing and data management landscape over
the past two decades. The industry as a whole is moving away from
software running on local servers toward software-as-a-service
(SaaS) offerings running on shared cloud data centers managed by
infrastructure-as-a-service (IaaS) providers to deal with increasingly
large and varied data stored in elastic cloud storage. Naturally, SaaS
data systems have to address multiple foundational challenges to
take advantage of economies of scale, scalability, and availability
of cloud computing and elastic storage.

On the one hand, there’s a need to support a wide range of
jobs that generate business insights from business activity data.
These data engineering jobs feed data into analytic systems, other
enterprise applications, and machine learning systems with both
batch and near real-time timing requirements (Figure 1). To scale
out these jobs to the highly parallel cloud computing resources,
many distributed computation frameworks [5, 9, 39] have gained
traction in recent years.

On the other hand, there’s a need for data engineering jobs to
handle a large volume of data in a variety of data formats residing
in on-premise sources as well as in cloud storage. While data in
transactional database systems are often structured, file formats
used in the cloud can be semi-structured or even unstructured. Data
records in these formats are often hierarchical, represented through
nested data structures. These file formats are also open in nature,
not always bound to a specific application system, allowing these
files to be used more freely in different enterprise compute activities.
A cloud data engineering service should support data processing
across these wide range of formats and allow combining them for
timely insights. At the same time, data volume is growing rapidly.
With a large data volume, there is a need to use a larger number of
compute servers for timely processing. A cloud data engineering
service should elastically scale up or down to match data volume.

Of course, none of this is news. Existing solutions, however, fall
short in democratizing such tools to the non-experts in an enterprise.
In almost all cases, complex data engineering tools require expert-
level knowledge to tackle the challenges of mixing and analyzing
varied data formats at different scales. Often, the IT department of
an enterprise holds the key to gaining timely business insights.

Since mid-1990s, Informatica has pioneered data engineering
tools that enterprises use to perform these jobs in their on-premise
data center using a no-code, graphical user interface (GUI) environ-
ment. With cloud computing becoming more prevalent, enterprises

https://doi.org/10.14778/3554821.3554825
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554825

want these applications to operate as a cloud service. Some enter-
prises no longer want to manage these applications and compute
servers even though underlying business processes allow them to
do so. Users of these applications want to use similar GUI tools as a
web application to run similar jobs that they were running on their
private data centers, but on the cloud as an elastic Saa$S solution.
Over the past decade, Informatica has transformed its no-code
GUI solution for data engineering to be a cloud data engineering
service for enterprise customers with the following characteristics:

e No-code computing environment. The service manages
user-authored jobs on its own cloud storage. Users with a
web browser can author data engineering jobs using GUI
widgets, visually explore data files, run, monitor and debug
jobs, without using any low-level programming language.

¢ Efficient parallel processing. The service translates user-
authored jobs into Apache Spark [9] programs, which can
execute in parallel, without users being aware of the un-
derlying environment. Performance of the generated Spark
programs is comparable to ones hand-coded by experts.

e Hierarchical data processing. The service supports a GUI
for constructing semi-structured files, processing of semi-
structured data, and making hierarchy processing available
to non-programmers. This can be challenging even for pro-
grammers well-versed in writing Spark programs.

e Automatic selection of tuning parameters. The service
automatically chooses a reasonable set of tuning parameters
for a generated Spark program by performing experimental
trial runs of the program, relieving lesser-skilled users from
having to do the same manually.

o Elastic compute cluster. It expands and shrinks a compute
cluster based on demands from the ongoing Spark jobs.

e Data security and isolation. The service runs jobs of dif-
ferent enterprise customers in isolated compute clusters.
Customers own their input and intermediate data at all times.

o Cost-efficient. The service-managed computing cluster is
ephemeral, benefiting from automatic selection of tuning pa-
rameters of jobs, automatic expansion/shrinking of compute
nodes, with support for different types of node instances, in-
cluding GPU and spot instances, provided by cloud vendors.

Outline. Section 2 provides a quick background on the challenges
faced by a cloud data engineering service, including example use
cases and design goals of our service. Section 3 describes the no-
code GUI programming constructs as well as the overall architecture
of the service. Section 4 highlights performance characteristics and
distinguishing features: support for heterogeneous data sources,
hierarchical data processing, auto-tuning and elastic scaling of
jobs, optimization of data pipeline branching, and data isolation for
enterprises. Section 5 discusses related work. Section 6 concludes
the paper with lessons learned and a vision for the road ahead.

2 BACKGROUND

Informatica is an enterprise cloud data management company
founded in 1993 focusing on data engineering and data warehous-
ing. While the data warehousing industry at that time was mostly
RDBMS-based with a SQL interface, Informatica pioneered an intu-
itive GUI-based tool for data engineering across diverse systems.

3320

Data Sources Cloud Data Lake

Cloud Data Warehouse,

e.g., Snowflake f
Business

User

Documents Databases -
Landing Zone) Enterprise Zone
Custom Enterprise
_I5Y | —y Applications,

e.g, Service Renewal Forecast Data

ERP Log files Engineer
Files in open formats,

e.g, CSV, JSON, Parquet, etc
— -

ToT Mainframe
Cloud Storage, ——* Data Science/Al Projects _ Data
2,53 Scientist
Etc. eg,S3

Figure 1: Cloud Data Lake usage scenario.

As the industry evolved to distributed processing and eventually to
Hadoop [5, 41], Informatica retained the same GUI for customers
while changing the underlying engine to Hadoop, Hive [6, 59], and
eventually Apache Spark [9, 61, 62]. As more customers migrated
to the cloud, Informatica presented them with a managed Cloud
Data Integration — Elastic (CDI-E) offering described in this paper.

2.1 Data Lakes and Serverless Computing

With the availability of cloud storage such as AWS S3, Azure
Blob/ADLS, and Google Storage [2, 12, 18], enterprises are build-
ing data lakes. Data in these storage areas are in open standard
file formats, ranging from generic formats such as JSON, Parquet,
ORC, Avro, and XML [3, 7, 8, 21, 27] to health industry-specific for-
mats such as HIPAA-mandated [23] HL7 [24] to financial industry-
specific format such as SWIFT-EDI [36]. Data lakes decouple data
for further processing from the application that produces it. Data
in these storage areas might have been populated through vari-
ous means such as: (1) collecting web application’s voluminous
log data, traffic logs, or security audits; or (2) extracting data in
a database of a custom business transaction system, application
systems in finance, enterprise resource planning (ERP), or human
resource (HR) management. Data in various formats needs either
further processing for use in interactive analytics or building pre-
dictive machine learning models. Sometimes data processed in the
cloud flows back to business applications. Data lake architecture
facilitates distributed computing through disaggregated/serverless
computing, allowing jobs to scale on demand as data volumes grow.

2.2 Challenges in Democratizing Data
Engineering

Traditional solutions force users to interact with data from varied
sources using high-level programming languages (e.g., Scala, R,
Python) or SQL, which restrict data-driven decision making abil-
ities to a small pool of experts. Just to explore data records and
understand the content of a new data source often requires non-
trivial coding. For instance, users might need to learn how to use
vendor-provided libraries to extract and populate a cloud storage.
They might also need to use libraries written in different languages
and deal with variety of data formats. These solutions often do
not handle issues such as data errors, data type conversion, and
job failures. Library API used in handling data sources might be
deprecated and replaced by a newer version, often because of func-
tionality enhancements, performance, and security fixes that would

require modification to or rebuilding of these programs. Program-
mers need to ensure that the coded solution scales with data volume
during execution and that appropriate tuning parameter values are
chosen based on data volume and compute resource availability.
Considerable DevOps efforts are needed to take advantage of com-
pute elasticity available from cloud computing vendors. Long story
short, it is non-trivial for non-experts to incorporate data-driven
decisions in business intelligence.

Customer Use Cases. The following use cases demonstrate a range
of scenarios where Informatica customers successfully use CDI-E.

A publicly traded investment management firm receives a
wide variety of data products such as Index Data, Reference Data,
Sustainability Data, Fund Data, and Market Data from multiple data
vendors in various formats, both structured and semi-structured,
numbering 150,000+ complex JSON and XML files. The firm plans
to modernize the data platform by moving some of vendor data
processing into a cloud native infrastructure.

