
Aequitas: Admission Control for Performance-Critical RPCs in Datacenters

Yiwen Zhang†‡, Gautam Kumar†, Nandita Dukkipati†, Xian Wu†, Priyaranjan Jha†,
Mosharaf Chowdhury‡, Amin Vahdat†
†Google LLC., ‡University of Michigan

ABSTRACT
With the increasing popularity of disaggregated storage and
microservice architectures, high fan-out and fan-in Remote
Procedure Calls (RPCs) now generate most of the traffic
in modern datacenters. While the network plays a crucial
role in RPC performance, traditional traffic classification
categories cannot sufficiently capture their importance due
to wide variations in RPC characteristics. As a result, meeting
service-level objectives (SLOs), especially for performance-
critical (𝑃𝐶) RPCs, remains challenging.

We present Aequitas, a distributed sender-driven admis-
sion control scheme that uses commodity Weighted-Fair
Queuing (WFQ) to guarantee RPC-level SLOs. In the pres-
ence of network overloads, it enforces cluster-wide RPC
latency SLOs by limiting the amount of traffic admitted into
any given QoS and downgrading the rest. We show analyt-
ically and empirically that this simple scheme works well.
When the network demand spikes beyond provisioned capac-
ity, Aequitas achieves a latency SLO that is 3.8× lower than
the state-of-art congestion control at the 99.9𝑡ℎ-𝑝 and admits
up to 2× more 𝑃𝐶 RPCs meeting SLO when compared with
pFabric, Qjump, D3, PDQ, and Homa. Results in our fleetwide
production deployment show a 10% latency improvement.

CCS CONCEPTS
• Networks → Network architectures; Network man-
agement; Data center networks;

KEYWORDS
Quality of Service, RPC Performance, Network Overload
ACM Reference Format:
Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian Wu, Pri-
yaranjan Jha, Mosharaf Chowdhury, Amin Vahdat. 2022. Aequitas:
Admission Control for Performance-Critical RPCs in Datacenters.
In ACM SIGCOMM 2022 Conference (SIGCOMM ’22), August 22–26,
2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3544216.3544271

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544271

1 INTRODUCTION

Modern datacenter applications are composed of many mi-
croservices [16, 38, 44, 52] that interact with each other and
remote disaggregated storage [4, 58, 59, 66, 68] using Remote
Procedure Calls (RPCs). As of 2021, RPCs generate 95%+ of
the application traffic in Google production datacenters, of
which∼75% is to and from storage systems. To satisfy diverse
business requirements of modern applications, RPCs gen-
erated by these microservices often have Service Level Ob-
jectives (SLOs) that vary widely. While many performance-
critical (𝑃𝐶) RPCs have microsecond-scale SLOs (e.g., inter-
active user-facing traffic), some can take much longer (e.g.,
maps traffic for ride-sharing applications). Non-critical (𝑁𝐶)
RPCs often constitute bulk storage operations, and there
are best-effort (𝐵𝐸) RPCs from background analytics and
machine learning.

Because of many recent advances in host and cluster net-
working, most RPCs complete within their SLOs. However,
supporting predictable RPC performance under overload sce-
narios still remains elusive. Datacenter networks are deliber-
ately over-subscribed for statistical multiplexing as it would
otherwise be too expensive to provision. Consequently, net-
work overloads—sometimes as high as 8× the average—are
inevitable when multiple applications simultaneously surge
in their demands. Under sustained network overload, the
network component of RPC latency often dominates to the
point of making the service effectively unavailable.

Recent research on meeting low-latency application needs
in datacenter networks falls into three broad categories. First,
many congestion control (CC) schemes [2, 34, 36, 39, 69] per-
form well in maximally using link capacity, keeping losses
and network queues low in times of overload. Yet, CC by itself
cannot provide guarantees for RPC latency: under overload,
CC fair-shares the network bandwidth and causes a slow-
down for all RPCs. Second, priority-based schemes [3, 40]
minimize the average flow completion time by prioritizing
smaller flows based on size or strictly apply application-
defined priorities. The former does not work well when size
and priority are not aligned, while the latter incentivizes
applications to mark all their RPC as the highest priority. We
observe both trends in production, and both lead to missed
SLOs. On top of that, priority-based schemes are not readily
deployable in many existing datacenters. Finally, another line
of work focuses on providing bandwidth sharing guarantees

https://doi.org/10.1145/3544216.3544271
https://doi.org/10.1145/3544216.3544271

[6, 7, 13, 27, 41, 49, 50], but these efforts do not consider ap-
plication priorities or provide RPC latency guarantees, make
restrictive assumptions on where overloads occur [32, 53]
or involve centralized entities that are hard to scale in large
datacenters [48].

Our goal in this paper is to provide SLOs for 𝑃𝐶 RPCs—
regardless of their size—in the network, even at the 99.9th per-
centile (99.9𝑡ℎ-𝑝). We do so by focusing on the network com-
ponent of RPC latency, which we call RPC Network-Latency
(RNL). This leads to a design where RPCs become first-class
citizens, and hosts make dynamic and local QoS-admission
decisions to meet SLOs, leveraging commodity network com-
ponents with weighted fair queuing (WFQ) QoS capabilities.

We present Aequitas, a simple admission control system
anchored in two key conceptual insights. First, WFQ in
switches has delay bounds that can be used to provide RNL
SLOs in overload situations. Building on network calculus
concepts [17], we derive through theory and simulations the
admissible region based on per-QoS worst-case latency with
respect to QoS utilization. Second, by explicitly managing
the traffic admitted on a per-QoS basis, we can guarantee a
cluster-wide per-QoS RNL SLO for all but the lowest QoS
even under traffic overloads. Based on these insights, the
design of Aequitas can be summarized as follows:

(1) End-hosts align 1:1 the priority classes at the granu-
larity of RPCs (𝑃𝐶 , 𝑁𝐶 and 𝐵𝐸) to high/medium/low-weight
network QoS queues (QoSℎ , QoS𝑚 , QoS𝑙) by encoding the
QoS in the packet’s DSCP header field. Switches are simple
and enforce the standard QoS using WFQ.

(2) Sending hosts employ a distributed admission control
scheme to manage the traffic mix across QoS levels. Hosts
independently measure RNL for each QoS level. When the
offered load of QoSℎ or QoS𝑚 RPCs is high, hosts adaptively
downgrade excess traffic to QoS𝑙 such that admitted traffic in
higher QoS classes meets SLOs, with no explicit coordination.

