
Programmable Packet Scheduling with a SingleQueue
Zhuolong Yu

Johns Hopkins University

Chuheng Hu

Johns Hopkins University

Jingfeng Wu

Johns Hopkins University

Xiao Sun

Stony Brook University

Vladimir Braverman

Johns Hopkins University

Mosharaf Chowdhury

University of Michigan

Zhenhua Liu

Stony Brook University

Xin Jin

Peking University

ABSTRACT
Programmable packet scheduling enables scheduling algorithms to

be programmed into the data plane without changing the hardware.

Existing proposals either have no hardware implementations for

switch ASICs or require multiple strict-priority queues.

We present Admission-In First-Out (AIFO) queues, a new solu-

tion for programmable packet scheduling that uses only a single
first-in first-out queue. AIFO is motivated by the confluence of

two recent trends: shallow buffers in switches and fast-converging
congestion control in end hosts, that together leads to a simple

observation: the decisive factor in a flow’s completion time (FCT)

in modern datacenter networks is oftenwhich packets are enqueued
or dropped, not the ordering they leave the switch. The core idea of

AIFO is to maintain a sliding window to track the ranks of recent

packets and compute the relative rank of an arriving packet in the

window for admission control. Theoretically, we prove that AIFO

provides bounded performance to Push-In First-Out (PIFO). Empir-

ically, we fully implement AIFO and evaluate AIFO with a range

of real workloads, demonstrating AIFO closely approximates PIFO.

Importantly, unlike PIFO, AIFO can run at line rate on existing

hardware and use minimal switch resources—as few as a single

queue.

CCS CONCEPTS
• Networks→ Programmable networks; Packet scheduling;
In-network processing; Data center networks.

ACM Reference Format:
Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,

Mosharaf Chowdhury, Zhenhua Liu, andXin Jin. 2021. Programmable Packet

Scheduling with a Single Queue. In ACM SIGCOMM 2021 Conference (SIG-
COMM ’21), August 23–28, 2021, Virtual Event, Netherlands. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3452296.3472887

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472887

1 INTRODUCTION
Packet scheduling is a central research topic in computer network-

ing. Over the past several decades, a great many packet scheduling

algorithms have been designed to provide different properties and

optimize diverse objectives [6, 11, 23, 40, 41]. Unfortunately, most

of these algorithms, despite many novel ideas among them, never

have found their way to impact the real world. This is largely due to

the high cost to design and deploy switch ASICs to implement them,

since packet scheduling algorithms must run in the data plane at

line rate in order to process every single packet.

Programmable packet scheduling is a holy grail for packet sched-

uling as it enables scheduling algorithms to be programmed into a

switch without changing the hardware design. With programmable

packet scheduling, one is able to develop or simply download a

packet scheduling algorithm that best matches the operational goals

of the network. This enables network operators to highly customize

packet scheduling algorithms based on their needs. Particularly,

it simplifies the testing and deployment of new scheduling algo-

rithms, and it enables algorithms that are targeted at small niche

markets and thus cannot justify the high cost of developing new

switch ASICs to be used and deployed.

A Push-In First-Out (PIFO) queue is a popular abstraction for

programmable packet scheduling [3, 47]. PIFO associates a rank

with each packet and maintains a sorted queue to buffer packets.

Newly arrived packets are inserted into the queue based on their

ranks, and packets are dequeued from the head. Different packet

scheduling algorithms can be implemented on top of PIFO by chang-

ing the rank computation function. Prior works have shown that

PIFO can support a wide range of popular scheduling algorithms,

such as Shortest Remaining Processing Time (SRPT) [41] for mini-

mizing flow completion times (FCTs) and Start-Time Fair Queueing

(STFQ) [13] for weighted fairness.

PIFO, while elegant in theory, is challenging to implement in

practice. A recent work [47] proposes a hardware design to support

PIFO at a clock frequency of 1 GHz on shared-memory switches.

The major design complexity lies in supporting a sorted queue at

1 GHz. Yet, there is a gap from the design to a real switch ASIC

implementation, and the design has scalability limitations—it can

only support a few thousand flows. SP-PIFO [3] is an approximation

of PIFO that can run on existing hardware. The basic idea is to map

the possibly large number of ranks into a small set of priorities,

and then simply schedule the small number of queues based on

https://doi.org/10.1145/3452296.3472887
https://doi.org/10.1145/3452296.3472887

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

their priorities. This solution, however, requires multiple precious

strict-priority queues.

In this paper, we present Admission-In First-Out (AIFO) queues,

a new solution for programmable packet scheduling that uses only

a single first-in first-out (FIFO) queue. FIFO (drop-tail) queues are

one of the simplest queues that can run at line rate and are available

in almost all switches. Thus, AIFO is amenable to be implemented

in high-speed switches with line rate, and we show not only a

concrete design, but also a real implementation of AIFO on ex-

isting hardware (Barefoot Tofino), with minimal requirements on

hardware primitives—a single FIFO queue, as opposed to multiple

strict-priority queues.

AIFO is motivated by the confluence of two recent trends in

datacenter networking: shallow buffers in the switches [5] and

fast-converging congestion control protocols implemented in end

hosts [22]. Together, they significantly reduce the queueing latency

inside the network, which is especially important for datacenter

environments where low latency is critical for real-time online

services with strict Service Level Objectives (SLOs) [5]. Given these

trends, we observe that the decisive factor in modern datacenters

is often which packets are enqueued or dropped by the switch, not

the ordering in which they leave the switch. For example, dropping

packets of an elephant flow when it competes with two mice flows

is more important to the flow completion times of the mice flows

than the ordering that their packets are dequeued, especially when

the queue length is kept small such that only a few packets occupy

it at any moment.

Based on this insight, the major technical challenge we tackle in

this paper is finding the right set of packets to admit into the queue.
Ideally, AIFO should admit the same set of packets as PIFO to closely

approximate it. AIFO addresses this challenge by maintaining a

sliding window to track the ranks of recent packets in the window

and computing the relative rank of an arriving packet in order

to decide whether to admit or proactively drop it even when the

queue may still have room! Unlike traditional active queue manage-

ment (AQM) solutions, AIFO drops packets based on their relative

ranks instead of using threshold comparisons against average queue

length [12, 34, 35] or delay estimations [32]. Theoretically, we prove

that AIFO provides performance close to that of PIFO. We comple-

ment it with a concrete data plane design and implementation to

show how to efficiently realize AIFO on Barefoot Tofino.

AIFO explores an interesting design question: what are the min-

imal hardware requirements for programmable packet scheduling?

AIFO is an extreme point in the design space—it only requires a

single FIFO queue. This is not only theoretically interesting, but

also has important practical implications. Our conversations with

industry collaborators, including a large-scale search engine and a

large-scale e-commerce service, indicate that physical queues are

critical resources, and are reserved to ensure strong physical isola-

tion and differentiation between applications of multiple tenants;

modern datacenters are already short of physical queues available in

switches. Unlike SP-PIFO which requires multiple physical queues

for packet scheduling, AIFO enables operators to continue using

physical queues for strong physical isolation and differentiation

between tenants, and additionally use AIFO to program the packet

scheduling algorithm for intra-tenant traffic (e.g., SRPT to minimize

the flow completion time).

1245
first out

PIFO

Rank
Computation

push in

3

p.rank= p.remaining_processing_time

Rank Computation for Shortest Remaining Processing Time (SRPT)

if p belongs to a new flow:
p.start = virtual_time

else:
p.start = max(virtual_time, finish_time[p.flow_id])

finish_time[p.flow_id] = p.start + p.length/weight[p.flow_id]
p.rank = p.start

Rank Computation for Start-Time Fair Queueing (STFQ)

Figure 1: Background on programmable packet scheduling
with PIFO.

As an unexpected positive byproduct, AIFO naturally supports

starvation prevention by design, a necessary feature of pFabric [6]

that schedules the packets of the same flow in FIFO to prevent

packet reordering. While PIFO supports a wide variety of schedul-

ing algorithms, it cannot support starvation prevention needed by

pFabric because the latter packets of a flow would be scheduled first

when PIFO is programmed to use SRPT. With the strong demand

on minimizing FCTs for low-latency online services, pFabric is ar-

guably the killer application of programmable packet scheduling, as

pFabric is considered to be one of the best solutions for minimizing

FCTs. AIFO enables us to implement and deploy pFabric on existing

hardware.

In summary, we make the following contributions.

• We propose AIFO, a new approach to programmable packet

scheduling that uses only a single queue.

• We design an algorithm based on sliding windows and efficient

relative rank computation to realize AIFO in the switch data plane.

Theoretically, we prove that AIFO provides bounded performance

to PIFO.

• We implement a AIFO prototype on a Barefoot Tofino switch.

We use a combination of simulations and testbed experiments to

evaluate AIFO under a range of real workloads and scheduling

algorithms, demonstrating AIFO closely approximates PIFO.

Open-source. The code of AIFO is open-source and is publicly

available at https://github.com/netx-repo/AIFO.

2 BACKGROUND AND MOTIVATION
In this section, we first provide background information on pro-

grammable packet scheduling, and then use an example to motivate

the key ideas of AIFO.

2.1 Programmable Packet Scheduling
Programmable packet scheduling enables the packet scheduling

algorithm in a switch to be changed without the need to change

the switch ASIC. PIFO [47] is a proposal for programmable packet

scheduling. It contains two components: a PIFO queue and a rank

computation component. Each packet is associated with a rank. The

https://github.com/netx-repo/AIFO

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

1122

FIFO

145122 rank<3?
yes

1122

PIFO

145122

1451

FIFO

145122

(a) Push-In First-Out (PIFO).

(b) First-In First-Out (FIFO).

(c) Admission-In First-Out (AIFO).

Admission Control

Figure 2: Motivating example of AIFO.

PIFO queue is a priority queue that sorts packets based on their

ranks. Packets are inserted into the queue based on their ranks, and

are dequeued from the head (i.e., the smallest rank).

Programmability lies in the rank computation component. Pro-

gramming a packet scheduling algorithm in the context of PIFO

refers to programming how a rank for each packet is computed.