A telecom company that provides fixed-line broadband and
mobile services with operations around 180 countries needs to read
their main OLTP database and identify all the subscriber accounts
that changed in the previous day, in order to prepare reports on the
changed accounts. Their data processing jobs require subscriber
data ingestion, without any modification to the operational data-
base setup, to a cloud storage, support of a SQL join operation on
tables of large size, the two largest tables being about 475GB and
140GB. The company needs to generate these reports in an hour
or two, replacing the existing data processing job, implemented by
programmers in a specialized vendor-specific scripting language.

An American multinational pharmaceutical and biotechnol-
ogy company needs to process clinical data on a disease. Data size
resulting from clinical treatment in confirmed and unconfirmed
disease cases is about 2.5TB. The company needs to process the data
in a few hours for identifying new cases among unconfirmed and
any red flag in confirmed cases because of the clinical treatment.
The company prefers a no-code data processing solution.

An auto sales company provides centralized and remote car
sales support to national rental and online purchasing platforms. As
part of building their first Business-to-Consumer (B2C) car buying
marketplace, as they grow with time, they want to scale the vehicle
data ingestion process that include photos, to support larger number
of dealers and vehicles in inventory. The company needs to process
the ingested large volume of hierarchical data quickly to keep their
inventory reasonably up-to-date.

An oil company, operating hundreds of wells and numerous
drilling platforms, needs to ingest data from various systems into a
cloud storage, storing it in an open-source format such as Parquet,
forming a data lake. This includes ingesting time series data from
Predictive Maintenance and Service (PAMS) of SAP, an Enterprise
Resource Planning system; weather systems; and Supervisory con-
trol and data acquisition (SCADA) systems. The ingested data will
be enriched with data from other databases and processed, feeding
into analytical systems such as data warehouse to provide health
checks on their rotating equipment to avoid unplanned events.

A fast food restaurant company, operating many brands and
each brand having world-wide locations, needs to consolidate cus-
tomer activity data into a cloud storage location dictated by local

3321

Table 1: Representative CDI-E customer success stories.

Investment
Management

(&0 008 Python Hand coding ETL Tool SQL and hand

coding
Competitor Runtime 72 hours 19 Hours 19 Hours 5 hours
CDI-E Runtime 25 mins 2 Hours 4 hours 20 mins

CDI-E is ~172x faster 9.5x faster 4.25x faster 15x faster

(USSP Hierarchical data Ingesting and Processing 25TB of ~ CMI for ingesting
processing of JSON processing ~500GB of data for clinical trials ~ complex data and
files from financial subscriber account CDI-E for
institutions data from Oracle to hierarchical
GBQ processing to scale
up to 600 dealers.

privacy laws for building predictive Al models and to improve pro-
ductivity of model builders. Further consolidation to a central cloud
storage is needed after anonymizing the data using custom logic
for Al model building activity. The company does not want to own
and manage any computing infrastructure for computing jobs.
Table 1 summarizes four of the above CDI-E customer stories.

Telecom Pharmaceutical Auto Sales

Hand coding

2.3 Design Goals

When designing CDI-E, we focused on providing one solution to
address the use cases above, and more, guided by four design goals.

e Simplicity: Data engineering jobs are getting more and
more complex, but we want our solution to be approachable
by experts and non-experts alike. We want the users to be
able to express their jobs as easily as possible, and we want
to make it simple to execute and maintain the jobs as well.

e Productivity: We want highly productive users. We want
our solution to be efficient both during design time and run
time, so that they can accomplish more in a given time frame.

o Elasticity: Data Engineering is constantly growing, and we
want to make sure our solution can scale well in terms of
data volume, number of concurrent jobs, number of users,
cost incurred, as well as other scaling dimensions.

e Reduced Cost: Often problems can be solved by adding
more hardware, but that comes with additional cost. So our
focus is to optimize performance while trying to reduce cost.

3 INFORMATICA CDI-E

Informatica Cloud Data Integration — Elastic (CDI-E) is a GUI-based
web application that users, developers, and administrators access
through a web browser. Users create and edit CDI-E objects via
drag-and-drop and by filling in templates to create executable data
flow jobs that can be submitted to the CDI-E execution service.

3.1 CDI-E Abstractions

Users learn two sets of abstractions: (1) design-time abstractions to
specify what a data engineering task does; and (2) runtime abstrac-
tions to specify parameter values and compute resources for the
designed task when it executes.

3.1.1 Design Time Abstractions.

Mapping. A mapping is the central abstraction that users en-
counter. Users develop a mapping, which is a directed-acyclic-graph

[Source (S)} [Tmnsformatian (Tx)} [Tmnsfarmution (Tx)} [Target (T)}

Connection Connection

(a) Simple mapping.

Avro
(T)

S3 connection
t]

Ccsv W Expression]aincr} (Routcr\\ (Purquc
(S) J (Tx) (TX)J L (Tx) | L (T)

ORC S3 connection
S3 connection DB Table (T)
(S)

S3 connection
(b) Complex mapping with many sources and targets.

DB connection

Figure 2: Examples of CDI-E mapping objects.

(DAG) of transformation objects, to describe the logic that an ETL-
style job should perform. A mapping contains one or more sources
to read data from, data transformation logic, and one or more tar-
gets to write data to after the specified logic transforms the data.
Figure 2 depicts a few examples. The execution semantic of a map-
ping is similar to that of a SQL statement processing. The mapping
transformations, described next, process a set of rows using a data
model independent of actual underlying data sources.

Transformation. A transformation represents how a set of input
rows are transformed into a different set of output rows. A Source
transformation produces output rows, representing an underlying
concrete data source that can be read. A Target transformation ac-
cepts input rows, representing an underlying data source to which
rows can be written. A mapping must have at least one source
and one target. Depending on the transformation, the number of
output rows of a transformation might not be same as input rows.
A transformation can accept multiple sets of input rows for an op-
eration like a Joiner, or it can output multiple sets of output rows
for an operation like a Router. Figure 2 shows types of available
transformations. A set of transformations that process a distinct
set of rows is called a data pipeline, or pipeline. If users want to
leverage their own transformation logic, CDI-E provides a Custom
Transformation similar to User-Defined-Functions (UDFs) in tradi-
tional RDBMS. However, the Custom Transformation API allows
provisioning of additional associated metadata and code, like any
other CDI-E provided transformation, that enables its participation
in optimization and code generation stages of a mapping.

Connection. A connection represents a concrete data source, such
as a relational database system like MySQL, a directory of JSON
files, or a Salesforce application connection. During mapping devel-
opment, users interact with data sources using connection objects
to preview data in a data source on a web browser. This allows the
developer to understand the row structure of the underlying data
and data types associated with each field, aiding rapid prototype
development. Developers then map these fields to the data types
that the mapping data model supports by associating a connection

3322

object with either a source or target, which converts data types to
the data types of the mapping data model when necessary.

Parameterized object. The parameterized object abstraction al-
lows developers to create objects with fields that contain only place-
holder marker values, known as parameter fields. They are bound
with actual values at run time via late binding. A parameterized
field can be part of any of the type of objects that users encounter.
We elaborate more on this later when we describe mapping tasks.

This parameterization concept extends to late binding of input
and output row structure of transformations associated with a map-
ping, leading to a concept known as a dynamic mapping. To apply
logic such as grouping or aggregation, transformation functional-
ity needs to refer only to specific fields of input and output rows.
The transformation can be very flexible about the rest of the fields
comprising a row. When users create a transformation object, they
can choose to define how to treat additional fields as part of in-
put and output row structures. For example, an available rule is to
pass additional fields as-is in a pass-through manner. The actual
structure of input and output rows through each transformation
is determined at run time. The schema of a Target transformation
might also be affected, which is handled by connection’s run time
associated with that Target transformation.

This parameterized row structure functionality also promotes
reusability of a mapping object that encapsulates row processing
logic. The same dynamic mapping object that processes a JSON file
can also be reused to process a relational table as long as the fields
that transformation refers to exist in the row by name.

3.1.2 Runtime Abstractions.

Mapping task. A mapping task represents an executable map-
ping by binding all parameterized objects to actual values, including
binding all sources and targets to connection objects. This abstrac-
tion provides the capability to bind connection objects associated
with a mapping so that the same mapping logic can be run in a
different execution environment. For example, a developer typically
has access to a sample test data set but not to the actual data set
of an enterprise due to security implications. This parameteriza-
tion allows an IT system administrator, with access only to the
actual data, to substitute those connection objects with the actual
enterprise production environment’s connection object.