We evaluate Aequitas with packet-level simulations and
testbed experiments using real application workloads, and
we also present early results from production deployment.
We find that:

(1) Predictable latency performance can be realized
cluster-wide through picking RPC winners and losers ex-
plicitly. By measuring RNL for each QoS level and realizing
explicitly when the offered load is no longer in profile, hosts
can make local decisions to admit or downgrade QoS for
an RPC—a simple and effective way to ensure that quality
network experience is always available for admitted traffic.

(2) With Aequitas, 𝑃𝐶 traffic is SLO-compliant not just at
the mean, but also at the 99.9𝑡ℎ-𝑝 RNL, even when network
demand spikes 10× beyond provisioned capacity. In produc-
tion, Aequitas achieves 10% average reduction in 99𝑡ℎ-𝑝 RNL
across fifty clusters.

(3) There exists a trade-off between how strict the SLO is
and amount of traffic which can be admitted at that SLO. Ae-
quitas achieves close to maximal traffic that can be admitted
within SLO-compliance.

(4) Judicious management of traffic mix across QoS levels
can create lower latency for all classes of traffic, including
the 𝐵𝐸 class.

This work does not raise any ethical issues.
2 BACKGROUND AND MOTIVATION
We begin with background on RPC workloads in modern
datacenters, followed by how network impacts RPCs and
what challenges exist in mitigating the network impact.
2.1 RPCWorkloads in Modern Datacenters
Modern datacenter applications that use microservice ar-
chitectures [16, 38, 44, 52] or interact with disaggregated
memory and storage systems [4, 58, 59, 66, 68] rely heavily
on RPCs. An RPC is a programmatic request for action or
information between components of applications, and it can
consist of dozens of individual packets. Hundreds of RPCs
can be on the critical path to completing an application-level
operation. As a result, many datacenter application develop-
ers today measure and reason about application performance
in terms of RPC performance [56]. Indeed, RPCs generate
95%+ of the application traffic in our production datacenters,
of which ∼75% is to and from storage devices.
Business Priorities: Typical cluster applications in pub-
lic clouds—Storage, MapReduce, distributed in-memory file
system, web search indexing, query serving, and caching
services being the largest few in our production datacenters—
classify their traffic into three priority classes:

(1) Performance-critical (𝑃𝐶) RPCs have tail latency SLOs.
Sometimes they are associated with real-time interactive ap-
plications or carry key control traffic.

(2) Non-critical (𝑁𝐶) RPCs generally care about sustained
rate and their latency SLOs are less stringent on the tail rela-
tive to 𝑃𝐶 RPCs.

(3) Best-effort (𝐵𝐸) RPCs have the lowest priority, such as
background backup traffic which sees no imminent disadvan-
tage to elevated latency as long as it eventually completes.
𝐵𝐸 RPCs have no SLOs and are akin to a scavenger class.

RPC priority classes are used in application-level logic
as well as for prioritization under server/client overloads.
For storage, 𝑃𝐶 RPCs might constitute small random access
reads and metadata exchange; 𝑁𝐶 RPCs might include large
sequential reads, and 𝐵𝐸 might be for backups that are most
concerned with long-term average throughput. For an online
retail tenant running on public cloud, revenue-generating
user traffic is 𝑃𝐶; a ride-sharing tenant may consider real-
time maps traffic to be 𝑃𝐶; and a social networking tenant
would classify its user-facing traffic to be 𝑃𝐶 . Machine learn-
ing training or analytics workloads may be 𝐵𝐸. A key goal

10−3 10−2 10−1 100 101 102

READ RPC size (Normalized)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

BE

NC

PC

10−3 10−2 10−1 100 101 102

WRITE RPC size (Normalized)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

BE

NC

PC

Figure 1: Normalized RPC size distribution of READs and WRITEs.

0.10 0.15 0.20 0.25 0.30 0.35
99.9Cℎ-? Min RTT (Normalized)

0

2

4

6

8

99
.9
Cℎ

-?
R

N
L

(N
or

m
al

iz
ed

)

0-1KB RPC
64-256KB RPC

Figure 2: RNL of [0–1KB] and [64–256KB] RPCs versus Min
RTT. Each data point is a sampled cluster.

in assigning priorities is to avoid lower priority RPCs from
interfering with those with higher priority.
Size Distributions: We find that RPC size is not fully corre-
lated with priority from applications’ perspectives. Figure 1
shows the CDF of storage RPC sizes using response payload
size for READ RPCs and request payload size for WRITE
RPCs collected in our datacenter for three categories — 𝑃𝐶 ,
𝑁𝐶 , 𝐵𝐸 — as per their application-level priorities. While it
is true that the 𝑃𝐶 RPCs are generally smaller than 𝑁𝐶 or
𝐵𝐸 RPCs, there are high-priority large 𝑃𝐶 RPCs. As such,
size-based network prioritization schemes proposed in the
existing literature [3, 28, 40] can lead to poor performance
induced by priority inversion.
2.2 Network Impact on RPCs
2.2.1 RPC Network Latency (RNL)
While end-to-end RPC latency serves as the primary metric
for assessing regressions and triggering production alerts, it
consists of two primary components: client/server latency
(CPU load, thread scheduling, cache state) and network la-
tency. In this work, we focus on meeting SLOs for the com-
ponent of RPC latency impacted by network overload, which
we refer to as RPC network-latency or RNL in this work.

Specifically, we define RNL as the time between the first
RPC packet arriving at the transport layer (such as TCP) and
the time when the last packet of the RPC is acknowledged
at the transport. Appendix A provides a detailed breakdown.
RNL captures delays incurred in the host networking stack
due to network overload, including queuing delays incurred
due to congestion control (CC) backoff.

RNL depends on (i) the bandwidth available to an RPC, (ii)
queuing and propagation delays which comprise packet-level
RTT, and (iii) congestion control decisions such as conges-
tion window and pacing rate. Figure 2 shows that RTT and

0 1 2 3 4 5
Time (hour)

0

5x

10x

15x

20x

Lo
ad

(N
or

m
al

iz
ed

) Load

0

1x

2x

3x

4x

La
te

nc
y

(N
or

m
al

iz
ed

)RPC latency tail

Network latency tail

Figure 3: A congestion episode (w/o Aequitas) in production
showing that increased load (bits/sec) leads to RPC latency
spikes. Higher RNL than RPC latency in some cases is due to
sampling differences.

bandwidth do not succinctly capture RNL in a randomly
sampled collection of our clusters. While RNL of small (<1
MTU) RPCs correlates well with RTTs, RNL of large RPCs
do not demonstrate the correlation. We can see clusters with
low RNL for small RPCs (and low RTTs) but showing high
RNL for large RPCs. The main reason is that an effective
congestion control algorithm will keep packet delays low no
matter how large the offered load is, but at high offered loads,
RPCs may be queued for long periods at the sending hosts.
Thus, providing either packet-level SLOs or bandwidth-SLOs
in isolation are not meaningful to application developers —
they care about RPC latency SLOs.
2.2.2 Impact of Network Overloads on RNL
Sustained network overloads without admission control lead
to queuing and packet drops, which can significantly affect
RPC performance as a whole as well as RNL. Figure 3 shows
an example of degraded RPC latency when network load
surged to 8× the usual load at the ToR uplinks in a production
incident. RNL is a major contributing factor to the elevated
latency. For many services, such extreme degradation in
latency can be tantamount to an unavailable service.