One simple example is to program SRPT [41] for minimizing FCTs,

as shown in Figure 1. In this example, the rank of a packet is simply

the remaining processing time of the flow (or simply the remaining

bytes of the flow). Note that SRPT requires end hosts to put the

remaining processing time in an appropriate field in the packet

header [6, 41], which is orthogonal to packet scheduling in the

switch. Given such rank computation, the PIFO queue would sched-

ule the packet with the shortest remaining processing time first,

i.e., realizing SRPT.

Amore complicated example is to program STFQ [13] forweighted

fairness, which is also shown in Figure 1. In this example, the rank

of a packet is the virtual start time of the packet in STFQ. The vir-

tual start time is computed as the maximum of the virtual time and

the virtual finish time of the previous packet of the same flow. The

virtual time maintains the virtual start time of the last dequeued

packet across all flows. The virtual finish time of a packet is the

virtual start time of the packet plus the length of the packet divided

by the flow weight. Given such rank computation, the PIFO queue

would schedule the packet with the smallest virtual start time first,

i.e., realizing STFQ.

Beyond these two example, it has been shown that PIFO can

support a wide range of packet scheduling algorithms, such as

Least-Slack Time-First [23], Service-Curve Earliest Deadline First

(SC-EDF) [40], etc.

2.2 Motivating Example
While PIFO is an appealing solution for programmable packet sched-

uling, it is challenging to implement in hardware, especially in

switch ASICs. The rank computation component is relatively easy.

It can be implemented as a packet transaction [46] in the data plane

of existing programmable switches. The major challenge is to im-

plement the PIFO queue. Existing switches do not support a sorted

queue in the data plane. There is a proposal on how to support

a sorted queue in the data plane at 1 GHz [47]. But the proposal

1212

FIFO

145212 rank<3?
yes

1122

PIFO

145212

(a) Push-In First-Out (PIFO).

(b) Admission-In First-Out (AIFO).

Admission Control

Figure 3: An example that PIFO and AIFO dequeue the same
set of packets ({1, 1, 2, 2}), but the dequeueing orderings are
different ([1, 1, 2, 2] vs. [1, 2, 1, 2]).

only provides a design, not a real implementation, and the design

is not scalable as it can only support a few thousand flows. SP-

PIFO [3] provides an approximation of a PIFO queue using multiple

strict-priority queues. But strict-priority queues are precious hard-

ware resources as commodity switches have a limited number of

strict-priority queues and the operators would like to use them to

ensure strong physical isolation between multiple tenants. In this

paper, we aim to design a solution that has the minimal hardware

requirements for programmable packet scheduling.

Example. To find such a solution, let us get down to the funda-

mentals to analyze the problem. We consider the arrival traffic and

departure traffic of a queue. When the packet arrival rate is no

higher than the link speed (i.e., the upper bound of the departure

rate), the entire traffic is admissible and there is no persistent queue

buildup. It does not matter whether the queue is PIFO, FIFO, or

anything else. The distinction happens when the arrival rate is

higher than the link speed, which can be either due to a microburst

or a longer-term congestion. In this case, some of the packets are

not admissible and the queuing discipline matters.

We examine the examples in Figure 2. The example is simplified

to provide the intuition of our approach. In the example, there is

a burst of six packets arriving at the switch. The queue has four

slots and is empty in the beginning. For the first four packets, PIFO

would enqueue them one by one and the sorted queue becomes

[1, 1, 4, 5]. Then when the fifth packet with rank 2 arrives, PIFO

would insert the packet into the queue and the last packet in the

queue is dropped due to overflow. The queue becomes [1, 1, 2, 4].

Finally, when the sixth packet arrives, the last packet in the queue

is dropped again and the queue is [1, 1, 2 ,2] in the end.

In terms of FIFO, it enqueues the packets one by one. After four

packets, the queue is full, and the fifth and sixth packets cannot

be enqueued. The queue is [1, 4, 5, 1] in the end. PIFO and FIFO

behave very differently.

However, if there is an oracle that knows the precise arrival

pattern of the packets in advance, then the switch can perform

admission control before the packets are enqueued. Specifically for

the example in Figure 2, the admission control can use a threshold

of 3. If the rank of a packet is no bigger than 3, then the packet

can be enqueued; otherwise the packet is dropped. With this, the

second and third packets would be dropped and the queue is [1,

1, 2, 2] in the end. FIFO with such admission control behaves the

same as PIFO in this example.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

3 DESIGN GOAL
Based on the insights from the motivating example, we can trans-

form the packet scheduling problem into an admission control

problem, and PIFO can be approximated by FIFO with admission

control.

We term this approach AIFO. Our goal is to minimize the gap

between the ideal case (i.e., PIFO) and the approximation (i.e., AIFO).

The gap can be measured quantitively with the following metric:

the difference between the packets dequeued by PIFO and those

dequeued by AIFO. Formally, let the set of packets dequeued (up to

time 𝑡) by PIFO and AIFO to be P(𝑡) and A(𝑡), respectively. Then
we use

Δ(𝑡) = |P(𝑡) \ A(𝑡) | + |A(𝑡) \ P(𝑡) ||P(𝑡) | + |A(𝑡) | (1)

to measure the gap between PIFO and AIFO. Here, |P(𝑡) \ A(𝑡) |
is the cardinality of the set difference between P(𝑡) and A(𝑡), and
|A(𝑡) \ P(𝑡) | is that between A(𝑡) and P(𝑡). |P(𝑡) | and |A(𝑡) | are
the cardinalities of sets P(𝑡) and A(𝑡), respectively.

We have Δ(𝑡) ∈ [0, 1], and a large value of Δ indicates a large gap

between AIFO and PIFO. When AIFO and PIFO dequeue the same

set of packets (i.e., no gap), Δ = 0; when AIFO and PIFO dequeue

completely different packets, Δ = 1. We theoretically prove that the

difference between AIFO and PIFO is negligible when the system

is stationary (§4), and empirically demonstrate that AIFO provides

close performance as PIFO with a range of real workloads (§5).

Packet ordering. Another possible metric would be to not only

count the number of different packets that are dequeued, but also

account for the difference in the dequeuing ordering. Figure 3 pro-

vides an example to illustrate this metric. The example is similar to

the one in Figure 2, and the only difference is that the third and the

fourth arrival packets are swapped in Figure 3. With this arrival

sequence of packets, AIFO still admits the same set of packets as

PIFO, which are {1, 1, 2, 2}. However, the orderings that the packets

are dequeued are different. AIFO uses the ordering [1, 2, 1, 2], which

PIFO uses the ordering [1, 1, 2, 2].

We argue that this metric is less important than the first metric,

and sometimes is even undesirable to optimize for. First, there

are two important trends for datacenter networking: (𝑖) the trend
towards shallow buffers for low latency in modern datacenters [5];

and (𝑖𝑖) the trend towards tight control loops at end hosts [22]. The
confluence of these two trends ensures that the switch queueswould

not buffer many packets, making the difference on the dequeueing

ordering between PIFO and AIFO minimal. As we are essentially

emulating PIFO with a FIFO queue, we want to keep the buffer

shallow so that the packets can have a short waiting time in the

queue. Empirically, we show in Section 5 that such a difference

would not impact the flow-level metrics like flow completion time

(FCT) much and AIFO behaves almost the same as PIFO.

Second, strictly following PIFO causes packet reorderings, which

is undesirable. SRPT achieves near optimality onminimizing FCTs [41];

it schedules flows based on the remaining flow size, so that small

flows are scheduled before big flows to minimize FCTs. Packet re-

orderings happen when PIFO is programmed to implement SRPT

by using the remaining flow size as the rank (like Figure 1). This

is because for the same flow, a latter packet would have a smaller

remaining flow size than its previous packet, and thus is scheduled

first by the switch if both packets are enqueued by the switch.

This is a known issue, and pFabric [6] addresses this issue by

adding an extra feature called starvation prevention to SRPT. Star-

vation prevention dequeues the packets of the same flow in the

order they arrive, so that the first packet of a flow would be de-

queued first if the flow is scheduled and the first packet would

not be starved. Between flows, pFabric uses SRPT to select which

flow to schedule first. Given the strong demand on low-latency

for datacenter networks, pFabric is arguably the killer application

of programmable packet scheduling. Yet, it cannot be supported

by PIFO [47]. Unexpectedly, a positive byproduct of AIFO is that

it naturally supports starvation prevention and eliminates packet

reordering by design.

Summary. To summarize, our goal is to design an algorithm that

has the minimal hardware requirements (i.e., a single queue) and

admits the right set of packets to minimize Δ and maintain shallow

buffers. The algorithm should be able to be implemented in the

data plane of existing hardware and run at line rate. We want to

ensure that the algorithm provides bounded performance to PIFO

with respect to Δ.

4 AIFO DESIGN
In this section, we first introduce the key ideas of AIFO. Then we

describe the AIFO algorithm, and theoretically prove that AIFO

closely approximates PIFO. Finally, we describe the switch data

plane design to implement AIFO on a programmable switch.

4.1 Key Ideas
AIFO only uses a single FIFO queue, instead of a PIFO queue or

multiple strict-priority FIFO queues. It adds admission control in

front of the FIFO queue to decide whether to admit or drop an ar-

riving packet. Admitted packets are buffered and sent by the queue

in FIFO order, and no extra scheduling is needed. The admission

control is designed to minimize Δ described in Section 3, in order

to minimize the gap between AIFO and PIFO.

AIFO achieves a close approximation of PIFOwith two-dimensional
admission control by simultaneously considering both time and
space dimensions. Its temporal component considers the time dimen-

sion by changing the threshold over time based on the fluctuation

of the arrival rate; its spatial component considers the space dimen-

sion by deciding the threshold based on the ranks of the packets

at each time. These two together ensure AIFO admits a similar set

of packets as PIFO. At a high level, the two components work as

follows.

• Temporal component. The threshold of admission control is

dynamic, instead of fixed. It is updated based on the real-time

discrepancy between arrival rate and departure rate. When the

arrival rate significantly exceeds the departure rate, the threshold

becomes more aggressive. It ensures the rate of admitted packets

roughly matches the departure rate.