Compute cluster. Users create a compute cluster object to run all
mapping tasks in a shared cluster. They configure properties such
as the type of compute nodes available from cloud vendors and the
minimum and maximum number of compute nodes, preventing
runaway compute costs. A compute cluster, associated with a cluster
object, starts and shuts down based on demand for running the
specified tasks. Development and production compute clusters are
separate, thereby providing flexibility to manage costs. For example,
users can specify the type of nodes in a cluster with GPU support,
compute- or memory-optimized nodes, as well as cost-optimized
nodes such as spot, on-demand, reserved, etc.

3.2 User Workflow

To perform a data processing job, users create a mapping object
and a compute cluster object, which can be shared, to run it on. To

Clo.u d Mapplr.lg Metadata Repository Service
Designer Service ssses

Mapping Mapping Mapping Spark
Spark P i
Translation Optimizer paric L& Optimizer —> Workflow
) . Generation

Service (Generic) for Spark Generator
Executor Cluster Serverless Monitoring Auto
Ma.nager Warm Pool & Logging Tuner

« T h Ty

Compute Cluster for

Compute Cluster for ‘
Spark jobs

Spark jobs

Auto Scaler | |

Compute Cluster for
Spark jobs

Auto Scaler ‘ Auto Scaler

Figure 3: CDI-E Architecture: The top layer manages design
and runtime abstractions. The middle layer processes ab-
stractions into executable code. The bottom layer manages
job executions on a cluster.

create a mapping, users associate connection objects with Source
and Target transformations that represent data sources. Between
sources and targets, users add transformations that reflect what
they need a data processing job to do. During this design phase,
users get information through the GUI about mapping validity, er-
ror conditions, and corrective actions. During design-time, users
can preview data associated with a transformation in a mapping.
When they preview data, the runtime engine processes the map-
ping up to and including the selected preview point and displays
the configured number of rows to view. Using the same GUI, the
user can monitor the progress of a mapping and can access to de-
tailed execution plan and log files of that execution. Typically, an
administrative user creates a compute cluster object to share with
users who develop mappings. There can be multiple such cluster
objects of an enterprise as needed. No user intervention is required
to manage the life cycle of a cluster unless there are problems in
cloud infrastructure, which is handled by the administrative user.
Users creates a mapping task when a mapping is ready to deploy
to production using parameters such as connection objects.

3.3 Architecture

Our architecture consists of design, mapping processing, and run-
time layers. The design layer allows end users to express their
requirements through a graphical interface. The mapping process-
ing layer performs parameter resolution for design time objects,
translation to underlying execution engine’s execution plan and
optimization. Finally, the runtime layer elastically runs the job.

3.3.1 Design Layer.

Cloud Mapping Designer Service (CMD). Users interact with this
component in a web browser to author and edit CDI-E objects in-
troduced in Section 3.1. These are serializable, modeled objects that
are amenable for interactive editing and fast persistence. CMD also
supports multiple concurrent users and permissions assignment.

3323

Metadata Repository Service. All objects authored using CMD
are persisted in a system-managed repository that is shared among
all our enterprise customers. Enterprises typically have different
functional computing environments such as development (Dev),
quality-assurance (QA), and production (Prod). This service sup-
ports usability of objects across computing environments by allow-
ing the export and import of objects across environments. Parame-
ters, part of the parameterized objects, allow different parameter
values to be bound, as per the computing environment’s need, mak-
ing parameterized objects reusable across computing environments.
This repository service supports versioning and maintains the life
cycle of design objects.

3.3.2 Mapping Processing Layer. When a user or scheduler initiates
execution of a mapping task, the components of this layer process
the objects for semantic analysis, optimization, and code generation,
analogous to how a SQL execution engine typically processes a
SQL query. The Mapping Processing Layer can process native and
custom logic guided by additional metadata associated with each
transformation such as: (1) whether execution logic has side-effects,
(2) whether it is a 1-to-1 or m-to-n transformation; or (3) whether
it can be partitioned.

Mapping Translation Service. Parameter fields are fully resolved,
known as materialization, using values that are part of an execution
request, achieving late-binding capability. After materialization,
Source transformations are bound to specific data sources, making
the fields of a row fully defined for a mapping that uses the mapping
template. The representation of a materialized mapping, still a mod-
eled object, undergoes conversion into an internal data structure,
amenable for semantic analysis and optimization, independent of
any specific execution engine.

Mapping Optimizer (Generic). The underlying execution engine-
agnostic optimizations performed by this component aim to reduce
execution time to process rows. Examples include pushing predi-
cates used in mapping transformations, such as a Filter transfor-
mation, closer to the Source transformations. This optimization
reduces the number of rows to be processed earlier (early selection),
removes unused fields from a row as soon as subsequent trans-
formations stop using the fields (early projection), and evaluates
constant expression used in a transformation, for example, field1 =
5 + field2 + 7 to be field1 = field2 + 12 (constant folding).

Spark Plan Generation. The execution service uses Apache Spark
for mapping execution. For some mappings, such as ones with a
Router transformation, mapping execution might require more than
one Spark job to achieve the intent. Thus, this component converts
mapping into a Spark-ASG, analogous to an Abstract Syntax Graph
(ASG). Each node in this graph represents an operation available in
Spark, as a preparation for Spark engine-specific optimization and
Spark program generation.

Mapping Optimizer for Spark. Next, the Spark-ASG is traversed
and Spark execution engine-specific CDI-E optimizations are ap-
plied. For example, intermediate data staging points between Spark
jobs are added only when absolutely necessary, due to a Router
transformation branching scenario (elaborated in Section 4.6).

Table 2: Network boundary options for a Compute Cluster.

Option ‘ Cluster Location ‘ Managed ‘ Elastic | Cluster Control Access | Enterprise Data Access
Enterprise VPC Enterprise VPC Yes Yes HTTPS tunnel Same VPC
Serverless Warmpool | CDI-E VPC Yes Yes Same VPC Special VNIC

Spark Work Flow (WF) Generator. After Spark engine-specific
optimization, this component renders a Spark-graph into a DAG of
Spark programs that use dataframe operations that utilize spark-
native row representation in Scala. Each node in the Spark-ASG is
rendered into Scala code. The DAG, representing a mapping task
in execution, is submitted to the runtime layer.

3.3.3 Runtime Layer. Each Spark job in a DAG is executed on a Ku-
bernetes cluster using a modified version of Spark-on-Kubernetes
[35] resource controller and other components described below.

Executor. The executor acts as a coordinator to run a mapping
task as a DAG of Spark jobs. It interacts with the Cluster Manager
to set up the cluster for execution before submitting a Spark job. It
tracks individual execution monitoring statistics and status of each
Spark job, as well as overall status and statistics for a mapping task.

Cluster Manager. This component starts up an ephemeral Ku-
bernetes cluster, if not already running, specific to an enterprise
as defined in a cluster object (Section 3.1), on a request from the
executor component. The execution of multiple mapping tasks from
the same enterprise uses the same cluster. Each enterprise has a
compute cluster that is isolated from the compute clusters of all
other enterprises. The Cluster Manager is responsible for the life
cycle of the cluster, including scaling the cluster (both compute and
storage), using the Auto Scaler and shutting it down when it is not
in use.

As shown in Table 2, each customer has an option to choose a
cluster’s operating network boundary, i.e., Virtual Private Cloud
(VPC). The choice does not affect functionality, but affects network
setup for control and data channel messages. Enterprise customers
who want to use cloud storage and databases but not manage any-
thing related to data processing jobs prefer the Serverless Warmpool
Option, for which the Cluster Manager manages compute nodes
in a warm state in a common pool for a faster cluster startup time.
Security aspects of both options are discussed in Section 4.7.

Auto Scaler. Auto Scaler is a logical grouping of interacting com-
ponents that manage functionalities related to cluster scaling, Spark
shuffle storage scaling, Spark job scheduling, and Spark job scal-
ing. It assumes that the cluster is being used exclusively for jobs
managed by this system. Modified open-source components used
to achieve auto-scaling are discussed later in the paper.