Although several proposals for network isolation [32, 53]
assume that oversubscriptions occur only at the edge ToR-to-
NIC links, it is not always the case. Because typical workloads
use relatively little bandwidth compared to their peaks, it is
cost-ineffective to provision peak capacity for all workloads
across all cuts of the network. As a result, overloads can
occur anywhere in the network along the path that an RPC
takes between the client and the server. Kumar et al. [34]
made a similar observation.
2.3 Challenges in Mitigating the Network Impact
There are three primary approaches toward enforcing per-
formance isolation between 𝑃𝐶 , 𝑁𝐶 , and 𝐵𝐸 RPC traffic in
the network.

(1) Size-based approaches — such as Shortest Job First (SJF)
and Shortest Remaining Time First (SRTF) — do not work
well because size and importance are often misaligned.

(2) Strict priority queuing (SPQ), where RPC priorities are
pushed down into the network and used as network priori-
ties, provides a perverse incentive where developers mark
all of their RPCs as 𝑃𝐶 to receive good network performance.

QoSℎ
82.7%

QoS<16.3%

QoS;

1.0%

Performance Critical

QoSℎ

44.0%

QoS<

9.5%

QoS;

46.5%

Best E�ort

Figure 4: Production data showing highmisalignment between
RPC priority (left) and network QoS (right).

0 0.5 1.0 1.5 2.0
Time (year)

-12%

-6%

0%

6%

12%

Q
oS

D
is

tr
ib

ut
io

n
C

ha
ng

e

QoSℎ QoS< QoS;

Figure 5: Distribution change of QoS classes over time.

More importantly, strict priority queuing is known to cause
starvation if there are traffic surges with improperly con-
figured high-priority traffic, and thus is not widely used in
many production networks.

(3) Weighted fair queuing (WFQ) is available in commodity
switches/NICs and its bandwidth sharing property enables
the mapping from traffic priority classes to desired QoS lev-
els.1 We currently take this approach to map RPC priorities
to network QoS levels2 in our datacenters.

Mapping RPC priorities to WFQ QoS levels, however,
comes with two primary constraints. First, such mappings
are coarse; a common model used in practice by many cloud
providers is to map all traffic from an entire application to
the same class [4, 6, 31, 55, 58]. For example, if a business-
critical application is marked as 𝑃𝐶 , all its traffic (including
𝑁𝐶 and 𝐵𝐸 traffic) is marked as critical. Second, QoS classes
are not associated with guarantees or SLOs.

The common practice of allowing developers to set coarse-
grained application-level priorities leads to a surprising de-
gree of mismatch between actual RPC priority and their
supposed importance in the network. In surveying our pro-
duction traffic before the deployment of Aequitas, shown
in Figure 4, we found that 17.3% of 𝑃𝐶 RPCs did not flow
on the highest class, while 54.5% of 𝐵𝐸 RPCs used a higher
level than necessary. Pervasive priority misalignment can
degrade 𝑃𝐶 RPC latency due to 𝐵𝐸 overload even when there
is sufficient capacity to meet SLO for 𝑃𝐶 RPCs.

A direct consequence of the above scenario is a race to
the top: each time a network overload event occurs, applica-
tions that suffer an RNL SLO failure event are often granted
a higher priority class. Figure 5 shows how more application
traffic moved to higher classes over time for the services in
1We refer to WFQ [19] as the general scheduling mechanism with Virtual-
Time/PGPS [47] and DWRR [54] as different implementations.
2NICs/switches support ∼10 WFQs per port; buffer space is shared across
the ports based on usage.

App
RPC Channel

RPC Latency
Measurement

End Host
Network with WFQ

Per-QoS
SLO Targets

Prio_High

Prio_Low
Prio_Low

Prio_High

QoS DowngradeUser Traffic Admitted Traffic

Admit
Probability

Transport
Stack

Congestion
ControlAequitas

RPC
Stack

msgs

Downgrade
Info

pkts
RPC

Figure 6: Aequitas system overview.

our datacenters before we deployed Aequitas. Two underly-
ing problems contribute to this problem: (1) the granularity
of mapping at the application level creates stronger QoS
upgrade pressure than necessary; and (2) the absence of a
scheme that determines what traffic should get access to lim-
ited resources when demand exceeds network bandwidth.

3 AEQUITAS OVERVIEW
3.1 Objectives and Challenges
Predictable RPC completion is a key performance goal in
modern datacenter networks. Our goal in this work is to
provide RNL SLOs for RPC priority classes with performance
requirements (PC and NC). We face three challenges in achiev-
ing our goal:

(1) Expressing SLOs for a diverse set of applications. Latency
degradation of RPCs can result from an overload of compute,
storage, or networking. It is key to tease out an SLO that the
network can be held accountable for.

(2) Structural. Given that overloads can occur anywhere in
the network, the solution needs to handle dynamic overloads
appearing anywhere along the path an RPC traverses.

(3) Scale. There may be tens of thousands of hosts, thou-
sands of tenants, and hundreds of applications in a cluster,
all requiring RPC performance at microsecond-scale.
3.2 System Overview
Figure 6 presents a high-level system diagram of Aequitas.
Aequitas resides in the RPC layer and communicates with ap-
plications above it and network or transport stacks below it.
Aequitas works at the RPC level and does not interfere with
underlying congestion control, and it leverages weighted fair
queuing (WFQ) available in commodity switches without
making any modifications to existing hardware.

Applications issue RPCs on RPC-channels,3 annotating
their priority class, which maps to a requested QoS class.
The operator provides the per-QoS RNL SLO targets. Once
an RPC completes, Aequitas measures its RNL and feeds it
into its admission control algorithm. By comparing the RNL
SLO targets and the actual measurements, the algorithm
3An RPC-channel maps to one or more transport-layer socket/connection.