• Spatial component. The admission control treats packets differ-

ently based on their ranks, instead of using a naive rank-agnostic

criteria (e.g., randomly dropping 10% packets). It prefers to drop

high-rank packets over low-rank packets, as low-rank packets

are expected to be scheduled first. The threshold is decided based

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Algorithm 1 AIFO

1: function Ingress(𝑝𝑘𝑡)

// Admission Control
2: Update sliding window𝑊 with 𝑝𝑘𝑡

3: 𝑐 ← 𝑄𝑢𝑒𝑢𝑒.𝑙𝑒𝑛𝑔𝑡ℎ

4: 𝐶 ← 𝑄𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒

5: if 𝑐 ≤ 𝑘 ·𝐶 ∥𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡) ≤ 1

1−𝑘
𝐶−𝑐
𝐶

then
// Admit packet

6: Queue.enqueue(pkt)

7: else
// Drop packet

8: Drop 𝑝𝑘𝑡

9: function Egress

10: if 𝑄𝑢𝑒𝑢𝑒 is not empty then
11: 𝑝𝑘𝑡 ← 𝑄𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒 ()
12: Send 𝑝𝑘𝑡

on the arrival rate distribution of different ranks. It ensures the

admitted packets have similar ranks as those admitted by PIFO.

We note that the basic idea of dynamic, proportional adaption is

widely used, and in particular for networking, it has been instanti-

ated in various forms in congestion control [4, 22, 30]. For exam-

ples, delay-based congestion control algorithms like TIMELY and

Swift [22, 30] adapt the TCP window size dynamically based on the

end-to-end delay, and ECN-based algorithms like DCTCP [4] adapt

the window size in proportional to the number of packets with the

ECN flag. These instantiations all put the control in the end hosts.

In comparison, AIFO places the dynamic, proportional adaption in

the network, and it serves a different purpose, i.e., programmable

packet scheduling. This context brings stringent requirements to

the algorithm design: the algorithm should not only achieve op-

timality, but also be carefully designed to be implemented at line

rate.

For readers familiar with the packet scheduling literature, AIFO

can be considered as an AQM solution. Traditional AQM solutions

consider a specific objective, and drop packets using threshold

comparisons against average queue length [12, 34, 35] or delay

estimations [32]. In comparison, AIFO is designed to be a general

solution that can be programmed to support different objectives,

and it drops packets with a combination of threshold comparisons

(i.e., the temporal component) and relative packet rank estimations

(i.e., the spatial component).

4.2 Algorithm
We design AIFO based on these key ideas. Algorithm 1 shows the

pseudocode. At the ingress (line 1-8), AIFO uses admission control

(line 2-5) to decide whether to enqueue (line 6) or drop a packet (line

8). The threshold is dynamically determined by queue length (𝑐) and

queue size (𝐶), and we use quantile estimation (𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡))
to estimate the relative rank of current packet. The queue is a FIFO

queue which enqueues the packet to the end of the queue. At the

egress (line 9-12), when the queue is not empty, AIFO dequeues a

packet from the head of the queue, and sends the packet out.

Next, we explain the admission control part in detail. For the

temporal component, it uses the difference between the current

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 	
𝐶 − 𝑐

(1 − 𝑘)𝐶 =
6 − 2
5 = 80%

admit

pkt.quantile = 50% k=1/6, C=6, c=2

(a) Admit packet when current queue length c = 2.

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 	
𝐶 − 𝑐

(1 − 𝑘)𝐶 =
6 − 5
5 = 20%

drop

pkt.quantile = 50% k=1/6, C=6, c=5

(b) Drop packet when current queue length c = 5.

Figure 4: Examples of admission control in AIFO.

queue length (denoted by 𝑐) and the target queue size (denoted by𝐶)

to capture the discrepancy between arrival rate and departure rate.

The threshold of admission control is more aggressive when the

current queue length approaches the target queue size, i.e., when

𝐶−𝑐
𝐶

is small. We allocate a headroom to tolerate small bursts with

a parameter 𝑘 . When the queue length is within the headroom

(i.e., 𝑐 ≤ 𝑘 · 𝐶), all packets are admitted. Accordingly, the differ-

ence between the queue length and the queue size is also scaled

by
1

1−𝑘 to account for the headroom. We separate 𝑐 ≤ 𝑘 · 𝐶 and

𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡) ≤ 1

1−𝑘
𝐶−𝑐
𝐶

into two conditions at line 5 for clarity.

Mathematically, the first condition 𝑐 ≤ 𝑘 ·𝐶 is redundant. This is be-

cause when 𝑐 ≤ 𝑘 ·𝐶 , then 1

1−𝑘
𝐶−𝑐
𝐶
≥ 1 ≥𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡) where

𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡) estimates the quantile of 𝑝𝑘𝑡 , and the packet is

always admitted.

It is important to note that 𝐶 is not necessarily the physical size

of the FIFO queue. The physical size of a queue in a commodity

switch varies in a large range from tens of packets to hundreds or

even thousands of packets, depending on the switch ASIC. Despite

this capability, production networks tend to use shallow buffers

and limit the queue size in deployment for low latency. As such,

𝐶 can be configured to a smaller number than the physical queue

size, and thus we term it as the target (not physical) queue size in

the algorithm description.

For the spatial component, AIFO maintains a sliding window of

recently received packets and uses the quantile of the rank of the

arrival packet (𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡)) as the criteria. When the quantile

is no bigger than
1

1−𝑘
𝐶−𝑐
𝐶

, the packet is admitted; otherwise, the

packet is dropped. The intuition is that after accounting for the

headroom with
1

1−𝑘 ,
1

1−𝑘
𝐶−𝑐
𝐶

captures the amount of remaining
queue space, in terms of the percentage of the target queue length.
Only a subset of the following packets that can fit the remaining

queue space can be admitted.We find a rank 𝑟∗ of which the quantile
is equal to the percentage representation of the remaining queue

space. We only admit the packets with ranks no bigger than 𝑟∗ to
ensure that the admitted subset of packets are the low-rank packets

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

that should be admitted and can just fit the remaining queue space.

We maintain a sliding window to estimate the quantile of an arrival

packet based on the past packets.

The benefit of the two-dimensional approach is that the inaccu-

racy of one component can be compensated by the other component.

If the quantile estimation of the sliding window (the spatial com-

ponent) is a bit off, i.e., admitting extra packets, then the queue

length 𝑐 would increase, making the quantile threshold
1

1−𝑘
𝐶−𝑐
𝐶

(the temporal component) more strict. And this corrects the spatial

component to use a smaller rank threshold.

We provide two examples to illustrate different cases in the

admission control. The examples are shown in Figure 4. The target

queue length 𝐶 is 6 and the headroom parameter 𝑘 is 1/6 (i.e., a

headroom of 6×1/6 = 1 packet). Suppose the quantile of the arriving
packet’s rank is 50%.

• Case 1: admit packet below quantile threshold. When the

current queue length 𝑐 is 2, the quantile threshold is
1

1−𝑘
𝐶−𝑐
𝐶

=

80%. This means a packet can be admitted if the quantile of the

packet’s rank is no bigger than 80%. Since the quantile of the

arriving packet’s rank is 50%, which is smaller than 80%, the

packet is admitted.

• Case 2: drop packet above quantile threshold. When the

current queue length 𝑐 is 5, the quantile threshold is
1

1−𝑘
𝐶−𝑐
𝐶

=

20%. This means a packet can be admitted if the quantile of the

packet’s rank is no bigger than 20%. Since the quantile of the

arriving packet’s rank is 50%, which is bigger than 20%, the packet

is dropped.

4.3 Theoretical Guarantee
We provide the theoretical guarantees for AIFO as follows. The

proofs of the theorems are in Appendix.

Packet departure rate and queue length.We consider 𝑛 packet

ranks, denoted by 𝑟1 < 𝑟2 < · · · < 𝑟𝑛 (smaller rank value means

higher priority). Let 𝜆𝑖 be the arrival rate of packets with rank 𝑖 .

Let 𝛾 > 0 be the queue draining rate. We can prove properties for

the departure rate of each rank and the queue length.

Theorem 1. Assume
∑𝑛
𝑖=1 𝜆𝑖 > 𝛾 . Let 𝑛∗ := min𝑖 {𝜆1 + · · · +

𝜆𝑖 ≥ 𝛾}. When the algorithm reaches the stationary state, it has the
following properties on the packets departure rates:

(1) AIFO and PIFO has the same departure rate for each rank:
• for rank 𝑖 < 𝑛∗, its departure rate is 𝜆𝑖 ;
• for rank 𝑖 = 𝑛∗, its averaged departure rate is 𝛾 −∑𝑖<𝑛∗ 𝜆𝑖 ;
• for rank 𝑖 > 𝑛∗, its departure rate is zero.

(2) FIFO does not perform as the same as PIFO:
• for rank 𝑖 ∈ {1, . . . , 𝑛}, its departure rate is 𝜆𝑖∑𝑛

𝑖=1 𝜆𝑖
𝛾 .

When the algorithm reaches the stationary state, it has the following
properties on the queue length:

(1) The queue length for PIFO and FIFO is 𝐶 .
(2) The queue length for AIFO is

•
(
1 − 𝑛∗

𝑛 (1 − 𝑘)
)
𝐶 , if

∑
𝑗≤𝑛∗ 𝜆 𝑗 > 𝛾 ;

• or bounded between
(
1 − 𝑛∗+1

𝑛 (1 − 𝑘)
)
𝐶 and

(
1 − 𝑛∗

𝑛 (1 − 𝑘)
)
𝐶 ,

if
∑

𝑗≤𝑛∗ 𝜆 𝑗 = 𝛾 .

This theorem means that at the stationary state, the departure

rate of each packet rank with AIFO is the same as that with PIFO.

Ingress Pipe Egress PipeTraffic
Managerpkt

write queue length read queue length

write queue lengthread queue length;
admission control

recirculation

Figure 5: Worker packets carry queue length information
from egress pipe to ingress pipe via recirculation. Normal
packets read queue lengths and make admission control de-
cisions at ingress pipe. Normal packets also write queue
lengths at egress pipe.

The behavior of FIFO is very different from those of AIFO and PIFO.

As FIFO does not do any scheduling, the departure rate of a rank

is proportional to the arrival rate of the rank. The theorem also

shows that with admission control, the queue length with AIFO is

slightly smaller than that of PIFO.