Auto Tuner. Auto Tuner manages the tuning parameters of a
Spark job that results from running a mapping task repeatedly on
demand or at a scheduled interval. It records job completion time
and associated Spark tuning parameters chosen by its algorithm for
each run. The component uses a stochastic algorithm to explore the
tuning space, detailed later in the paper, to set the tuning parameters
for each run of a Spark job.

3324

CDI-E

m Open-Source Spark

q3 q52 g5%5 g68 q93 q97 q7 q27 q65 ql7 g25 q71

Figure 4: CDI-E performance on TPC-DS queries.

Monitoring and Logging. History of executed mapping task’s
execution logs and job statistics are made available to other compo-
nents through this one. It also manages expiration and reclamation
of storage associated with these artifacts.

4 FEATURE HIGHLIGHTS

We start by providing some end-to-end benchmark numbers that
demonstrate how CDI-E can provide simplicity without efficiency
loss. Throughout the rest of this section, we discuss selected flag-
ship features of CDI-E that deals with complex targets and data
formats, automated tuning and scaling, runtime optimizations, and
data security and isolation. We conclude by highlighting some
performance metric improvements observed by our customers.

4.1 Performance Comparison Using CDI-E

Using CDI-E, users can expect performance similar to that of man-
ually writing Spark SQL queries. Figure 4 shows that CDI-E allows
non-expert users to express complex TPC-DS benchmark queries us-
ing mapping objects using a GUI while achieving high performance.
For the purpose of evaluation, a subset of TPC-DS[38] queries with
different complexities were run by dividing them into three buckets:

o Simple (Q3, Q52, Q55, Q68, Q93, Q97): These queries have
simple operations and require no shuffle.

e Medium (Q7, Q27, Q65): These queries require a single shuf-
fle operation combined with other simple expressions.

e Complex (Q17, Q25, Q71): These queries have multiple shuf-
fle operations and other complex expressions.

The benchmark was run with 1000GB of Parquet data on a 1 to 20
node 16 vCPU, 64GB (m5.4xLarge) auto-scaling cluster on AWS.

If a compute cluster has GPU support, users can leverage them to
run mappings (Figure 5). In addition to performance improvements,
users experienced up to 72% cost reductions as well. The evaluations
were run using TPC-H[38] SF100 Lineitem data on a 10-node cluster.
g4dn. 2xlarge instances were used for GPU and m5d. 2x1arge for
CPU configurations.

Users can take further advantage of the spot instances to reduce
execution costs by 56%, 70%, and 65% for m5. 2x1large, t3.2xlarge,
and c5. 4xlarge, compared with their on-demand counterparts.

4.2 Heterogeneous Data Sources and Targets

Connector. Being able to connect to a wide variety of data sources
is critical for any Data Engineering product. For example, the oil
company use case mentioned earlier required connectivity to SAP,
various SQL databases, flat and hierarchical files, and real-time
systems. CDI-E allows disparate data source systems to be added
as a plug-in module known as connector. These data source sys-
tems range from on-premises database systems such as Oracle and
DB2 to cloud analytic query systems such as Redshift, BigQuery,
and Snowflake to files of different format on cloud storage system
such as AWS S3, Google Storage, and Azure Blob. Each file format
such as Parquet, ORC, JSON, XML, and CSV combined with a spe-
cific file storage system is treated as a different connector. CDI-E
also supports its own flatfile format specification. Each plug-in
connector library module, using either Spark Datasource v1 or v2
AP], provides underlying runtime capability to read and write to
a specific type of data source. Users do not use these connector
library modules directly. Instead, an instance of the data source
manifests as a connection object, typically associated with a source
or target transformation, in a user application. Users create a con-
nection object, providing URL, authentication information, and any
other required metadata specific to a data source, such as character
encoding.

Data source preview. Before any data transformation logic can be
written, users need to understand the record structure of first few
records during mapping development time. Users can view this data
with just having access to a connection object during development
of a mapping. Again, this is facilitated by a connector library, and
it’s accomplished without users having to code and run an explicit
job for this purpose.

Data migration and file format conversion. With various connec-
tors available, data migration from one data source to another or file
format conversion is simple using a mapping. In order to migrate
data from an Oracle DBMS to a Redshift instance, users simply cre-
ate a mapping with a Source transformation pointing to an Oracle
instance and Target transformation pointing to a Redshift instance.
Users will create a similar mapping to convert a file containing
records in JSON format to a file in Parquet or ORC format, which
is more suitable for analytic query. Only the connection objects
associated with Source and Target transformations will be different.

Optimization support. Each connector module, depending on an
underlying data source’s capability, allows pushing some transfor-
mation functionality of a mapping, such as filter, expression, or
aggregation to the source system for optimized execution. This
is possible because a mapping captures the user’s logical intent
instead of a physical execution plan. Sometimes, when both Source
and Target transformations use the same relational system and map-
ping logic uses transformations found in SQL, the entire execution
takes place within that data source system.

4.3 Hierarchical Data Processing

Hierarchical data processing is a common operation in large enter-
prise settings. As seen in a couple of customer use cases of Section 2,
some data engineering use cases require processing of JSON, XML,
Parquet, or industry-standard hierarchical files. Application-specific

3325

1600
mCPU = GPU
= 1200
g 800
& 400 I I
0 [
Less Shuffle Passthrough ~ TPCH-Q13 Selective Filter Router Self Join

Transformation

Figure 5: Mappings benefiting from GPU support in CDI-E.

hierarchical data standards such as HL7 or SWIFT EDI can be very
complex. Users need visual help to understand data conforming to
these standards, as well as data in files conforming to hierarchical
structures such as Parquet, ORC, and Avro. Once a hierarchy struc-
ture is identified, the logic of the hierarchy processing job needs to
be coded. CDI-E helps users to code such processing logic visually.

4.3.1 Identifying Hierarchy Structure. When a user points a specific
data source, such as a file in XML, Json, Avro, or Parquet format,
to Intelligent Structure Discovery (ISD) component, which is inte-
grated with the corresponding Connector for that data source, ISD
applies an algorithm based on machine learning to generate a vi-
sual hierarchical model structure, and it infers name and data type
of each element of the hierarchy. Users can edit the inferred data
type, e.g, number instead of string, date instead of long, etc. Such
visual representation is useful, especially for cases when a hierarchy
has thousands of elements, which is common for large enterprise
customers. Users can decide which elements they need, and they
can refine the hierarchical structure of each row, out of which ISD
captures the schema in an Intelligent Structure Model (ISM) object.
This model object can then be associated with a Source transforma-
tion, fixing the row structure that subsequent transformations can
operate on. The Connector run time leverages the information in
the ISM object for parsing the input data to produce the desired
row that Spark engine can process.

Schema drift support. The implied schema of a semi-structured
file changes over time, for example, application logs in JSON for-
mat. Data may have newer fields that were missing in the sample
data source. In this case, ISD passes along the additional data in
a placeholder column instead of discarding it, and ISD continues
processing the input instead of failing the job. Users can choose
how to handle such additional data while designing the mapping.

4.3.2 Processing Hierarchical Data. There are three main categories
of jobs that require hierarchy processing logic: (a) Hierarchy build-
ing from relational tables (H2R); (b) Extracting relational tables
from a hierarchy (R2H); and (c) Transforming one hierarchy into
another hierarchy (H2H). Our system has a Hierarchy Processor
transformation to aid users perform such processing in a mapping.
It allows users to build a row structure that supports Struct, Array,
and Map. At run time, this row structure translates to Spark’s sup-
port for this type of row structure. The Hierarchy-to-Hierarchy
transformation, such as auto-conversion of HL7 [24] message into
FHIR [22] format, as required by one of our customers, is complex.
For simplicity, we illustrate our hierarchy processing transforma-
tion’s functionality with a relational-to-hierarchy building example.
Let’s say we are using the TPC-DS dataset with Customer, Orders,

and LineItem tables. We want to convert this relational data into
hierarchical format, as shown in inset of Figure 6.

Manually Building Hierarchy Using Spark SQL. We first outline
steps that such a Spark program would have. We omit detailed
code due to space constraints, while trying to convey the laborious
nature and cognitive complexity.

Step 1: Construct Spark DataFrames order, customer,
lineitem, with columns of each dataframe cast to the ap-
propriate data type. This can be laborious if most columns
need to be converted to a data type with such an expression:
order.columns(7).cast(IntegerType).