𝜙𝑖 QoS weight of class 𝑖
𝑔𝑖 minimum guaranteed rate of class 𝑖
𝑠𝑖 instantaneous service rate received for class 𝑖
𝑟 total link capacity
𝑎𝑖 instantaneous arrival rate of class 𝑖
𝑎 aggregate instantaneous arrival rate at the link
𝜇 average load: average arrival rate over

the period normalized to line rate
𝜌 burst load: maximum instantaneous arrival rate

normalized to line rate
Table 1: Notation used in Section 4 and beyond.

adjusts the amount of traffic admitted per destination-host
for the QoS at which the RPC ran. In this way, Aequitas
does not need extra signaling to determine the location of
oversubscription points. Admission control is enforced in
a fully distributed manner among all the hosts without re-
quiring centralized knowledge. When admitting an RPC,
Aequitas adopts a probabilistic approach by maintaining ad-
mit probability to determine if an RPC should be admitted or
downgraded to a lower QoS level. Downgrade information is
explicitly notified back to the application as a hint to adjust
their RPC priorities.

In the next section, we show theoretically why Aequitas’
central idea – managing RPC traffic admitted across QoS
levels with WFQ – can be a powerful knob for realizing RNL
SLOs in oversubscription situations.

4 ANALYTICAL RESULTS
RPC network-latency is primarily dictated by bandwidth
and queuing-delay. In this section, we provide a theoreti-
cal characterization that motivated how we arrived at Ae-
quitas design—controlling RPC network-latency across pri-
ority classes to provide differentiated SLOs by controlling
the amount of traffic admitted on the respective QoS as
realized by WFQ.
4.1 WFQ Bandwidth and Queuing-Delay Analysis
We find that WFQ is an excellent building block to help pro-
vide RNL SLOs as not only does it guarantee a minimum
bandwidth for a traffic class, it also provides delay bounded-
ness given its utilization level.

Given 𝑁 QoS classes with 𝜙1, 𝜙2, · · · , 𝜙𝑁 representing
the weights of the WFQs that serve the QoS classes, the
minimum guaranteed rate𝑔𝑖 for class 𝑖 with line rate 𝑟 is given
by 𝑔𝑖 =

𝜙𝑖∑
𝑗 𝜙 𝑗

𝑟 . We assume lower 𝑖 indicates a higher WFQ
weight. WFQ is also work-conserving. If the instantaneous
demand for a QoS class is lower than the rate above, its
traffic is completely isolated from the other QoS classes and
observes nearly zero queuing delay. Correspondingly, the
bandwidth share of a QoS class may exceed the rate above
when other QoS classes have aggregate demands lower than
their share.

The seminal work in [47] describes the delay guarantees
supported by WFQ: 1) the delay of a QoS level can be bounded

0 `/d 1
Time

0

`A (1 − G)
`AG

`A

dATra�ic
Arrival

Total

QoSℎ

QoS;

Figure 7: Traffic arrival pattern
used in WFQ delay analysis.

0 20 40 60 80 100
QoSℎ-share (%)

0.0

0.1

0.2

0.3

0.4

D
el

ay
B

ou
nd

(N
or

m
al

iz
ed

) QoS;

QoSℎ

` = 0.8
d = 1.2

Figure 8: Theoretical worst-case
delay withQoSℎ :QoS𝑙 weights=4:1.

20 40 60 80
QoSℎ-share (%)

0.0
0.2
0.4
0.6
0.8

N
or

m
al

iz
ed

D
el

ay ` = 0.8
d = 1.4

(a)

QoS; QoS< QoSℎ

20 40 60 80
QoSℎ-share (%)

0.0
0.2
0.4
0.6
0.8

N
or

m
al

iz
ed

D
el

ay ` = 0.8
d = 1.4

(b)

QoS; QoS< QoSℎ

Figure 9: Simulated WFQ worst-case delay with 3 QoS levels under
different QoSℎ :QoS𝑚 :QoS𝑙 weights: (a) 8:4:1 and (b) 50:4:1. QoS-share
of QoS𝑚 and QoS𝑙 is fixed at a ratio of 2:1.

as a function of its own queue length independent of other
queues and arrivals of other levels; and that 2) it is feasible to
compute the worst-case queuing delay when sources are con-
strained by leaky-bucket rate limiters. We build upon this
work using Network Calculus [17] concepts to calculate delay
bounds given different utilization levels in the QoS classes in-
stead of finding the absolute worst-case delay bounds across
all possible arrival curves. Formally, if we denote the arrival
rate of a class 𝑖 as 𝑎𝑖 with the sum of arrival rates as 𝑎, and
define QoS-mix as the 𝑁 -tuple (𝑎1

𝑎 ,
𝑎2
𝑎 , ...,

𝑎𝑁
𝑎); our analysis

shows how QoS-mix affects WFQ’s per-QoS delay bounds in
overload situations. We refer to the 𝑖𝑡ℎ element in the QoS-
mix as QoS𝒊-share. Compared to prior work, the analysis
is more general in that it can provide delay bounds given a
QoS-mix, but is less general as the closed-form equations are
restricted to only two QoS levels.

Denote 𝑥 as QoSℎ-share of the QoS-mix, which is the ratio
of QoSℎ traffic to the total arrival rate 𝑎ℎ

𝑎 where 0 < 𝑥 < 1;
QoS𝑙 -share is (1−𝑥). The ratio of QoS weights for QoSℎ :QoS𝑙
is 𝜙 :1. Consider the traffic pattern shown in Figure 7.4 We
define the entire sending period to be one unit of time. Traffic
arrives in bursts characterized by a burst parameter, 𝜌 , which
is the slope of the black curve in the figure and 𝜌 > 1. All
notation used for analysis is defined in Table 1. For stability,
there is an idle phase such that the average load 𝜇 within
the period is less than 1.0. Thus, the delay bound can be
represented as a fraction of the period; by definition, the
arriving traffic can be consumed within a single period. We
denote this as normalized delay bound.