Admitted packet set. Consider a time interval from 0 to 𝑇 and 𝑛

packet ranks. Let 𝑎𝑖 (𝑡) be the departure rate of rank 𝑖 with AIFO,

and 𝑝𝑖 (𝑡) be the departure rate of rank 𝑖 with PIFO. We can prove

properties for the difference between the departure packets with

AIFO and those with PIFO.

Theorem 2. Adopt the assumption in Theorem 1. Suppose the
systems are initialized at time 0, and after time 𝑡0 both PIFO and
AIFO reach and stay at their stationary states. Then for the gap
measure defined in Eq. (1), we have

lim

𝑇→∞
Δ(𝑇) = 0.

Theorem 1 already provides a strong guarantee on the departure

rate of each rank. This theorem goes further to show the gap on

the difference of the dequeued packets. It proves that Δ defined in

Section 3 is close to 0, meaning that AIFO and PIFO dequeue the

same set of packets.

4.4 Data Plane Design and Implementation
We describe the data plane design to implement AIFO on a pro-

grammable switch. We emphasize that the algorithm of AIFO itself

is independent of the hardware architecture, and can be imple-

mented on programmable switch ASICs, FPGAs or network proces-

sors. The purpose here is to provide a concrete data plane design

and implementation to demonstrate the viability of AIFO. We im-

plement AIFO with 827 lines of code in P4. The implementation

can run on Barefoot Tofino at line rate. We describe the major

challenges and our solutions in our design and implementation.

Queue length estimation for the temporal component. The
main challenge for the temporal component is to maintain the dy-

namic threshold
1

1−𝑘
𝐶−𝑐
𝐶

based on the queue length. The queue

length information is managed by a module called traffic manager

which sits between the ingress pipe and the egress pipe. The dif-

ficulty is that for commodity switches including Barefoot Tofino,

the queue length information can only be obtained when a packet

goes through the traffic manager, and thus can only be read at the

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Index
Tagger

Admission
Control

stage 1 stage 2 stage 3 stage 4

i: 0
r: 2

i: 1
r: 7

i: 2
r: 8

i: 3
r: 9

i: 4
r: 9

i: 5
r: 2

i: 6
r: 15

i: 7
r: 6

i: 8
r: 1

i: 9
r: 3

i: 10
r: 2

i: 11
r: 8

i: 12
r: 7

i: 13
r: 28

i: 14
r: 4

i: 15
r: 25

pkt.index: 4
pkt.rank: 5

update r = 5

quantile
= 6/16
= 37.5%

Sampler

Figure 6: Compute quantile with a sliding window.

egress pipe. However, AIFO requires the queue length to compute

the threshold at the ingress pipe in order to make admission control

decisions.

To address this challenge, we design a recirculation-based solu-

tion to bring the queue length information from the egress pipe

to the ingress pipe. Specifically, we use a register array to store

the queue length for each egress port at the egress pipe, denoted

by 𝑞_𝑙𝑒𝑛_𝑒𝑔𝑟𝑒𝑠𝑠 . Packets can write the queue length value into

𝑞_𝑙𝑒𝑛_𝑒𝑔𝑟𝑒𝑠𝑠 after passing through the traffic manager. At the

same time, we have a copy of the register array at the ingress

pipe, denoted by 𝑞_𝑙𝑒𝑛_𝑖𝑛𝑔𝑟𝑒𝑠𝑠 . We use a set of worker packets to
read the queue lengths from 𝑞_𝑙𝑒𝑛_𝑒𝑔𝑟𝑒𝑠𝑠 at the egress pipe. The

worker packets are recirculated to enter the ingress pipe again

when they leave the egress pipe, and they update the queue lengths

in 𝑞_𝑙𝑒𝑛_𝑖𝑛𝑔𝑟𝑒𝑠𝑠 using the values they read.

As the worker packets make the queue lengths ready in the

ingress pipe, a normal arriving packet can then access the queue

length information in the ingress pipe. After the routing decision

is made for the packet (i.e., the egress port is known), it can read

the queue length of its egress port from 𝑞_𝑙𝑒𝑛_𝑖𝑛𝑔𝑟𝑒𝑠𝑠 . Then the

threshold
1

1−𝑘
𝐶−𝑐
𝐶

can be calculated with the queue length to decide

whether to admit or drop the packet. If the packet is admitted, it

also writes the current queue length to the egress pipe. Figure 5

illustrates how the solution works.

Since the worker packets keep being recirculated all the time,

they only go through a designated recirculation port, and thus

would not contribute to the queue lengths of the egress ports. As-

suming it takes 200 ns for a worker packet to go through the pipeline

and be recirculated, for a port with 10𝑀𝑝𝑝𝑠 rate, it would only cause

a bias of 2 packets, which is negligible. Also note that for switches

that support reading queue length directly in the ingress pipe (e.g.,

Barefoot Tofino 2), recirculation is not needed.

Quantile estimation for the spatial component. The spatial

component estimates the quantile of the rank of each arriving

packet. We use a set of stages to implement a sliding window to

store recent packets and estimate quantiles. Programmable switches

normally support accessing several registers per stage, e.g.,𝑚 = 4

registers per stage. In order to support a sliding window with 𝑛

slots, we need 𝑛/𝑚 stages. We use𝑚 registers per stage over 𝑛/𝑚

stages, and use 𝑛 registers in total. The index of each register is

from 0 to 𝑛 − 1, and it indicates the position of the packet in the

sliding window. The value of register 𝑖 stores the rank of the packet

at position 𝑖 in the sliding window. Figure 6 shows an example with

𝑛 = 16 and𝑚 = 4. We use 4 stages and use 4 registers per stage,

with a total of 16 registers. Each register stores the rank for a packet

in a sliding window of 16 recent packets.

We use an index tagger module to track the sliding window. The

index tagger module keeps a circular counter from 0 to 𝑛 − 1. It

assigns its counter the index of an arriving packet (𝑝𝑘𝑡 .𝑖𝑛𝑑𝑒𝑥), and

then increments its counter by one. The counter is reset to 0 when

it reaches 𝑛. The packet index indicates which register stores the

rank of the oldest packet in the sliding window, and thus should be

updated with the rank of the arriving packet. In Figure 6, 𝑝𝑘𝑡 .𝑖𝑛𝑑𝑒𝑥

is 4, and thus the value of the first register at stage 2 (i.e., the register

with 𝑖 = 4) is updated with the rank of the arriving packet. The

index 𝑝𝑘𝑡 .𝑖𝑛𝑑𝑒𝑥 will be set as 5 for the next packet and point to the

second register at stage 2 (following the dotted arrow).

At the same time, when a packet goes through each stage, the

switch also compares the rank of the packet with the value in each

register with an ALU. Each ALU outputs a result indicating whether

the packet rank is smaller than the register value: if the packet rank

is smaller, 𝑜𝑢𝑡𝑝𝑢𝑡 = 1; otherwise, 𝑜𝑢𝑡𝑝𝑢𝑡 = 0. By summing up the

𝑜𝑢𝑡𝑝𝑢𝑡s of all ALUs together, we get the relative ranking of the

arriving packet in the sliding window: 𝑞 =
∑
𝑖 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 . The quantile

of the arriving packet can be computed by dividing 𝑞 by the length

of the window:𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡) = 𝑞/𝑛.
In Figure 6, the rank of the arriving packet is 5. The rank is

smaller than the values of 6 registers, which are marked with red

in the figure. As the size of the sliding window 𝑛 is 16, the quantile

is 6/16 = 37.5%.

While our evaluation results show that a small sliding window

size (e.g., 20) is sufficient for many common scenarios, a large slid-

ing window is sometimes needed for certain workloads. However,

commodity switches normally provide only a few stages and a small

amount of memory. To efficiently use precious switch resources,

we use a sampling method to virtually scale up the sliding window

size by adding a sampler aside with the index tagger. For exam-

ple, instead of using a window with the size of 1000, we can use a

smaller window with the size of 20, and set the sampling rate as

0.02.

As both the queue length (𝑐) and the quantile (
𝑞
𝑛) are available,

we can make the admission control decision based on the condition

𝑞
𝑛 ≤

1

1−𝑘
𝐶−𝑐
𝐶

. This condition can be transformed to
𝐶 · (1−𝑘)

𝑛 ·𝑞+𝑐 ≤
𝐶 . Since𝐶 , 𝑘 , and𝑛 are constants,

𝐶 · (1−𝑘)
𝑛 ·𝑞 can be easily calculated

in one stage with a math unit available in programmable switches.

5 EVALUATION
In this section, we provide experimental results to demonstrate the

performance of AIFO. We first evaluate AIFO using simulations

to show that AIFO can achieve high performance in a large-scale

datacenter environment. In the simulations, we benchmark AIFO

with state-of-the-art solutions to demonstrate its end-to-end perfor-

mance. Besides, we also evaluate the effect of different parameters,

and the admitted packet set of AIFO. At last, we evaluate our pro-

totype for AIFO on a Barefoot Tofino switch in a hardware testbed.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

1

2

3

Fl
ow

 c
om

pl
et
io
n
tim

e
(m

s)

TCP
DCTCP
AIFO
SP-PIFO
PIFO
PIEO

(a) Average FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

5

10

15

Fl
ow

 c
om

pl
et
io
n
tim

e
(m

s)

TCP
DCTCP
AIFO
SP-PIFO
PIFO
PIEO

(b) 99th FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

30

60

90

120

Fl
ow
 c
om
pl
et
io
n
tim
e
(m
s)

TCP
DCTCP
AIFO
SP-PIFO
PIFO
PIEO

(c) Avearage FCT for large flows.

Figure 7: Simulation results of web search workload to minimize FCT.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

1

2

3

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

FIFO
k=0.1
k=0.3
k=0.7
k=0.9
PIFO

(a) Average FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

5

10

15

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

FIFO
k=0.1
k=0.3
k=0.7
k=0.9
PIFO

(b) 99th FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

30

60

90

120

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

FIFO
k=0.1
k=0.3
k=0.7
k=0.9
PIFO

(c) Average FCT for large flows.

Figure 8: The effect of parameter 𝑘 .