Step 2: Perform join operations between order, customer, and
lineitem DataFrames using custkey and orderkey, resulting
in ord_cust_litem DataFrame that has repeating column val-
ues from customer and order. Only lineitem column values do
not repeat, which need to be converted into a column of Spark
lineitem_struct data type, done in the next step.

Step 3: Create lineitem_struct data type with 15 fields, each
field having a defined Spark data type. Then construct a new
DataFrame ord_cust_litem1 with a new column using struct()
constructor function with input from 15 lineitem columns of
ord_cust_litem.

Step 4: Create a new data type ord_wi_litem_struct_type to
nest line items (1ineitem_struct[]) within each order, needed for
aggregating result after performing groupBy using orderkey.

Step 5: Perform a groupBy operation on
ord_cust_liteml dataframe using orderkey and ag-
gregation function utilizing last() to repeat or-

der column values and collect_list() to collect
ord_wi_litem_struct_type values as one item. This resulting
aggregate value is needed for struct() constructor function. On
this resulting dataframe, apply struct(), and then cast() that to
ord_wi_litem_struct_type to get the next dataframe. Let’s call
this DataFrame ocl_grp_order_id_struct.

Step 6: Perform a groupBy operation on
ocl_grp_order_id_struct dataframe using custkey to
create the final dataframe, suitable to be written in a format
supporting hierarchy such as Parquet. The operations are similar
to the previous step. For this step, collect_list() collects
ocl_grp_order_id_struct column value, from which a new
column of type ocl_grp_order_id_struct[] is created.

Automatically Building Hierarchy Using CDI-E. Figures 6 and 7
show the solution in CMD (§3.3.1). We omit the figure for building
level 2 hierarchy, which is similar to Figure 7, for brevity. Users can
utilize the HierarchyProcessor transformation to build the hierar-
chy structure from the fields of customer, order,
lineitem tables, using UI actions such as drag-and-drop. Users
concentrate on specifying the parent-child relationship of the hier-
archy elements. Figure 7 shows how users specify the parent-child
relationship of an array field. These pieces of information are cap-
tured in a model object of HierarchyProcessor, which is later
translated into a Spark program, inferring join and groupBy expres-
sions, similar to what we described earlier. Thus the performance
of a mapping used in hierarchy processing can be same as that
of a Spark program developed by a programmer. The Hierarchy

3326

customer
- P>
- Target
—e
rﬂbtwohy?monof i
orders e, -
— | 2 o Customer
* / c_custkey
lineitem ' c_orders []
- »- o_orderkey
* o_custkey
o_litems []
1_orderkey
Figure 6: Hierarchy building mapping,.
Propertes. Proview | 34 HerarchyProcessor o8B

oming Feids 0 Output Fieds.
Incoming Fields Output Fields. Fomat | Herarchical

Output Fields

ilter Condition:
:fld.{orders.o_custkey} =
:fid.{customers.c_custkey}

Figure 7: Level 1 structure of hierarchy building mapping.

Processor transformation can also be used to filter and aggregate
array elements of a hierarchical structure.

4.4 Auto Tuning

It is critical for production Data Engineering jobs to be tuned opti-
mally. For example, in the investment management use case that
was using hand-coded Python scripts, optimal tuning improved
performance from dozens of hours to minutes. However, tuning a
Spark job can be a challenging task since it is dependent on a large
set of configuration parameters. An inefficient set of values can
have adverse impacts, ranging from performance loss to failure of
the executed jobs, such as running out of memory. Performance loss
can often go unnoticed, leading to added costs in terms of resource
usage and slower pipelines. Tuning is not a one-time operation
either. As the engine evolves and adds features, more optimization
opportunities are available, and some older configurations may
not apply. Also, changes in data volumes impact configurations. It
makes tuning a continuous process, and manually keeping up with
many configuration options is challenging.

In order to avoid having to manually tune Spark jobs, we created
Auto Tuner. Auto Tuner is a feature in the product that allows users
to trigger automated tuning for any of their Spark jobs. It allows
iterative generation of sets of job configurations which include
Spark properties as well as properties specific to the Informatica
Spark engine. These properties control resource parameters such
as memory, and CPU cores as well as optimization parameters such
as compression and persistence. The tuned Spark job is the original
job with the best set of generated configurations attached to it.

|Success| = 0 or
best sample < CUTOFF

|Success|<MIN_COUNT

LocalSampling
bestsample > CUTOFF

|Success| > MIN_COUNT

|Success| = 0 or

new is better or locality < threshold

locality > threshold

LocalSearch

Figure 8: State machine diagram of Auto Tuner.

At its core, Auto Tuner runs a persisted state machine-based
exploration process [60] to sample the configuration space and con-
tinuously identify beneficial configurations. It has a Sampler that
can pick n samples from a given configuration space in d dimensions,
where d is the number of configuration parameters under consid-
eration. We use Latin Hypercube Sampling (LHS) [56] because it
can cover all dimensions with a fixed number of samples. Given a
few samples, Auto Tuner uses the MinimaGenerator to generate a
new point in the search space, which is likely to be the minima for
the target function. We use a quadratic minima generator, which
assumes that the target function follows a quadratic curve for each
of the configurations independently. For points close to each other,
this works well. A quadratic function is fitted for each of the con-
figurations and corresponding minima is identified and used as the
value for that specific configuration.

4.4.1 State Machine. Auto Tuner performs tuning using a state
machine (Figure 8.) Every state generates a set of configurations.
The framework executes the job with these configurations and gets
the value of the target variable for each of these configuration sets.
The values act as inputs to the next state.

o Start: Use Sampler to generate, say, 5 samples from the com-
plete configuration space. Set the state as Initialize.
Initialize: If all the previous samples failed, go back to
Start. Otherwise, set the best one as the currentBestSample.
Set localitySize to 50% of the total configuration space.
Create a locality around the currentBestSample of size
localitySize. Generate SAMPLE_COUNT, currently set to 5,
samples from the locality using the Sampler. Set the state as
Local Sampling.

Local Sampling: If the number of successful samples is less
than MIN_COUNT, go to state Restart. The value of MIN_COUNT
is 3 was chosen based on the requirements of the Minima-
Generator used, but it can be varied. Otherwise, generate
a sample using the MinimaGenerator with the successful
samples. Set the state as Local Search.

Local Search: If there are no successful samples then go to
Restart. Otherwise, check if the new sample is better than

3327

previous successful samples. If it is, then set the new sam-
ple as currentBestSample and create a locality around the
currentBestSample of size localitySize. Generate 5 sam-
ples from the locality using the Sampler. Set the state as Local
Sampling. If the new sample is not better than previous sam-
ples, then add it to the set of previous successful samples and
generate a sample using the MinimaGenerator with these
successful samples. Set the state as Retry.

Retry: If there are no successful samples, then go to Restart.
Otherwise, check if the new sample is better than previ-
ous successful samples. If it is, then set the new sample
as currentBestSample and create a locality around the
currentBestSample of size localitySize. Generate 5 sam-
ples from the locality using the Sampler. Set the state as Local
Sampling. If the new sample is not better, then reduce the
localitySize to 80% of its size. If locality size is less than
10% of the total configuration space, then go to Restart. Other-
wise create a locality around the currentBestSample of size
localitySize. Generate samples from the locality using the
Sampler. Set the state as Local Sampling.

Restart: If there were successful samples in the last run
and the best of those is better than CUTOFF of all the sam-
ples seen so far, then set it as the currentBestSample. Set
localitySize to 50% of the total configuration space. The
value of CUTOFF is chosen to be 80% after experimental anal-
ysis. Create a locality around the currentBestSample of
size localitySize. Generate five samples from the locality
using the Sampler. Set the state as Local Sampling. Other-
wise, generate samples using Sampler with 50% of the total
configuration space. Set the state as Restart.

4.4.2 Performance Benefit. In order to see the real-world benefit of
Auto Tuner, we compared it against manually tuning Spark jobs by
Spark experts. A critical criterion for practical success was future
proofing. Auto Tuner was initially tuned using a specific set of
configurations. During testing, a larger and partially different set
of configurations was used to evaluate the performance gain.

In order to be suitable for practical use, a requirement for Auto
Tuner is to be able to give a decent prediction with a small number
of samples. Hence, it was tested allowing only 10 samples here with
a relatively small data set of SF1 (~1GB). The benefit increases with
increasing sample and data sizes. Evaluation on a large variety of
scenarios and benchmark queries showed sizable benefits (Figure 9).