Different subdomains for 𝑥 yield different service curves
and thus, a different delay-bound representation, e.g., up
until a certain value of 𝑥 , QoSℎ experiences zero delay. Also,
4This model is similar to a Leaky-Bucket formulation expressed differently
to aid closed-form equations, with the interval normalized to a unit of time.

some of the subdomains can be empty depending on the
parameter values. Worst-case delay experienced by QoSℎ as
a function of 𝑥 (𝐷𝑒𝑙𝑎𝑦ℎ (𝑥)) is given by (detailed proof is in
Appendix B):

0, 𝑥 ≤ 𝜙

𝜙 + 1
1
𝜌

𝜇 (𝜙 + 1
𝜙

𝑥 − 1
𝜌
), 𝜙

𝜙 + 1
1
𝜌
< 𝑥 ≤ 𝜙

𝜙 + 1

𝜇 (1 − 𝑥) (𝜙 + 1 − 𝜙

𝜌 𝑥
), 𝜙

𝜙 + 1 < 𝑥 ≤ min{1 − 1
𝜙 + 1

1
𝜌
,

1
𝜌
}

𝜇 (1
𝜌
− 1
𝜌2)

1
𝑥
, min{1 − 1

𝜙 + 1
1
𝜌
,

1
𝜌
} < 𝑥 ≤ 1

𝜌

𝜇 (1 − 1
𝜌
), 𝑥 > max{ 𝜙

𝜙 + 1 ,
1
𝜌
}

(1)
Figure 8 plots the theoretical worst-case delay per QoS

level in a 2-QoS scenario. There are two main takeaways
from the above formulation. First, QoS-mix affects delay in
both QoS classes. As QoS distribution changes, delay from
both classes experience different regions. Second, at a certain
share of QoSℎ , we observe priority inversion where delay in
QoSℎ exceeds that of QoS𝑙 .

Due to the increased complexity of closed-form delay equa-
tions, we extend the analysis to more number of QoS classes
via empirical analysis in simulation. Figure 9 plots the sim-
ulated results of a WFQ with 3 QoS levels. As before, the
QoS-mix plays an important role in the delay profile among
all the QoS levels. Shaded area represents delay regions with
no priority inversion.
4.2 Controlling QoS-Mix for RNL SLOs
The above set of equations show that the delay bound de-
pends on a few different parameters including QoS-mix, QoS
weights, and burstiness. We characterize two lemmas to con-
clude that controlling QoS-mix ties directly to delay-bounds,
which along with the bandwidth guarantees provided by
WFQs is effective in providing RNL SLOs.

Lemma 1.When the demand for each QoS class (𝑎𝑖) exceeds
its minimum guaranteed rate (𝑔𝑖), the QoS-share thresholds
for priority inversion are a function of QoS weights. Priority
inversion happens when the delay in a higher QoS exceeds
the delay in a lower QoS. In the case where the demand for
each QoS class (𝑎𝑖) exceeds its minimum guaranteed rate (𝑔𝑖),
it takes longer to process the traffic in QoS𝑖 versus QoS𝑖+1.
The processing time is proportional to 𝑎𝑖/𝜙𝑖 , i.e.,

𝑎1/𝜙1 ≤ 𝑎2/𝜙2 ≤ ... ≤ 𝑎𝑁 /𝜙𝑁 . (2)
For the two QoS case, this implies QoSℎ and QoS𝑙 ,

𝑎ℎ

𝑔ℎ
≤ 𝑎𝑙

𝑔𝑙
,
𝑥

𝜙
≤ 1 − 𝑥

1 =⇒ 𝑥 ≤ 𝜙

𝜙 + 1
Thus, the values for QoS weights determine the boundary
of a region of operation outside which priority inversion

occurs. We define it as the admissible region, formally as the
region where each point satisfies
∀𝑘 ∈ {1, 2, ..., 𝑁 −1}, 𝑑𝑒𝑙𝑎𝑦_𝑏𝑜𝑢𝑛𝑑𝑘 ≤ 𝑑𝑒𝑙𝑎𝑦_𝑏𝑜𝑢𝑛𝑑𝑘+1 (3)

with 𝑁 QoS classes; lower indices indicating higher priority.
Figure 9 shows that when we increase the weight of QoSℎ to
50, the priority inversion points (and hence the admissible
region) move to the right, albeit at the cost of higher delay
bounds for QoS𝑚 .

Lemma 2. While increasing QoSℎ weight 𝜙 helps admit
more QoSℎ trafficwith zero delay, beyondQoSℎ-share exceeding
1
𝜌 , delay is independent of QoS weights. As 𝜙 increases, the
domain of case 1 in Eq 1 grows and approaches 1

𝜌 as 𝜙 keeps
increasing. In fact, based on Eq 1, when 𝜙 goes to infinity,
QoSℎ delay expression becomes

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) =


0, 𝑥 ≤ 1
𝜌

𝜇 (𝑥 − 1
𝜌
), 1

𝜌
< 𝑥 ≤ 1

(4)

Taking the two lemmas together, we observe while QoS
weights are an important parameter to increase the amount
of traffic permitted at a given delay bound, it is controlling
the QoS-share that is effective in providing the delay bounds
in the first place. This property directly motivates a key part
of Aequitas’ design – control utilization at a given QoS via
admission control. We also note that as 𝜙 increases, the equa-
tions approach the single-QoS scenario where the only way
to control delay is to control the amount of admitted traffic.
Furthermore, the core idea of controlling QoS-mix enables
cloud operators to select SLOs from the profiles of latency
versus QoS-mix.

Aligning RPC priority to network QoS with WFQ sched-
uling and controlling the amount of traffic admitted to indi-
vidual QoS classes are the core principles of Aequitas design
which we describe in the next section.

5 SYSTEM DESIGN
The overall design for Aequitas follows naturally from
the analysis above and consists of two sequential phases
amenable to incremental deployment. In this paper, we focus
on presenting the key design ideas without going into details
about how Aequitas is implemented in the RPC stack and the
transport stack internally at our clusters, which are beyond
the scope of this paper.
Phase 1: Align Network QoS with RPC priority Most
datacenter applications have a clear notion of RPCs that
are 𝑃𝐶 , 𝑁𝐶 , and 𝐵𝐸. Classifying an entire application or a
job into a single priority class is too coarse-grained; trans-
port level flows can be both coarse and fine grained, e.g.,
consider the issue we face with multiplexing multiple RPCs
onto a single TCP connection; packet level is needlessly fine-
grained and loses application-level semantics. As a first step