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0.00

0.05

0.10

0.15

0.20

Fl
ow
 c
om
pl
et
io
n
tim
e
(m
s)

win_len=1000, sample_rate=1
win_len=100, sample_rate=0.1
win_len=20, sample_rate=0.02
win_len=20, sample_rate=1/15
win_len=20, sample_rate=1

(a) Average FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0.0

0.5

1.0

1.5

2.0

Fl
ow
 c
om
pl
et
io
n
tim
e
(m
s)

win_len=1000, sample_rate=1
win_len=100, sample_rate=0.1
win_len=20, sample_rate=0.02
win_len=20, sample_rate=1/15
win_len=20, sample_rate=1

(b) 99th FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

20

40

60

80

Fl
ow
 c
om
pl
et
io
n
tim
e
(m
s)

win_len=1000, sample_rate=1
win_len=100, sample_rate=0.1
win_len=20, sample_rate=0.02
win_len=20, sample_rate=1/15
win_len=20, sample_rate=1

(c) Average FCT for large flows.

Figure 9: The effect of window length and sampling rate.

5.1 Packet-Level Simulations
We use packet-level simulations to evaluate AIFO in a large-scale

datacenter environment. We use a similar setting as recent works

on packet scheduling [3, 6]: a leaf-spine topology which contains 9

leaf switches, 4 spine switches and 144 servers, and the bandwidth

of the access and leaf-spine links is set at 10Gbps and 40Gbps,

respectively. The simulations are conducted with Netbench [1], a

packet-level simulator.

We evaluate two use cases of programmable packet schedul-

ing: minimizing FCT and providing fairness. (𝑖) We use AIFO to

implement pFabric, and compare it with TCP, DCTCP as well as

state-of-the-art approaches PIFO [47], SP-PIFO [3], and PIEO [45]

under a realistic traffic workload: web search workload [6]. We also

conduct a sensitivity analysis to evaluate and analyze the effect of

different parameters (i.e., queue length, scaling parameter 𝑘 , win-

dow length and sampling rate) on AIFO and the admitted packet

set of AIFO. (𝑖𝑖) We implement Start-Time Fair Queueing (STFQ)

on top of AIFO and compare it with other state-of-the-art solutions.

For AIFO, we set the target queue length as 20, 𝑘 = 0.1, window

length as 20, and sampling rate as
1

15
by default.

Minimizing FCT with AIFO.We first show the performance of

AIFO when implementing SRPT for pFabric [6] to minimize FCT

under the web search workload. The traffic starts according to a

Poisson distribution. For comparison, we also implement SRPT

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

5

10

15

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

q_len=500
q_len=100
q_len=50
q_len=20
q_len=10

(a) Average FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

50

100

150

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

q_len=500
q_len=100
q_len=50
q_len=20
q_len=10

(b) Average FCT for large flows.

Figure 10: The effect of queue length on 1G/4G network.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

q_len=500
q_len=100
q_len=50
q_len=20
q_len=10

(a) Average FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

10

20

30

40

50

Fl
ow

 c
om

pl
et

io
n

tim
e

(m
s)

q_len=500
q_len=100
q_len=50
q_len=20
q_len=10

(b) Average FCT for large flows.

Figure 11: The effect of queue length on 10G/40G network.

with SP-PIFO and PIFO, and compare them with TCP and DCTCP.

In addition, we consider PIEO, which is a more scalable design

for programmable packet scheduling compared with PIFO. We use

pFabric as the transport layer for AIFO, PIFO and SP-PIFO at the

hosts. Figure 7 shows the average FCT for small flows (Figure 7(a)),

the 99𝑡ℎ percentile FCT for small flows (Figure 7(b)), and the average

FCT for large flows (Figure 7(c)). AIFO, PIFO, PIEO, and SP-PIFO

can achieve much lower FCT compared with TCP and DCTCP,

especially when the load is high. Among all these approaches, PIFO

and PIEO achieve the best performance as it enforces strict priority

with a PIFO queue. The performance of SP-PIFO is close to PIFO.

While PIFO requires a PIFO queue which is hard to implement

and SP-PIFO requires multiple FIFO queues (eight queues in the

simulations), AIFO achieves a good performance that is close to

PIFO and SP-PIFO with a single FIFO queue. Besides, AIFO can deal

with different sizes of traffic well as the admission control threshold

can adapt the current workload traffic dynamically. Figure 7 shows

that as the traffic load grows, the FCT for AIFO does not go up as

TCP or DCTCP does, and the gap between AIFO and PIFO/SP-PIFO

gets smaller.

The effect of parameter 𝑘 . The headroom parameter 𝑘 controls

how aggressively AIFO drops high-rank packets. We set 𝑘 among

0.1 ∼ 0.9 and compare the results with FIFO and PIFO. Figure 8

shows the results. AIFO with smaller 𝑘 always delivers better per-

formance than larger 𝑘 for small flows, and it also delivers better

performance for large flows when the traffic load is big (e.g., 0.7, 0.8).

The reason is that with a small 𝑘 , AIFO drops packets aggresively

and keeps the buffer shallow so that the admitted packets get low

latency. When 𝑘 is small, AIFO delivers a close performance com-

pared with PIFO. As we increase 𝑘 , AIFO admits more packets and

it becomes closer to FIFO. When the traffic load grows, the queue

buffer accumulates quickly, and it leads to a large delay. While

0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k
(×
10

8)

Large flow
Medium flow
Small flow

(a) FIFO.

0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k
(×
10

8)

Large flow
Medium flow
Small flow

(b) PIFO.

0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k
(×
10

8)

Large flow
Medium flow
Small flow

(c) SP-PIFO.

0 1 2 3 4 5 6
Arriving order (×104)

0

2

4

6

8

10

R
an

k
(×
10

8)

Large flow
Medium flow
Small flow

(d) AIFO.

Figure 12: Packet distribution logged at the receiver. Three
senders send one flow each to a receiver at the same
time. The size of the three flows are 100MB (large), 50MB
(medium) and 10MB (small), respectively. The link between
the switch and the receiver is the bottleneck.

0 50 100 150 200 250 300
Arriving order

95

96

97

98

99

100

R
an

k
(×
10

5)

(a) FIFO.

0 50 100 150 200 250 300
Arriving order

95

96

97

98

99

100

R
an

k
(×
10

5)

(b) PIFO.

0 50 100 150 200 250 300
Arriving order

95

96

97

98

99

100

R
an

k
(×
10

5)

(c) SP-PIFO.

0 50 100 150 200 250 300
Arriving order

95

96

97

98

99

100

R
an

k
(×
10

5)

(d) AIFO.

Figure 13: The first 300 packets of the small flow logged
at the receiver. The setting is the same as Figure 12: Three
senders send one flow each to a receiver at the same
time. The size of the three flows are 100MB (large), 50MB
(medium) and 10MB (small), respectively.

dropping packets aggressively harms large flows especially when

the traffic load is not big and the network capacity is underutilized,

we show that the harm is slight compared with the benefit it brings

to small flows. When 𝑘 = 0.1, the average and 99𝑡ℎ percentile FCT

for small flows is about 9× lower than that of 𝑘 = 0.9, and the FCT

for large flows is only slightly higher than the lowest.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

2

4

6

8

10

Fl
ow

 c
om

pl
et
io
n
tim

e
(m

s)

TCP
DCTCP
AIFO
SPPIFO
AFQ
PIFO
PIEO

(a) Average FCT for small flows.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

10

20

30

40

50

Fl
ow

 c
om

pl
et
io
n
tim

e
(m

s)

TCP
DCTCP
AIFO
SPPIFO
AFQ
PIFO
PIEO

(b) 99th FCT for small flows.

10K 20K 30K 50K 80K0.2M-1M≥ 2M
Flow size

10
0

10
1

10
2

10
3

Fl
ow

 c
om

pl
et
io
n
tim

e
(m

s)

TCP
DCTCP

AIFO
SPPIFO

AFQ
PIFO

PIEO

(c) FCT breakdown for 70% load.

Figure 14: Simulation results of web search workload with fair queueing.

The effect of window length and sampling rate. We also eval-

uate how the sliding window length affects the performance of

AIFO and how well a small sliding window approximates a large

sliding window with sampling for AIFO. As shown in Figure 9,

when the window length is 20, the performance is better than that

when the window length is 1000 for small flows, but worse for large

flows. It is because that a large window records packets for a longer

time, and the possibility for packets from large flows (high-rank

packets) to be admitted is more stable. As a result, there are more

high-rank packets admitted into the queue in the long run, which

makes the FCT for small flows higher and FCT for large flows lower.

It is interesting to see in Figure 9(b) that the 99𝑡ℎ percentile FCT

is decreasing as the traffic load grows when𝑤𝑖𝑛_𝑙𝑒𝑛 = 1000. The

reason is that when the window is large and the traffic load is low,

the quantile is less accurate. The flows that experience deep buffer

and inaccurate quantile estimation would have larger FCTs, and

these flows would normally contribute to the 99𝑡ℎ FCT.

By comparing lines <𝑤𝑖𝑛_𝑙𝑒𝑛=20, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒=0.02>, <𝑤𝑖𝑛_𝑙𝑒𝑛

=100, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒=0.1> and <𝑤𝑖𝑛_𝑙𝑒𝑛=1000, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒=1>, we

can see that AIFO does not require a very precise quantile and a

small window can approximate a large window with sampling. This

is important to the practicability of AIFO as a window with 20 slots

can be implemented in programmable switches with tiny resource

consumption.

The effect of queue length. To evaluate the impact of queue

length on the performance of AIFO, we use different queue lengths

and run simulations on both a 1G/4G network (access link: 1Gbps,

leaf-spine link: 4Gbps) and a 10G/40G network. As shown in Fig-

ure 10 and Figure 11, AIFO is more sensitive to the change of queue

length when the bandwidth is low or when the traffic load is high.

Figure 11 shows that FCT achieved by AIFO when 𝑞_𝑙𝑒𝑛 = 20

is close to 𝑞_𝑙𝑒𝑛 = 100 on the 10G/40G network. However, FCT

achieved by AIFO when 𝑞_𝑙𝑒𝑛 = 20 is much smaller than 𝑞_𝑙𝑒𝑛 =

100 in Figure 10 on the 1G/4G network. This is because it takes a

while for a long queue to drain when the bandwidth is low, which

leads to a considerable queueing delay. A relatively small queue

benefits the FCT.