4.4.3 Cost Analysis. For the jobs that get a reduction in run time
after tuning, it takes a few runs of the Spark job for it to become
profitable. This is to recover the initial cost spent in running the
iterative jobs spawned by Auto Tuner. We can represent the thresh-
old of number of runs it takes after which Auto Tuned jobs start
becoming profitable as follows:

Initial Runs

Threshold Runs = -
1 — Reduction Factor
A simplifying assumption in this formula is that the initial runs on
an average take the same time as an Spark job run prior to tuning.
In practice, however, they generally take much shorter time as the
tuning happens incrementally so the threshold is even better.

300 m Default

Auto-Tuned

RN SN SR SR~ S SN I B 2
&) .8 x$ x& O X X
&éﬁ © &cg @Qg 0& Q—oo A %o‘ & & > ‘2‘0 *2‘0
<P FC: eI
¥
<
&

Figure 9: Performance improvement with Auto Tuner.

For example, let us consider the Rank job in Figure 9. Auto Tuner
reduced the job completion time by around 28%. This gives us a
reduction factor of 0.28, and it took Auto Tuner 10 iterations to
achieve this, which gives us the threshold of 14 runs. Meaning,
after running 14 scheduled iterations (or fewer) of the Spark job,
we would have already recovered the initial cost spent.

4.4.4 Future Work. Going forward, we plan to do inter-job opti-
mization by identifying similar processing subsets across jobs and
start from an optimum point in the tuning space.

4.5 Managed Elastic Scaling

Auto Scaler performs infrastructure scaling and job scaling for op-
timizing performance and cost without users having to do upfront
capacity planning. Many Data Engineering use cases such sales and
retail have vastly varying workloads at different dates and times,
so being able to scale to fit the workload becomes critical.

4.5.1 Infrastructure Scaling. Automatically scaling the infrastruc-
ture involves scaling both the compute and storage resources. In
addition, we include a scheduler to do both in tandem.

Compute Scaler. We use a modified version of Kubernetes’ cluster
auto-scaler program to scale a cluster up and down. This scaler
relies on the resource requirements, both memory and CPU to
determine if more nodes are required for processing. The node
scaling algorithm ensures the correctness of job execution. During
downscaling, it checks for nodes where no jobs run, and it tracks
where the intermediate shuffle data for a node might be stored. If a
node hosts intermediate data, then the node is not removed from
the cluster until the subsequent stage of a Spark job has consumed
the data. This ensures that no Spark task needs to be rerun.

Storage Scaler. Spark jobs may use disk storage to store interme-
diate data such as shuffle service data and persisted Spark RDDs.
It is hard to predict the maximum storage size needed by each
compute node due to unpredictable job size and data skew during
shuffle stage. Because lack of storage on a compute node leads to job
failure, it is perhaps a more critical resource than a compute node,
lack of which results only in slow execution. Besides, storage costs
can be high — on AWS, one t2.2x1large with 1TB general-purpose
SSDs (EBS-backed) can cost around $1,500 per month. Storage scaler
reduces overall storage cost without user intervention.

It constantly monitors the disk usage of each node and dynam-
ically attaches additional storage volumes as need arises. This is
always bounded by the configured maximum storage size per node.

3328

1600

250 m Optimization Disabled 1400

Optimized

mNo Staging ~ Optimized Staging

~ 200 1200
2 150 2 1000
E 100 g s
s £ 600
50 400

0 200

Min 20% Half 0 Router with Router with Router with
Load 3groups 5groups 7 groups

Figure 10: Performance ben- Figure 11: Performance ben-
efit of dynamic partitioning. efit of optimized staging,.

The increase of storage is achieved by leveraging the logical vol-
ume manager (LVM) [29][30] feature from the Linux kernel with
no noticeable impact on job performance.

To further save storage costs, it also downscales a node’s storage
when its disk usage shrinks for an extended period of time. During
downscaling, since disks are unmounted, the scaler needs to wait
for an uninterrupted idle time period. For this, the scaler indicates to
Kubernetes not to schedule any pods on the node being downscaled
using Kubernetes’ taints[37] mechanism.

Scheduler. We use a modified version of Kubernetes’ default
scheduler [28] for pod scheduling. It assumes that it is scheduling
only Spark jobs on the cluster. The default scheduler schedules
Kubernetes pods across all nodes in a uniform manner. Instead,
our scheduler packs Spark Drivers or Executors (pods) on a node
for maximum utilization before choosing another node without
sacrificing performance. This allows aggressive downscaling.

4.5.2 Job Scaling. Parallelism in a Spark job is determined by the
number of partitions in its source data. Our custom Source Parti-
tioner dynamically determines the number of partitions. First, it
takes into account the compute cluster’s idle resource capacity:
with more idle capacity, it increases the number of partitions by
reducing size of each partition from Spark’s default 128MB. Sec-
ond, it handles a very large number of small files by batching them
into a single partition by applying a lower bound on each partition
size. Fewer Spark Executors also allow aggressive downscaling of
a compute cluster. Users do have the option of manually tuning a
Spark job’s partition count for desired resource use, allowing for
aggressive up-scaling of a compute cluster.

Figure 10 shows the comparison between default job scaler that
decides partition size based on total cluster capacity and Informatica
Job Scaler with dynamic partitioning. The evaluations were run
on AWS using a 10 node m5.2xlarge compute cluster for jobs
requiring less than 20% total cluster capacity, 20% cluster capacity,
and 50% cluster capacity.

4.5.3 Future work. We are working on features like forecasting
the need to speed up cluster startup and scaling times, allowing
users to have warm pool of instances, and allowing heterogeneous
instances and custom schedulers to suit their specific use-cases.
Additionally, while the current scheduler works with Spark jobs,
we plan to expand to different types of jobs.

4.6 Pipeline Branching Optimization

Data is often sent to multiple downstream pipelines to apply dif-
ferent transformations, or to load the data into various targets.
A Router transformation directs the data based on a conditional
expression, in which downstream pipelines get a row sent to it.

Spark, a pull-based processing engine, is not designed to handle
such use cases very efficiently due to its lazy evaluation technique.
For example, Apache Spark executes a job with multiple branches to
generate multiple Spark jobs, one for each loading target. Each job
re-executes the shared upstream logic to run these jobs in sequential
order. Let us consider a use case, where an organization wants
to split their incoming data into three branches for non-GDPR
requirement country, GDPR required European country and, GDPR
required non-European country.

A representative code for this use case is shown below. Even for
this simple use case, three Spark jobs are created.

val df = spark.read.parquet ("gdprdata.parquet")

df.where(df("gdpr") === "no")
.write.parquet("nogdpr.parquet")

df .where(df ("gdpr") === "yes" && df("eur") === "yes")
.write.parquet("gdpreur.parquet")

df .where(df ("gdpr") === "yes" && df("eur") === "no")

.write.parquet("gdprnoeur.parquet")
There are two main concerns related to pipeline branching:

o This may result in sub-optimal performance due to repeated
computation and sequential evaluation, especially when the
computation cost of the common upstream pipeline is high.

e Data consistency can also be challenging if some data trans-
formation in the common upstream pipeline does not pro-
duce deterministic output, such as random data or Univer-
sally Unique Identifier (UUID) generation per row.

Apache Spark Solution. A programmer can persist Spark RDD
representing the common upstream pipeline to avoid repeated exe-
cution, but Spark program execution semantics does not guarantee
it. For example, Spark can re-execute an RDD to manage the im-
plicit persistence store space, leading to possibly inconsistent data
silently. If the programmer uses an alternate staging area to avoid
repeated execution, the performance of downstream pipelines is not
optimal if each pipeline reads the entire staged data. Each down-
stream pipeline is interested only in subset of the entire staged
data. The more downstream pipelines there are, the less efficient
the solution is unless the programmer implements an optimized
solution for this problem like our service does.

CDI-E Solution. This benefits our users without any extra ef-
fort from a user during design time. Mapping Processing Layer
can detect downstream pipeline branches. Mapping Optimizer for
Spark component in that layer optimizes Spark code generation
for both scenarios. This component generates optimized interme-
diate staging data when it detects any built-in non-deterministic
transformation expression, otherwise avoids staging.