to providing RNL SLOs, Aequitas maps, at the granularity
of RPCs, the three priority classes bijectively to three QoS
classes served with WFQ-scheduling: 𝑃𝐶 RPCs to QoSℎ , 𝑁𝐶
to QoS𝑚 , and 𝐵𝐸 to QoS𝑙 . Aequitas provides SLOs for QoSℎ
and QoS𝑚 ; QoS𝑙 is treated as a scavenger class on which best-
effort and downgraded traffic is served and offers no SLOs.
The design organically extends to larger numbers of QoS
priority classes.
Phase 2: Distributed Admission Control via QoS down-
grade to provide RNL SLOs Aequitas uses a distributed
algorithm implemented completely at sending hosts to de-
cide, at the RPC granularity, whether to admit a given RPC
on the requested QoS by controlling an admit probability.
This controls the portion of RPCs admitted across QoS levels
in order to meet RNL SLOs. In a departure from traditional
mechanisms of admission-control that either drop or rate-
limit traffic, Aequitas downgrades the unadmitted RPCs and
issues them at the lowest QoS level. The algorithm follows an
Additive Increase Multiplicative Decrease (AIMD) control.
5.1 Distributed Admission Control
At its core, Aequitas is a distributed admission control system
for RPCs implemented completely at sending hosts utilizing
a novel mechanism of QoS-downgrade enabled by WFQs
commonly available in commodity switches.
Probabilistic admission of RPCs: Central to Aequitas’
distributed algorithm is an admit probability denoted by
𝒑𝒂𝒅𝒎𝒊𝒕 that each RPC channel maintains on a per-(src-host,
dst-host, QoS) basis; Aequitas probabilistically admits RPCs
on a given QoS based on 𝑝𝑎𝑑𝑚𝑖𝑡 , which Aequitas controls as
per Algorithm 1. Note that if an RPC is downgraded, it is
explicitly notified to the application via an additional field
in RPC metadata (lines 10-11). This notification is important
for two reasons: (i) the application sees network overload
and QoS downgrades directly, and (ii) when not all RPCs can
be admitted on the requested QoS, the application has the
freedom to control which RPCs are more critical and issue
only those at higher QoS to prevent downgrades. How ap-
plications exactly use the downgrade information is outside
the scope of this paper.

The key idea behind the algorithm is simple. At each
source host, for each RPC channel, Aequitas collects mea-
surements of RPC network latencies (RNL as described in
§2.2.1) per destination host and QoS level to capture the
delays incurred by both network overload and congestion
control backoff. These measurements serve as the primary
signal to adjust 𝑝𝑎𝑑𝑚𝑖𝑡 . If the latency is within the target,
𝑝𝑎𝑑𝑚𝑖𝑡 is increased, otherwise it is decreased. We find that
such a probabilistic approach has two main advantages: (i)
admit probability translates directly to determine the portion
of RPCs that needs to be downgraded to control the amount
of admitted traffic, and (ii) it is simple to reason about in

Algorithm 1: QoS Downgrade Algorithm
1 Notation:

𝜶 : additive increment, 𝜷 : multiplicative decrement,
𝒕𝒂𝒓𝒈𝒆𝒕_𝒑𝒄𝒕𝒍 : target percentile of tail latency, 𝑵 : total number
of QoS levels, 𝒑𝒓 𝒊𝒐𝒓 𝒊𝒕𝒚: RPC priority class specified by the
application, 𝒔𝒊𝒛𝒆: size of an RPC in number of MTUs.

2 Initialization:
for 𝑖 ← 1 to 𝑁 − 1 do

3 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑖] = 1
4 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 [𝑖] =

𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 [𝑖] · 100
100−𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑐𝑡𝑙 [𝑖]

5 On RPC Issue (𝑟𝑝𝑐, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦):
6 𝑄𝑜𝑆𝑟𝑒𝑞 ← 𝑀𝑎𝑝𝑃𝑟𝑖𝑜𝑟𝑡𝑦𝑇𝑜𝑄𝑜𝑆 (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)
7 if 𝑟𝑎𝑛𝑑 () ≤ 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑄𝑜𝑆𝑟𝑒𝑞] then
8 𝑄𝑜𝑆𝑟𝑢𝑛 ← 𝑄𝑜𝑆𝑟𝑒𝑞
9 else
10 𝑄𝑜𝑆𝑟𝑢𝑛 ← 𝑄𝑜𝑆𝑙𝑜𝑤𝑒𝑠𝑡

11 𝑟𝑝𝑐.𝑖𝑠_𝑑𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒

12 𝑅𝑃𝐶_𝑆𝑡𝑎𝑟𝑡 (𝑟𝑝𝑐,𝑄𝑜𝑆𝑟𝑢𝑛)

13 On RPC Completion (𝑟𝑝𝑐_𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑠𝑖𝑧𝑒, 𝑄𝑜𝑆𝑟𝑢𝑛):
14 𝑘 ← 𝑄𝑜𝑆𝑟𝑢𝑛
15 if 𝑟𝑝𝑐_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 / 𝑠𝑖𝑧𝑒 < 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 [𝑘] then

⊲ Additive Increase
16 if now − t_last_increase[k] > increment_window[k] then
17 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] ← min(𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] + 𝛼, 1)
18 𝑡_𝑙𝑎𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 [𝑘] ← 𝑛𝑜𝑤

19 else ⊲ Multiplicative Decrease
20 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] ← max(𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] − 𝛽 · 𝑠𝑖𝑧𝑒, 𝑓 𝑙𝑜𝑜𝑟)

terms of a fair and efficient distributed algorithm as we de-
scribe below. We note similarities to AQM schemes [22, 46]
that also perform probabilistic admission control albeit at
the packet level; Aequitas does so at the granularity of RPCs.
AIMD on admit probability: AIMD as a feedback control
algorithm has been widely used to provide fair and efficient
utilization of resources both in theory and in practice [11, 30].
Aequitas’ usage of AIMD has several important differences
compared to how other systems use AIMD.
Additive increase: Aequitas increases 𝑝𝑎𝑑𝑚𝑖𝑡 if the ob-
served RNL is below the target, restricted to one update
per 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 (lines 15-18). The rationale is that
for fairness, the increment in 𝑝𝑎𝑑𝑚𝑖𝑡 should be agnostic
to how many RPCs each channel is sending. The value of
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 depends on the percentile at which the
SLO is defined, e.g., if the SLO is defined at the 99.9𝑡ℎ-𝑝 , the
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 is higher than the case where it is at the
99𝑡ℎ-𝑝—the algorithm is more conservative in increasing the
admit probability when the SLO is for a higher tail.
Multiplicative decrease: If the RPC misses the specified
SLO, 𝑝𝑎𝑑𝑚𝑖𝑡 is decreased by a constant amount per SLO miss
(lines 19-20). Aequitas achieves fairness across RPC-channels.
For this, when overload occurs, a channel sending more RPCs

incurs a larger decrease in its 𝑝𝑎𝑑𝑚𝑖𝑡 versus a channel sending
fewer RPCs. We utilize RPC-level clocking to achieve this: the
constant decrement in the admit probabilities implies that
the overall decrease in a given time interval becomes propor-
tional to the RPCs on the channel that miss the SLO.5 We set
a threshold below which 𝑝𝑎𝑑𝑚𝑖𝑡 does not further decrease.
This is to prevent starvation – when the admit probability
drops to zero, no new RPCs get admitted on the requested
QoS, resulting in no further latency measurement for the
admit probability to grow. Detailed evaluation of how the
algorithm achieves fairness and efficiency is in §6.5.