Admitted packet sets. Recall that we indicate in Theorem 2 that

the sets of packets dequeued by AIFO and PIFO are similar. This

experiment examines the gap between AIFO and PIFO in terms of

the difference between the packets dequeued by AIFO and those

dequeued by PIFO. Here we use four servers and the servers are

connected with a Top-of-Rack switch. The bandwidth of the links

between the servers and the switch are set as 1Gbps. We let three

servers serve as senders, and the other server serves as a receiver.

Each sender sends one flow to the receiver at the same time, and the

sizes of the flows are 100MB (large), 50MB(medium), and 10MB(small),

respectively. The servers run pFabric as the transport and the flows

are tagged with the remaining flow size as their rank. The switch

is programmed to support SRPT with AIFO, PIFO or SP-PIFO.

We log the ranks of the first 60000 packets received by the re-

ceiver, and plot the log in Figure 12. The x-axis is the arriving order

of the packets, and the y-axis is the rank of the packets. As shown

in Figure 12, when the network is running FIFO without admission

control and packet scheduling, the three flows share the bandwidth

and the small flow (blue) finishes late. For the other three solutions

(AIFO, PIFO, SP-PIFO), the small flow finishes at about the same

time, and it finishes much earlier than it does with FIFO. Besides,

it is shown that AIFO is closer to PIFO than SP-PIFO in terms of

the admitted packets set: there are larger overlaps on the arriving

order (x-axis) between the small flow (blue) and the medium flow

(green), as well as between the medium flow and the large flow

(red) in Figure 12(c), than those in Figure 12(d) and Figure 12(b).

Packet reordering. Besides the admitted set, another interesting

metric is the dequeued order of the packets. PIFO always dequeues

the packet with the lowest rank in the queue, which may cause

out-of-order and harm the end-to-end performance. However, as

AIFO only enforces admission control on a FIFO queue, it does not

cause out-of-order.

We run the same setting as in Figure 12 and we only log the first

300 packets of the small flow in order to show the packet out-of-

order clearly. As shown in Figure 13(a) and Figure 13(d), when we

enable AIFO, the packet order of one flow is the same as that with

FIFO and there is no packet out-of-order. It is because that AIFO

only uses a FIFO queue and does not do packet scheduling inside

the queue. However, both PIFO and SP-PIFO get some out-of-order

packets, as shown in Figure 13(b) and Figure 13(c). The reason is that

PIFO and SP-PIFO always dequeue the packet with the lowest rank,

while the packets with higher rank will be left in the queue and be

scheduled later. With pFabric, the rank is based on the remaining

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

0 5 10 15 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(a) FIFO.

0 5 10 15 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(b) SP-PIFO.

0 5 10 15 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(c) AIFO.

Figure 15: Testbed experiments for UDP. Four flows start one by one every five seconds. Flows have different ranks: R(Flow 1)
> R(Flow 2) > R(Flow 3) > R(Flow 4).

0 5 10 15 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(a) FIFO.

0 5 10 15 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(b) SP-PIFO.

0 5 10 15 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s) Flow 1
Flow 2
Flow 3
Flow 4

(c) AIFO.

Figure 16: Testbed experiments for TCP. Four flows start one by one every five seconds. Flows have different ranks: R(Flow 1)
> R(Flow 2) > R(Flow 3) > R(Flow 4).

flow size, so a later packet has a lower rank compared with an

earlier packet. As a result, these two methods lead to a number of

out-of-order packets. As SP-PIFO approximates PIFO with a set of

FIFO queues, it causes fewer out-of-orders compared with PIFO.

Fair queueing with AIFO. Programmable packet schedulers like

PIFO can be used to implement different kinds of packet scheduling

algorithms by changing the rank computation function. Besides

implementing SRPT to minimize FCTs, here we show how AIFO

performswhenwe implement Start-Time Fair Queueing (STFQ) [13]

on top of it for fair queueing. We also implement STFQ on top of

PIFO, SP-PIFO and PIEO to compare them with AIFO. Besides,

we include TCP, DCTCP, and the state-of-the-art fair queueing

solution AFQ for comparison. We run the web search workload

and show the average FCT for small flows (Figure 14(a)), the 99𝑡ℎ

percentile FCT for small flows (Figure 14(b)), and the breakdown of

FCT for different flow sizes (Figure 14(c)). AIFO achieves a similar

performance compared to the state-of-the-art approaches AFQ, SP-

PIFO, PIFO and PIEO for both average FCT and tail FCT, and is

significantly better than TCP and DCTCP. The FCT of AIFO for

small flows is only 9.7% higher than AFQ and 3.6% higher than

SP-PIFO, despite AIFO using only a single queue.

5.2 Testbed Experiments
We evaluate AIFO in the testbed. The testbed experiments are con-

ducted in a hardware testbed with a 6.5Tbps Barefoot Tofino switch

and five servers. Each server is configured with an 8-core CPU

(Intel Xeon E5-2620 @ 2.1GHz) and a 40G NIC (Intel XL710). We

run Ubuntu 16.04.6LTS with Linux kernel version 4.10.0-28-generic

on the servers.

Both UDP traffic and TCP traffic are covered to examine the

traffic differentiation with ranks. We use four servers as senders

which send one flow each to a receiver. The four flows start one

by one every five seconds. The link between the switch and the

receiver is the bandwidth bottleneck. We manually tag different

ranks for different flows, and the flow that starts later has a lower

rank (i.e., higher priority): R(Flow 1) > R(Flow 2) > R(Flow 3) >

R(Flow 4). For comparison, we also run FIFO and SP-PIFO in the

same setting. For SP-PIFO, we enable 8 queues with strict priority

in the traffic manager.

UDP.We first evaluate AIFO when the four flows are UDP flows.

The four flows are all sending at 40Gbps (using DPDK [2]). Fig-

ure 15(a) shows that when the switch is running FIFO, the four

flows converge to the same rate since they have the same sending

rate and has the same possibility to be dropped. When AIFO is

enabled (Figure 15(c)), as Flow 2 has a lower rank than Flow 1,

packets from Flow 2 have a higher chance to get into the queue

when the queue builds up. Consequently, Flow 2 gets all the band-

width and the throughput to Flow 1 drops to zero when Flow 2

comes. Similarly, when Flow 3 comes, Flow 3 gets the bandwidth

between 10 seconds and 15 seconds, and when Flow 4 comes, Flow

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

Resource Type AIFO SP-PIFO

Match Crossbars 10.94% 8.27%

Gateway 22.92% 17.71%

Hash Bits 3.91% 2.66%

SRAM 6.98% 15.31%

TCAM 0% 0.35%

Stateful ALUs 39.6% 16.67%

Logical Table IDs 25% 18.75%

Table 1: Resource consumption of AIFO and SP-PIFO proto-
types on Intel Barefoot Tofino. Each number indicates the
percentage of resources consumed for the corresponding
type.

4 occupies most of the bandwidth. The result is almost identical

to SP-PIFO (Figure 15(b)) as the flow with the lowest rank always

occupies most of the bandwidth.

TCP. We also evaluate AIFO when there are four TCP flows. We

use TCP Cubic as the congestion control algorithm on the servers.

Figure 16 shows the results. In the beginning, Flow 1 reaches around

34Gbps as it occupies the entire link. As Flow 2, Flow 3, and Flow 4

start one by one, when the switch is running FIFO, the four flows

converge to a similar rate as TCP congestion control provides fair

bandwidth allocation. However, when AIFO is enabled, lower-rank

flows get higher throughput: Flow 4 gets the highest throughput at

about 30Gbps, while Flow 1 gets the lowest throughput at 200Mbps–

1Gbps. SP-PIFO also delivers a similar result. Note that, compared

with the results of UDP flows in Figure 15, AIFO acts less aggres-

sively in the TCP scenario: the high-rank TCP flows can still get

about 3Gbps–5Gbps throughput, while the throughput of the high-

rank UDP flows in Figure 15(c) is close to 0. This is because in the

UDP scenario, the four flows are sending at a fixed rate. This makes

it easy for AIFO to enter a stationary state and AIFO would accept

most of the low-rank packets. However, for the TCP scenario, as the

flow rate is dynamic because of congestion control, the admission

threshold of AIFO changes dynamically and the high-rank packets

can have some chance to get into the queue.

Resource consumption. AIFO uses only one queue and achieves

similar performance as SP-PIFO with eight queues. Table 1 lists the

consumption of other switch resources. It shows that AIFO has a

higher demand on Match Crossbars, Gateway, Hash Bits, ALUs and

Logical TableIDs, while SP-PIFO has a higher demand on SRAM

and TCAM.

6 RELATEDWORK

Programmable networking. The emergence of programmable

networking has triggered many novel applications in network data

plane [14, 16, 18–20, 24–26, 28, 31, 36, 39, 49–51]. Among them,

programmable packet scheduling [29, 47] is an attracting direction.

Programmable packet scheduling in the data plane as opposed to

traditional fixed-function packet scheduling [11, 21, 27, 44, 44, 48]

is a relatively new concept. After PIFO [47] and UPS [29], several

solutions for enabling programmable scheduling have proposed a

combination of new abstractions, new algorithms, and new queue

structures [38, 42, 43, 45]. However, many of these rely on new

hardware designs. SP-PIFO [3] recently shows that efficient pro-

grammable packet scheduling can be approximated by using exist-

ing devices with as few as eight queues. In this paper, we show that

AIFO can closely approximate PIFO with just one queue.

Priority-based scheduling. Priority-based scheduling is a classic

scheduling discipline [41] that is often used in the networking

context to minimize the average completion time of flows [6, 7, 15,

17] and coflows [8, 9] in both clairvoyant (size is known a priori)

and non-clairvoyant (unknown size) scenarios. In the latter case,

most of the solutions boil down classic solutions such as Multi-level

Feedback Queues (MLFQ) [10] and its continuous approximations

[33, 37]. Programmable packet scheduling uses the notion of ranks,

which is similar to priorities, but more general in the sense that the

definition of ranks can be programmed based on the requirements

of users. This general notion has been shown to be able to support a

wide variety of different packet scheduling algorithms for different

objectives [47].