No Staging. The optimizing component generates code for a
thread pool allowing downstream RDDs, representing independent
pipeline branches, to execute in parallel. This speeds up overall
job completion time compared to code that executes downstream
Spark RDDs sequentially.

3329

Optimized Staging. The optimizing component generates code
for staging data to a file in Parquet format in a manner that allows
a downstream pipeline to read data it is interested in. It assigns
an ID to each of the downstream pipelines. After evaluation of a
conditional expression on a row, it is tagged with the ID of the
recipient pipeline using an intermediate temporary column. The
generated code for a downstream pipeline that reads the staged
parquet file has an additional filter condition to identify the pipeline.
The end result is that each downstream pipeline does not have to
read the entire staged data. The parallel execution mode adopted
for the no-staging case is used for this case also.

Figure 11 shows parallel job execution with detailed data staging
versus parallel job execution with smart data staging for SF100
Lineitem data from TPC-H benchmark on a 10 node m5. 2xLarge
cluster. We observe an increasing gap with increasing complexity.

4.7 Data Security and Isolation

When a mapping task runs in a compute cluster (Table 2), it reads
and writes to an enterprise’s data source. It might produce inter-
mediate temporary files. One notable aspect here is that such a job
no longer maintains any persistent storage such as cache files once
it terminates. Such jobs may also produce execution logs, which
may contain data from data sources when logging level is verbose.
Our multi-tenant service supporting multiple enterprises on the
same infrastructure needs to isolate enterprises from each other
with respect to data sources, temporary files, and log files.

Enterprise VPC Option. We simply piggyback on VPC isolation
provided by the cloud vendors. In this case, a compute cluster
runs entirely within the customer’s enterprise VPC. An enterprise
provides us with a cloud account credential that has all the required
capabilities such as starting, expanding a compute cluster within
that customer’s VPC. The compute nodes of that cluster have access
to the data sources within that VPC. Enterprise data never leaves
the customer network. Intermediate persistent files are part of the
ephemeral compute cluster. The execution log files are archived
to a cloud storage location of the customer’s choosing, specified
through a compute cluster object. A developer can access these
log files through cloud storage’s web interface or associated tool.
However, for easy browsing of these log files by a user, our service
does offer a web U, which is accessible on our service cloud after
user provides an explicit consent, required to move the log files to
the user’s computer through our service network.

Serverless Warmpool Option. With a serverless warmpool, com-
pute nodes are part of our service’s VPC. We instantiate compute
nodes with a configuration that allows access to data sources within
an enterprise’s VPC but isolated from other enterprise’s VPC. These
compute nodes are typically pre-allocated in a vanilla state based
on aggregate utilization to improve scale-up time and are assigned
once to join a compute cluster. These compute nodes, along with at-
tached persistent disks, are never reused. That is, they are destroyed
as soon as such a compute node is removed from a compute cluster
after a single use. This compute node destruction step ensures that
intermediate temporary data files are not leaked.

To enable network traffic to flow between the VPC of our service
and the enterprise’s VPC, we configure multi-homed compute nodes

using Virtual Network Interface Cards (VNIC). Each VNIC belongs
to a specific cloud account. We configure our enterprise customer
owned VNIC within a compute node to handle network traffic
to and from the customer VPC and nothing else. Any network
interaction with our services from such a compute node uses the
other VNIC that belongs to our service’s cloud account. It is clear
that the cloud vendor’s security mechanism needs to facilitate the
ability of a cloud account to use a VNIC of a different cloud account
in this manner. For example, AWS provides such a mechanism
through their Cross Account Role and Security Group primitives to
implement the plan we describe.

Our customers benefit from this option with a simplified com-
pute cluster configuration without having to go into cloud vendor-
specific compute instance configuration and network configuration
that is associated with a Kubernetes compute cluster. Our customers
can simply specify CPU cores and memory in a generic manner.

4.8 Productivity Evaluation

Informatica CDI-E provides a number of key benefits for the cus-
tomers. Nucleaus Research[32], a third-party company, did a com-
prehensive analysis of the ROI of using Informatica technology [33]
and identified the following key benefits:

e An average ROI of 321% over a three-year period, with an
average payback period of 4 months.

62% higher monthly revenue from streamlined processing.
20-70% reduction in ETL process time.

40-55% reduction in new integration job setup time.
15-35% less time spent on data quality assurance tasks.

5 RELATED WORK

Data Integration for the Cloud. Data integration has a storied
history in the database literature [42, 43, 48, 50, 57]. We highlight a
few recent advances for the cloud. On the one hand, there are cloud-
based parallel database-inspired systems such as Amazon Redshift
[1, 44], Google BigQuery [16], and Azure Synapse Analytics [15].
On the other hand, there are document stores such as MongoDB
[31] and Apache Cassandra [4], as well as unstructured “Big Data”
frameworks such as Apache Spark [9] and Facebook Presto [34]. In-
formatica CDI-E[26] combines the best of both worlds and exposes
them through a simple interface.

No-Code Data Engineering. Interacting with data using a GUI
is becoming increasingly popular in the research community [54].
However, most existing cloud services such as Amazon Glue [10],
Azure Data Factory (ADF) [19], and Databricks [20] that perform
large-scale data engineering jobs using Apache Spark primarily use
(manual) programming language interfaces. ADF has introduced
Mapping data flow which has a GUI and is similar to our mapping
concept. Informatica pioneered the use of GUI for enterprises for
ETL jobs in late 1990s. Unlike CDI-E, GUI-based Business Process
Integration cloud services such as Azure Logic Apps[14], Informat-
ica Cloud Application Integration[25] process integration data at
message level, instead of large data blocks from data sources like
Parquet files.

Serverless Data Analytics. All major cloud service providers have
serverless or Functions-as-a-Service (FaaS) platforms [11, 13, 17].

3330

Several research projects focused on large-scale data processing
leveraging these native serverless platforms [46, 51-53, 55]. At the
same time, many companies provide managed, serverless analytics
solutions to their customers on top of Infrastructure-as-a-Service
(IaaS) platforms. In contrast, Informatica provides this capability
through a no-code programming environment for the users.

Elastic Scaling. Amazon Glue, Databricks, and others support
scaling of jobs through addition of new computing nodes. Glue
service supports scaling of compute node that is similar to our
serverless warmpool component’s functionality. Elastic scaling is
also widely explored in databases [40, 45, 47, 49, 58].

6 CONCLUSIONS

CDI-E abstractions are proven. Although CDI-E is relatively new,
its core abstractions (§3.1) have been in continuous use since late
1990s. With more than 5,500 satisfied customers, we did not need
to change the programming interface, which helped their seamless
transition to CDI-E in large data lakes.

Design time data exploration is crucial. When users design a
mapping, they like to explore data visually in the data source’s data
type and display format. This helps them to understand necessary
data type conversion and extraction of relevant fields of a record,
especially in a hierarchy. A standard interface to integrate any new
data source connector at design time is essential.

Users need easier semi-structured document processing support.
From early 2000s prominence of XML documents to the now-
dominant JSON format, user requirements keep changing. The
constant for us is to provide an easier way to process these in batch
jobs using our programming interface.

Open-source software made implementation of CDI-E easier. High
quality open-source software such as Apache Spark and Kubernetes
are invaluable. For example, Apache Spark’s support for nested
data types in a row made it easier for us to support complex data
formats. We were able to modify both Spark and Kubernetes to get
the execution behavior we wanted without any surprises.

Looking forward. Our plans in the near future for CDI-E include
(1) more cost savings across all fleets; (2) native serverless support
across all cloud vendors; (3) improving user ability to mix GUI func-
tionalities with custom code; (4) democratizing data sources and
transformation logic through an open API; (5) automated cluster
configuration (e.g., picking the best combination of VM instances);
and (6) improved support for streaming and real-time data.

As the number of users using CDI-E grows, we will understand
enterprise job patterns even more. With enterprises’ consent, we
can then leverage machine learning techniques to provide automatic
recommendations to make users more productive.

ACKNOWLEDGMENTS

CDI-E is the work of many people at Informatica, and we would like
to thank them all for their effort, dedication, incredibly hard work
and all the great innovations. We would like to thank David Cao,
Bala Kumaresan, Daphne Williams, Brett Roscoe, Sumeet Agrawal,
Abhilash Mula, Oscar Najarro and all other reviewers of the paper
for their great comments and feedback.