By applying the above AIMD policy on the admit probabil-
ity, Aequitas is able to control the rates of issuing RPCs in a
fair and efficient way, and converge to a stable QoS-mix with
which the given set of SLOs are precisely maintained. As we
will show in §6.3, this leads to close to maximal admitted
traffic while maintaining SLO-compliance.
Handling different RPC sizes: We make two augmenta-
tions to the algorithm to handle different RPC sizes. First,
the 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 is specified as a normalized SLO on an
MTU basis, enabling larger RPCs to have a higher absolute
RNL target. Second, the multiplicative decrease is made pro-
portional to the size of the RPC, such that an SLO miss on,
say, a 10-packet RPC behaves similarly to SLO misses on ten
1-packet RPCs. In other words, irrespective of the sizes of
the RPCs, Aequitas will converge to its fair share.

5.2 SLO Guarantees and Robustness

The trifecta of aligning priorities, providing per-QoS SLOs
(except the lowest QoS), and admission control to maintain
a QoS-mix enables a systematic use of datacenter QoS and
incentivizes applications to be well-behaved when using
higher QoS.

A naive way of meeting SLOs is to admit a very small
number of RPCs on each QoS. However, Aequitas aims to
maximize the traffic that is admitted (performance-criterion)
while retaining SLO-compliance (correctness-criterion). Ad-
ditionally, we can show that in our theoretical model, at least
𝑟

𝜙𝑖∑
𝜙

𝜇
𝜌 traffic is admitted in QoS𝑖 except for the lowest QoS

To see why this is true, consider the model in §4.1. Denote
𝑋𝑖 as the average rate that will at least be admitted in 𝑄𝑜𝑆𝑖
under Aequitas. Given 𝑋𝑖 , the maximum instantaneous rate
on 𝑄𝑜𝑆𝑖 can be represented as 𝑋𝑖

𝜌
𝜇 . When the arrival rate

does not exceed its minimum guaranteed rate, there cannot
be any delay on 𝑄𝑜𝑆𝑖 (Appendix B.1 has a formal proof on
this), and all traffic is admitted. Thus, if the maximum instan-
taneous arrival rate for 𝑄𝑜𝑆𝑖 is less than 𝑔𝑖 , 𝑋𝑖 is guaranteed

5An implication of this is if a channel’s rate of RPCs is within its fair share,
its admit probability will converge to 1.0.

to be admitted:

𝑋𝑖
𝜌

𝜇
≤ 𝑔𝑖 =

𝜙𝑖∑
𝜙
𝑟, 𝑋𝑖 ≤ 𝑟

𝜙𝑖∑
𝜙

𝜇

𝜌

with any additional SLO resulting in a larger value of 𝑋𝑖 .
Note that the guaranteed share is inversely proportional to
the traffic burstiness and we evaluate this aspect in §6.4.

It is important to note that while Aequitas provides la-
tency SLOs for all admitted RPCs, it does not guarantee the
amount of traffic admitted on a per-application or per-tenant
basis–wherein the admitted traffic depends on the number
of co-existing applications/tenants, as Aequitas shares the
per-QoS bandwidth. One can augment Aequitas to provide
application/tenant traffic rate guarantees with a centralized
RPC quota server, and we leave this for future work.

6 EVALUATION
Our evaluation consists of event-driven simulation, testbed
experiments, and results from production deployment. The
focus is on two aspects, first is to see if Aequitas remains
SLO-compliant by controlling the 99𝑡ℎ-𝑝 (or 99.9𝑡ℎ-𝑝) RNL
which is our correctness criterion, and second is whether
Aequitas admits close to ideal amount of traffic irrespective
of the input traffic mix which serves as the main performance
criterion. We evaluate these and additional aspects such as
fairness and convergence over different topologies, RPC size
distributions—both synthetic and from production, traffic
patterns and burstiness. All results are at 100Gbps link rates.
6.1 Simulator
We use a packet-level simulator6 built atop YAPS [35], aug-
menting it with WFQ scheduling in switch queues, Swift [34]
congestion control, and an RPC stack where Aequitas is im-
plemented. Our open source simulator also serves as a tool
for datacenter operators to help define the admissible region
and set the right SLOs. Unless otherwise specified, we use an
𝛼 value of 0.01 and a 𝛽 value of 0.01 per MTU (note the size-
based adjustment to multiplicative decrease in Algorithm 1).
Validation: We validate the correctness of the simulator
by replaying the theoretical 2-QoS scenario that was shown
in Figure 8. Congestion control is disabled and the buffer
size is set to a large value to closely match the theoretical
model. We show the results in Figure 10 and observe that
the simulator results precisely track the theory including
priority inversion points and delay values barring QoS𝑙 ’s
delay, which is slightly higher in the simulation. We believe
that this is a result of the packet nature of the simulator
versus the fluid model used in theory.

Two experiment setups are common in our simulator-
evaluation: (1) a 3-node setup where two clients send RPCs
to the same destination server for microbenchmarks, and (2)
6https://github.com/SymbioticLab/Aequitas

0 20 40 60 80 100
QoSℎ-share (%)

0.0
0.1
0.2
0.3
0.4
0.5

N
or

m
al

iz
ed

D
el

ay ` = 0.8
d = 1.2QoS;

QoSℎ

Figure 10: Simulated WFQ
delay bounds with QoSℎ :QoS𝑙
weights = 4:1.

0 20 40 60
QoSℎ SLO (`s)

0

20

40

60

80

99
.9
Cℎ

-?
R

N
L

(`
s)

QoSℎ SLO

QoSℎ RNL
0

10

20

30

40

Q
oS

-s
ha

re
(%

)QoSℎ-share

Figure 11: Aequitas provides SLO-
compliance: achieved RNL closely
tracks SLOs.

QoSℎ QoS< QoS;
0

200

400

600

99
.9
Cℎ

-?
R

N
L

(`
s)

15 25
83

129

543

16 26

236

SLO
w/o Aequitas
w/ Aequitas

Figure 12: Aequitas significantly improves RNL, closely tracking
the SLOs.