Active queuemanagement (AQM).Working in conjunctionwith

packet scheduling algorithms, AQM performs admission control by

probabilistically dropping packets to prevent congestion. AQM is

simple and implemented widely in most switches (e.g., RED [12]).

There are many variations: e.g., to improve fairness [34, 35] and

to provide bounded worst-case packet queuing delay [32] to name

a few. Unlike traditional AQM proposals, AIFO proactively drops

packets based on their relative ranks instead of randomly dropping

them.

7 CONCLUSION
We present AIFO, a new approach for programmable packet sched-

uling that only uses a single FIFO queue. AIFO computes a rank

quantile for a coming packet and decides whether to admit the

packet into the queue based on the rank quantile and the current

queue length. We build a prototype for AIFO on programmable

switches. Our simulations and testbed experiments show that AIFO

delivers high performance and closely approximates PIFO. Besides,

we also theoretically prove that AIFO provides bounded perfor-

mance to PIFO. We believe AIFO is a promising solution for re-

alizing programmable packet scheduling with minimal hardware

resource consumption—as few as a single FIFO queue.

Ethics. This work does not raise any ethical issues.

Acknowledgments.We thank our shepherd George Varghese and

the anonymous reviewers for their valuable feedback on this paper.

Xin Jin (xinjinpku@pku.edu.cn) is the corresponding author. Xin

Jin is with the Key Laboratory of High Confidence Software Tech-

nologies (Peking University), Ministry of Education. This work is

supported in part by NSF grants CCF-1652257, CNS-1813487, CNS-

1845853, and CCF-1918757, Project 2020BD007 from PKU-Baidu

Fund, ONR Award N00014-18-1-2364, and the Lifelong Learning

Machines program from DARPA/MTO.

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

REFERENCES
[1] 2017. Netbench. http://github.com/ndal-eth/.

[2] 2018. Intel Data Plane Development Kit (DPDK). http://dpdk.org/.

[3] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever. 2020. SP-PIFO:

Approximating Push-In First-Out Behaviors using Strict-Priority Queues. In

USENIX NSDI.
[4] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data

Center TCP (DCTCP). In ACM SIGCOMM.

[5] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. 2012. Less is more: Trading a little bandwidth for ultra-low

latency in the data center. In USENIX NSDI.
[6] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-

center transport. ACM SIGCOMM Computer Communication Review 43, 4 (2013),

435–446.

[7] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.

Information-Agnostic Flow Scheduling for Commodity Data Centers. In USENIX
NSDI.

[8] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Scheduling Without

Prior Knowledge. In ACM SIGCOMM.

[9] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-

uling with Varys. In ACM SIGCOMM.

[10] Fernando J Corbató, Marjorie Merwin-Daggett, and Robert C Daley. 1962. An

experimental time-sharing system. In Spring Joint Computer Conference. 335–344.
[11] Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simula-

tion of a Fair Queueing Algorithm. SIGCOMM CCR (August 1989).

[12] Sally Floyd and Van Jacobson. 1993. Random Early Detection Gateways for

Congestion Avoidance. IEEE/ACM Transactions on Networking 1, 4 (1993), 397–

1413.

[13] Pawan Goyal, Harrick M Vin, and Haichen Cheng. 1997. Start-time fair queue-

ing: A scheduling algorithm for integrated services packet switching networks.

IEEE/ACM Transactions on Networking 5, 5 (1997), 690–704.

[14] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry. In

ACM SIGCOMM.

[15] Chi-Yao Hong, Matthew Caesar, and P Godfrey. 2012. Finishing flows quickly

with preemptive scheduling. In ACM SIGCOMM.

[16] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen Tammana,

and David Walker. 2020. Contra: A programmable system for performance-aware

routing. In USENIX NSDI.
[17] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen,

Kun Tan, and Yi Wang. 2020. Aeolus: A building block for proactive transport in

datacenters. In ACM SIGCOMM.

[18] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. Qpipe: Quan-

tiles sketch fully in the data plane. In ACM CoNEXT.
[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,

Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-

tion. In USENIX NSDI.
[20] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores

with Fast In-Network Caching. In ACM SOSP.
[21] Srinivasan Keshav. 1991. On the efficient implementation of fair queueing. Inter-

networking: Research and Experience (September 1991).

[22] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu,

Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,

Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is simple

and effective for congestion control in the datacenter. In ACM SIGCOMM.

[23] Joseph Y-T Leung. 1989. A new algorithm for scheduling periodic, real-time tasks.

Algorithmica 4, 1 (1989), 209–219.
[24] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Consis-

tent Transactions Using In-Network Concurrency Control. In ACM SOSP.
[25] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R.K. Ports.

2016. Just say NO to Paxos overhead: Replacing consensus with network ordering.

In USENIX OSDI.
[26] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir

Braverman, Xin Jin, and Ion Stoica. 2019.. DistCache: Provable Load Balancing

for Large-Scale Storage Systems with Distributed Caching. In USENIX FAST.
[27] Paul E McKenney. 1990. Stochastic Fairness Queueing.. In IEEE INFOCOM.

[28] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

Silkroad: Making stateful layer-4 load balancing fast and cheap using switching

ASICs. In ACM SIGCOMM.

[29] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016.

Universal packet scheduling. In USENIX NSDI.
[30] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-based congestion control for the datacenter. SIGCOMM CCR

(August 2015).

[31] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

Language-Directed Hardware Design for Network Performance Monitoring. In

ACM SIGCOMM.

[32] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay: A modern

AQM is just one piece of the solution to bufferbloat. In ACM Queue.
[33] Misja Nuyens and Adam Wierman. 2008. The Foreground–Background queue: A

survey. Performance Evaluation 65, 3 (2008), 286–307.

[34] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003. Approximate

Fairness through Differential Dropping. In ACM SIGCOMM.

[35] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. 2000. CHOKe: A stateless

active queue management scheme for approximating fair bandwidth allocation.

In IEEE INFOCOM.

[36] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-

murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in

Data Center Networks. In USENIX NSDI.
[37] Idris A Rai, Guillaume Urvoy-Keller, and Ernst W Biersack. 2003. Analysis of

LAS scheduling for job size distributions with high variance. ACM SIGMETRICS
Performance Evaluation Review 31, 1 (2003), 218–228.

[38] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,

Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and flexible software

packet scheduling. In USENIX NSDI.
[39] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,

Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Pe-

ter Richtarik. 2021. Scaling Distributed Machine Learning with In-Network

Aggregation. In USENIX NSDI.
[40] Hanrijanto Sariowan, Rene L Cruz, and George C Polyzos. 1999. SCED: A gener-

alized scheduling policy for guaranteeing quality-of-service. IEEE/ACM Transac-
tions on Networking 7, 5 (1999), 669–684.

[41] Linus E Schrage and Louis W Miller. 1966. The queue M/G/1 with the shortest

remaining processing time discipline. Operations Research 14, 4 (1966), 670–684.

[42] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.

Approximating fair queueing on reconfigurable switches. In USENIX NSDI.
[43] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon

Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable

calendar queues for high-speed packet scheduling. In USENIX NSDI.
[44] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair queueing

using deficit round robin. In ACM SIGCOMM.

[45] Vishal Shrivastav. 2019. Fast, scalable, and programmable packet scheduler in

hardware. In ACM SIGCOMM.

[46] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad

Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.

2016. Packet transactions: High-level programming for line-rate switches. In

ACM SIGCOMM.

[47] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,

Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin

Katti, and Nick McKeown. 2016. Programmable packet scheduling at line rate. In

ACM SIGCOMM.

[48] Ion Stoica, Scott Shenker, and Hui Zhang. 1998. Core-stateless fair queueing:

Achieving approximately fair bandwidth allocations in high speed networks. In

ACM SIGCOMM.

[49] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion Stoica, and Xin Jin. 2021.

Twenty Years After: Hierarchical Core-Stateless Fair Queueing. In USENIX NSDI.
[50] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and

Xin Jin. 2020. Netlock: Fast, centralized lock management using programmable

switches. In ACM SIGCOMM.

[51] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan Ports, Ion Stoica, and Xin Jin.

2019. Harmonia: Near-Linear Scalability for Replicated Storage with In-Network

Conflict Detection. In Proceedings of the VLDB Endowment.

Appendices are supporting material that has not been peer-

reviewed.

A PROOF OF THEOREM 1
Proof. We ignore the constraint 𝑐 ≤ 𝐾𝐶 as it is covered by

constraint𝑊 .𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑝𝑘𝑡) ≤ 1

1−𝑘
𝐶−𝑐
𝐶

, because
1

1−𝑘
𝐶−𝑐
𝐶

> 1when

𝑐 ≤ 𝐾𝐶 .
For FIFO, every packets are treated equally based on first arrival

first admission principle, thus their incoming rate is proportional

to their sending rate. Let us assume the incoming rates of each

type of packet to be 𝑘𝜆1, 𝑘𝜆2, . . . , 𝑘𝜆𝑛 . On the other hand, at the

stationary state, the total incoming rate of the queue equals to its

http://github.com/ndal-eth/
http://dpdk.org/

SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands Zhuolong Yu, et al.

total outcoming rate 𝛾 , i.e., 𝑘𝜆1 +𝑘𝜆2 + · · · +𝑘𝜆𝑛 = 𝛾 , which implies

𝑘 =
𝛾∑𝑛

𝑗=1 𝜆 𝑗
. Thus for packet 𝑖 , its incoming and outcoming rate is

𝑘𝜆𝑖 =
𝛾𝜆𝑖∑𝑛
𝑗=1 𝜆 𝑗

.

For PIFO, note that the packets are admitted according to its

priority, i.e., high priority packets are always admitted ahead of

low priority packets. Recall that

∑𝑛
𝑖=1 𝜆𝑖 > 𝛾 , i.e., the total sending

rate is greater than the allowed outcoming rate. Thus when the

system reaches its stationary state, there exists a threshold 𝑛∗ :=
min𝑖 {𝜆1 + · · · + 𝜆𝑖 ≥ 𝛾}, such that for 𝑖 < 𝑛∗, packet 𝑖 will always
be admitted, i.e., its incoming and outcoming rate is 𝜆𝑖 ; for 𝑖 = 𝑛∗,
packet 𝑖 will be admitted partly to fill the remaining outcoming

ability apart the portion taken by packets 1, 2, . . . , 𝑛∗ − 1, i.e., its
incoming and outcoming rate is𝛾−∑𝑖<𝑛∗ 𝜆∗; for 𝑖 > 𝑛∗, packet 𝑖 can
no longer be admitted since the system is already stationary and its

priority is below the admitted ones, thus the incoming/outcoming

rate is zero.