REFERENCES

O

3

N

~N o U

8
9
[
[
[

[13]
[14]

=R = = e e — — —

]
1
]
]
]
]
1
]
]
0]
1]
2]

[15]

[16]
[17
(18]
[19]
[20]

(32]
[33]

[34]
[35

[36

[37]

[38
[39]

[40

[42]

[43

E)
a

. Amazon Redshift. https://aws.amazon.com/redshift/.

. Amazon Simple Storage Service (S3). https://aws.amazon.com/s3.

. Apache Avro. https://avro.apache.org.

. Apache Cassandra. https://cassandra.apache.org.

. Apache Hadoop. https://www.hadoop.apache.org.

. Apache Hive. https://www.hive.apache.org.

. Apache ORC. https://orc.apache.org.

. Apache Parquet. https://parquet.apache.org.

. Apache Spark. https://spark.apache.org.

. AWS Glue. https://aws.amazon.com/glue/.

n.d.]. AWS Lambda. https://docs.aws.amazon.com/lambda/.

[n.d.]. Azure Blob Storage. https://docs.microsoft.com/en-us/azure/storage/
blobs/storage-blobs-overview.

[n.d.]. Azure Functions. https://azure.microsoft.com/en-us/services/functions/.
[n.d.]. Azure Logic Apps. https://azure.microsoft.com/en-us/services/logic-
apps/#overview.

[n.d.]. Azure Synapse Analytics. https://azure.microsoft.com/en-us/services/
synapse-analytics/.

[n.d.]. BigQuery. https://cloud.google.com/bigquery.

[R ek

sBBBBEBBEB

Fast_Healthcare_Interoperability_Resources.

[n.d.]. Health Insurance Portability and Accountability Act. https://www.hhs.
gov/hipaa.

[n.d.]. HL7 International. https://hl7.org.

[n.d.]. Informatica Cloud Application Integration. https://www.informatica.com/
products/cloud-application-integration.html.

[n.d.]. Informatica’s Cost Optimization Engine. https://www.informatica.com/
Ip/informaticas-cost-optimization-engine_4257.html.

[n.d.]. JavaScript Object Notation. https://www.json.org.

[nd.]. Kubernetes Scheduler. https://www.kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/.

[n.d.]. LVM. https://www.tecmint.com/create-lvm-storage-in-linux/.

[n.d.]. LVMI. https://www.tecmint.com/extend-and-reduce-lvms-in-linux/.
[n.d.]. MongoDB. https://www.mongodb.com.

[n.d.]. Nucleus Research. https://nucleusresearch.com/.

[n.d.]. Nucleus Research Informatica. https://nucleusresearch.com/research/
single/roi-guidebook-informatica/.

[n.d.]. presto. https://prestodb.io.

[n.d.]. Running Spark on Kubernetes. https://www.spark.apache.org/docs/latest/
running-on-kubernetes.html.

[n.d.]. SWIFT EDI Document Standard. https://www.edibasics.com/edi-
resources/document- standards/swift/.

[n.d.]. Taints and Tolerations. https://www.kubernetes.io/docs/concepts/
scheduling-eviction/taint-and-toleration/.

[n.d.]. TPC. https://www.tpc.org.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jian-
sheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceedings
of the 2016 International Conference on Management of Data. 215-226.

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: Lightweight elasticity in shared storage databases for the cloud using
live data migration. Proceedings of the VLDB Endowment 4, 8 (2011), 494-505.
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Commun. ACM 51, 1 (jan 2008), 107-113. https:
//doi.org/10.1145/1327452.1327492

AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. 2012. Principles of Data
Integration. Morgan Kaufmann. https://research.cs.wisc.edu/dibook/

Xin Luna Dong and Divesh Srivastava. 2013. Big data integration. In ICDE. IEEE,
1245-1248.

3331

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD
’15). Association for Computing Machinery, New York, NY, USA, 1917-1923.
https://doi.org/10.1145/2723372.2742795

Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish
Tatikonda, and Frederick R Reiss. 2015. Resource elasticity for large-scale ma-
chine learning. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. 137-152.

Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards demystifying serverless
machine learning training. In ACM SIGMOD. 857-871.

Jorn Kuhlenkamp, Markus Klems, and Oliver Ross. 2014. Benchmarking scal-
ability and elasticity of distributed database systems. Proceedings of the VLDB
Endowment 7, 12 (2014), 1219-1230.

Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. 233-246.

Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. 2020.
Elastic machine learning algorithms in amazon sagemaker. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 731-737.
Renée] Miller. 2018. Open data integration. Proceedings of the VLDB Endowment
11, 12 (2018), 2130-2139.

Ingo Miiller, Renato Marroquin, and Gustavo Alonso. 2020. Lambada: Interactive
data analytics on cold data using serverless cloud infrastructure. In ACM SIGMOD.
115-130.

Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.
2020. Starling: A scalable query engine on cloud functions. In ACM SIGMOD.
131-141.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In USENIX NSDI. 193-206.
Protiva Rahman, Lilong Jiang, and Arnab Nandi. 2020. Evaluating interactive
data systems. The VLDB Journal 29, 1 (2020), 119-146.

Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman, Ion
Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. numpywren: Serverless
linear algebra. arXiv preprint arXiv:1810.09679 (2018).

Michael Stein. 1987. Large Sample Properties of Simulations Using Latin Hy-
percube Sampling. Technometrics 29, 2 (1987), 143-151. https://doi.org/10.1080/
00401706.1987.10488205

Michael Stonebraker, Thab F Ilyas, et al. 2018. Data Integration: The Current
Status and the Way Forward. IEEE Data Engineering Bulletin 41, 2 (2018), 3-9.
Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-
grained elastic partitioning for distributed transaction processing systems. Pro-
ceedings of the VLDB Endowment 8, 3 (2014), 245-256.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: A
Warehousing Solution over a Map-Reduce Framework. Proc. VLDB Endow. 2, 2
(aug 2009), 1626-1629. https://doi.org/10.14778/1687553.1687609

Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy Xia, and Li Zhang. 2004.
A Smart Hill-Climbing Algorithm for Application Server Configuration. Thir-
teenth International World Wide Web Conference Proceedings, WWW2004 (04 2004).
https://doi.org/10.1145/988672.988711

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). 15-28.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ton Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing (Boston, MA)
(HotCloud’10). USENIX Association, USA, 10.

https://aws.amazon.com/redshift/
https://aws.amazon.com/s3
https://avro.apache.org
https://cassandra.apache.org
https://www.hadoop.apache.org
https://www.hive.apache.org
https://orc.apache.org
https://parquet.apache.org
https://spark.apache.org
https://aws.amazon.com/glue/
https://docs.aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/logic-apps/##overview
https://azure.microsoft.com/en-us/services/logic-apps/##overview
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://cloud.google.com/bigquery
https://cloud.google.com/functions
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/services/data-factory/
https://databricks.com
https://www.w3.org/xml
https://en.wikipedia.org/wiki/Fast_Healthcare_Interoperability_Resources
https://en.wikipedia.org/wiki/Fast_Healthcare_Interoperability_Resources
https://www.hhs.gov/hipaa
https://www.hhs.gov/hipaa
https://hl7.org
https://www.informatica.com/products/cloud-application-integration.html
https://www.informatica.com/products/cloud-application-integration.html
https://www.informatica.com/lp/informaticas-cost-optimization-engine_4257.html
https://www.informatica.com/lp/informaticas-cost-optimization-engine_4257.html
https://www.json.org
https://www.kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://www.kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://www.tecmint.com/create-lvm-storage-in-linux/
https://www.tecmint.com/extend-and-reduce-lvms-in-linux/
https://www.mongodb.com
https://nucleusresearch.com/
https://nucleusresearch.com/research/single/roi-guidebook-informatica/
https://nucleusresearch.com/research/single/roi-guidebook-informatica/
https://prestodb.io
https://www.spark.apache.org/docs/latest/running-on-kubernetes.html
https://www.spark.apache.org/docs/latest/running-on-kubernetes.html
https://www.edibasics.com/edi-resources/document-standards/swift/
https://www.edibasics.com/edi-resources/document-standards/swift/
https://www.kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://www.kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://www.tpc.org
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://research.cs.wisc.edu/dibook/
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1145/988672.988711