For AIFO, given a queue length 𝑐 , the algorithm decides an ad-

mission priority threshold

𝑛(𝑐) = 1

1 − 𝑘
𝐶 − 𝑐
𝐶
· 𝑛,

where packets 𝑖 > 𝑛(𝑐) cannot be admitted, and packets 𝑖 ≤ 𝑛(𝑐)
will be admitted. Note that 𝑛(𝑐) is decreasing with respect to 𝑐 .

Consider the following two queue length thresholds:

𝑐− =

(
1 − 𝑛

∗ + 1
𝑛
(1 − 𝑘)

)
𝐶, 𝑐∗ =

(
1 − 𝑛

∗

𝑛
(1 − 𝑘)

)
𝐶.

Clearly 0 < 𝑐− < 𝑐∗ < 𝐶 , and 𝑛(𝑐−) = 𝑛∗ +1, 𝑛(𝑐+) = 𝑛∗. Therefore,
• if 𝑐 ≤ 𝑐−, all packets 𝑖 ≤ 𝑛∗ + 1 will be admitted. By the

choice of 𝑛∗ we have
∑

𝑗≤𝑛∗+1 𝜆 𝑗 > 𝛾 , i.e., the total incoming

rate is strictly greater than the total outcoming rate, thus the

queue length increases;

• if 𝑐 > 𝑐∗, all packets 𝑖 ≥ 𝑛∗ cannot be admitted. By the choice

of 𝑛∗ we have
∑

𝑗≤𝑛∗−1 𝜆 𝑗 < 𝛾 , i.e., the total incoming rate

is strictly less than the total outcoming rate, thus the queue

length decreases;

• if 𝑐− < 𝑐 ≤ 𝑐∗, all packets 𝑖 ≤ 𝑛∗ will be admitted, and all

packets 𝑖 > 𝑛∗ will not be admitted. Note that

∑
𝑗≤𝑛∗ 𝜆 𝑗 ≥ 𝛾 .

We discuss two cases:

– if

∑
𝑗≤𝑛∗ 𝜆 𝑗 = 𝛾 , then the system reaches its stationary

state at the first time when the queue length satisfies 𝑐− <

𝑐 ≤ 𝑐∗;
– if

∑
𝑗≤𝑛∗ 𝜆 𝑗 > 𝛾 , then the queue length keeps increases

until it becomes larger than 𝑐∗, and falls into the previous

category hence the length decreases then. In sum the sys-

tem reaches its stationary state with queue length being

𝑐∗. Moreover, due to the negative feedback principle, in

the stationary state, the incoming rate/outcoming rate of

packet 𝑛∗ would be 𝛾 −∑𝑗<𝑛∗ 𝜆 𝑗 .

In sum, at the stationary state, we have the following: for the pack-

ets 𝑖 < 𝑛∗, the incoming/outcoming rate is 𝜆𝑖 ; for packet 𝑛∗, the
incoming/outcoming rate is 𝛾 − ∑

𝑖<𝑛∗ 𝜆𝑖 ; for the packets 𝑖 > 𝑛∗,
the incoming/outcoming rate is 0. Moreover, we can also compute

the queue length at the stationary state: if

∑
𝑗≤𝑛∗ 𝜆 𝑗 = 𝛾 , the queue

length at the stationary state satisfies 𝑐− < 𝑐 ≤ 𝑐∗; if ∑𝑗≤𝑛∗ 𝜆 𝑗 > 𝛾 ,
the queue length at the stationary state is 𝑐 = 𝑐∗; □

Remark 1. As an extension to the above setting, we can consider a

setting with 𝑇 time interval, where within each time interval 𝑡 , the

packets are sent with constant sending rate 𝜆1 (𝑡), . . . , 𝜆𝑛 (𝑡), but
across different time interval, the sending rate of each packet can

vary, i.e., 𝜆𝑖 (𝑡) ≠ 𝜆𝑖 (𝑡 ′) for 𝑡 ≠ 𝑡 ′. Suppose each time interval is

sufficiently long such that the system can reach its stationary state,

then we can apply the above theorem within each time interval to

characterize the behavior of the algorithms at the stationary state.

Remark 2. We briefly discuss the behavior of each algorithms in

their stationary state.

For PIFO, the queue is filled with packets 𝑛∗ + 1, but they cannot

be popped. For packet 𝑖 ≤ 𝑛∗, once it is received, it gets output.
For packet 𝑖 = 𝑛∗ + 1, it can be admitted but cannot be output. For

packet 𝑖 > 𝑛∗ + 1, it cannot be admitted.

For AIFO, the queue is filled with packets 𝑖 ≤ 𝑛∗. The AIFO

outputs packets in the queue in a random sequence (since their

arrival time is random). The AIFO admits packets according to the

rule specified before: packets 𝑖 ≤ 𝑛∗ will be admitted, and packets

𝑖 > 𝑛∗ cannot be admitted.

For FIFO, the queue is filled with all kinds of packets, and the

number of each type of packets are proportional to their sending

rate. And the packets are admitted and output at random.

Remark 3. So long as we assume the system stays in its stationary

state for sufficiently long time, its behavior would be nearly decided

by that in the stationary state.

B PROOF OF THEOREM 2
Let 𝑡0 be the maximum of the time for the AIFO and PIFO reaching

its stationary state. Suppose the sending rate of a packet is at most

𝑀 . Recall that from 𝑡0 to 𝑇 , 𝑎𝑖 (𝑡) = 𝑝𝑖 (𝑡) as shown in the theorem.

Then we have the following estimation:

Δ(𝑇) =
∑𝑛
𝑖=1 |

∫ 𝑇

𝑡=0
𝑝𝑖 (𝑡)𝑑𝑡 −

∫ 𝑇

𝑡=0
𝑎𝑖 (𝑡)𝑑𝑡 |∑𝑛

𝑖=1

(∫ 𝑇

𝑡=0
𝑝𝑖 (𝑡)𝑑𝑡 +

∫ 𝑇

𝑡=0
𝑎𝑖 (𝑡)𝑑𝑡

)
≤

∑𝑛
𝑖=1

(
|
∫ 𝑡0
𝑡=0
(𝑝𝑖 (𝑡) − 𝑎𝑖 (𝑡))𝑑𝑡 | + |

∫ 𝑇

𝑡=𝑡0
(𝑝𝑖 (𝑡) − 𝑎𝑖 (𝑡))𝑑𝑡 |

)
∑𝑛
𝑖=1

(∫ 𝑇

𝑡=0
𝑝𝑖 (𝑡)𝑑𝑡 +

∫ 𝑇

𝑡=0
𝑎𝑖 (𝑡)𝑑𝑡

)
=

∑𝑛
𝑖=1 |

∫ 𝑡0
𝑡=0
(𝑝𝑖 (𝑡) − 𝑎𝑖 (𝑡))𝑑𝑡 |∑𝑛

𝑖=1

(∫ 𝑇

𝑡=0
𝑝𝑖 (𝑡)𝑑𝑡 +

∫ 𝑇

𝑡=0
𝑎𝑖 (𝑡)𝑑𝑡

)
≤ 𝑛𝑀 · 𝑡0∑𝑛

𝑖=1

(∫ 𝑇

𝑡=0
𝑝𝑖 (𝑡)𝑑𝑡 +

∫ 𝑇

𝑡=0
𝑎𝑖 (𝑡)𝑑𝑡

)
≤ 𝑛𝑀 · 𝑡0∑𝑛

𝑖=1

(∫ 𝑇

𝑡=𝑡0
𝑝𝑖 (𝑡)𝑑𝑡 +

∫ 𝑇

𝑡=𝑡0
𝑎𝑖 (𝑡)𝑑𝑡

) .
Note that for both the systems, at the stationary state (𝑡 > 𝑡0),

the total incoming/outcoming rate is constant 𝛾 , i.e.,
∑𝑛
𝑖=1 𝑝𝑖 (𝑡) =∑𝑛

𝑖=1 𝑎𝑖 (𝑡) = 𝛾 . Then we have

𝑛∑
𝑖=1

(∫ 𝑇

𝑡=𝑡0

𝑝𝑖 (𝑡)𝑑𝑡 +
∫ 𝑇

𝑡=𝑡0

𝑎𝑖 (𝑡)𝑑𝑡
)
= 2𝛾 (𝑇 − 𝑡0),

Programmable Packet Scheduling with a Single Queue SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

which implies

Δ(𝑇) ≤ 𝑛𝑀 · 𝑡0∑𝑛
𝑖=1

(∫ 𝑇

𝑡=𝑡0
𝑝𝑖 (𝑡)𝑑𝑡 +

∫ 𝑇

𝑡=𝑡0
𝑎𝑖 (𝑡)𝑑𝑡

)
≤ 𝑛𝑀 · 𝑡0

2𝛾 (𝑇 − 𝑡0)
.

Note that (1) the nominator is a constant that is independent of 𝑇 ;

and (2) the denominator keeps cumulating with constant non-zero

rate at its stationary state. Therefore for any small tolerance 𝜖 > 0,

let the running time 𝑇 be

𝑇 > 𝑡0 +
𝑛𝑀𝑡0

2𝛾𝜖
,

we have

Δ(𝑇) < 𝜖.
To sum up, if the system run for sufficiently long time, the difference

between PIFO and AIFO tends to be negligible.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Programmable Packet Scheduling
	2.2 Motivating Example

	3 Design Goal
	4 AIFO Design
	4.1 Key Ideas
	4.2 Algorithm
	4.3 Theoretical Guarantee
	4.4 Data Plane Design and Implementation

	5 Evaluation
	5.1 Packet-Level Simulations
	5.2 Testbed Experiments

	6 Related Work
	7 Conclusion
	References
	A Proof of Theorem 1
	B Proof of Theorem 2