0 5 10 15 20
QoSℎ + QoS< outstanding RPCs

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Aequitas
Baseline

0 5 10 15 20
QoS; outstanding RPCs

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Aequitas
Baseline

Figure 13: Comparison of number of outstanding RPCs per switch-
port before and after Aequitas.

a 33-node or 144-node setup with an all-to-all traffic pattern
where each host sends RPCs to the other hosts with an av-
erage and burst load of 0.8 and 1.4 respectively (similar to
Figure 7) with Poisson arrivals. Setups that differ from above
are described for corresponding experiments. QoS weights
for experiments with 2-QoS levels are set at 4:1 and with
3-QoS levels are set at 8:4:1.
6.2 SLO Compliance
To evaluate how closely Aequitas’ distributed admission con-
trol tracks per-QoS RNL SLOs, we start with the 3-node
topology where two RPC channels, each running on a differ-
ent host, issue 32KB WRITE RPCs on QoSℎ to a destination
server. To make the network persistently overloaded, each
host issues RPCs at line rate with 70% of its RPCs at 𝑄𝑜𝑆ℎ
and 30% of its RPCs at 𝑄𝑜𝑆𝑙 . Figure 11 shows that Aequitas
tracks the SLO target in terms of the 99.9𝑡ℎ-𝑝 RNL for 𝑄𝑜𝑆ℎ
extremely well as it is varied from 15𝜇s to 60𝜇s. The tradeoff
between SLO targets and admitted traffic is also evident, with
stricter SLOs resulting in fewer RPCs admitted on QoSℎ .

We move onto the 33-node setup to illustrate that Aequitas
preserves its ability to closely track RPC latency SLOs under
different communicate patterns at a larger scale. We set the
input QoS-mix of (QoSℎ , QoS𝑚 , QoS𝑙) to be (0.6, 0.3, 0.1) and
show the achieved RNL at the 99.9𝑡ℎ-𝑝 w/ and w/o Aequitas
with the SLOs selected as 15𝜇s and 25𝜇s for 𝑄𝑜𝑆ℎ and 𝑄𝑜𝑆𝑚 ,

0 25 50 75
QoSℎ-share (%)

101

102

103

99
.9
Cℎ

-?
R

N
L

(`
s)

QoSℎ RNL = 15 `s

QoS; QoS< QoSℎ

Figure 14: Baseline (w/o Aequitas) 99.9𝑡ℎ-𝑝 RNL observed as QoSℎ-
share is varied.

Target Input Admi�ed Input Admi�ed Input Admi�ed Input Admi�ed0

25

50

75

100

Q
oS

-m
ix

(%
)

25.0

25.0

50.0

60.0

30.0

10.0

50.0

30.0

20.0

40.0

40.0

20.0

25.0

25.0

50.0

25.5

25.7

48.8

25.6

25.7

48.7

25.6

26.5

47.9

23.4

24.5

52.1

QoSℎ -mix QoS< -mix QoS; -mix

0

5

10

15

20

99
.9
Cℎ

-?
R

N
L

(`
s)

QoSℎ RNL

Figure 15: Aequitas admits close to maximal traffic while retaining
SLO-compliance irrespective of input QoS-mix.

respectively, in Figure 12. We treat QoS𝑙 as the scavenger
class as discussed in §5.

An interesting, and perhaps surprising, observation is that
with Aequitas, the RNL of 𝑄𝑜𝑆𝑙 reduces as well, i.e., Ae-
quitas is not a zero-sum game for per-QoS latencies.
The reasoning behind this is similar to the result in Refer-
ence [8] where all jobs can improve their performance with
right prioritization. Given the improved RNL for 𝑄𝑜𝑆ℎ and
𝑄𝑜𝑆𝑚 , RPCs in𝑄𝑜𝑆𝑙 have fewer RPCs to contend with, which
as per Little’s Law [37] implies that they will finish quicker
as well. To verify, we collect the number of outstanding RPCs
and show in Figure 13 that the decrease in instantanous out-
standing RPCs in QoSℎ + QoS𝑙 indeed outweighs the increase
in QoS𝑙 outstanding RPCs, especially at the tail.

6.3 Maximizing Admitted Traffic within SLOs
While SLO-compliance is the main correctness criterion, it
can be met trivially by admitting a tiny amount of traffic.
We show that Aequitas admits close to maximal traffic while
retaining SLO-compliance, irrespective of the input QoS-mix.

To figure out the maximal admissible traffic associated
with a given SLO, we measure 99.9𝑡ℎ-𝑝 RNL in the 33-node
setup without Aequitas as we vary QoSℎ-share from 5 to
70%, keeping QoS𝑚 at 25% and allotting the rest to QoS𝑙 , as
shown in Figure 14. We set the SLO for QoSℎ at 15𝜇s which
corresponds to QoSℎ-share of 25%, and SLO for QoS𝑚 at 25us.
Thus, in this setup, 25% is the maximal amount of traffic
we can admit as admitting any more traffic will violate the
correctness criterion of SLO-compliance. We then vary the
input QoS-mix and plot both RNL and admitted QoS-mix in
Figure 15. We can see that Aequitas converges closely to the
maximal QoSℎ-share while retaining SLO-compliance.

Further, we observe that Aequitas’ algorithm is self-
consistent, i.e., if the input QoS-mix is same as target, then

1.4 1.6 1.8 2 2.2
Burst Load d

0

10

20

30

40

Q
oS
ℎ

-S
ha

re
(%

)

33.4
27.9

23.1 19.8 17.9

Achieved Share

Fi�ed curve with�/d

Figure 16: Aequitas adjusts admitted traffic that is inversely propor-
tional to traffic burstiness.

0 2 4 6
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

A
dm

it
Pr

ob
ab

ili
ty Channel A Channel B

0 2 4 6
Time (s)

0

10

20

30

Th
ro

ug
hp

ut
(G

bp
s)

Channel A Channel B

Figure 17: Admit probability and throughput of two RPC channels
sending 80Gbps and 40Gbps QoSℎ traffic with QoSℎ SLO set to 15𝜇s.

very little traffic gets downgraded. The corollary of this re-
sult is that Aequitas helps solve the race to the top problem
defined in §2.3 by effectively controlling the QoS-mix inde-
pendent of the input distribution.
6.4 Impact of Burstiness on Admitted Traffic
As we discussed in in §5.2, for a given set of SLOs, as bursti-
ness of the traffic increases, the amount of traffic for which
those SLOs can be provided for decreases. In Figure 16, we
vary the burst load, 𝜌 , and plot the QoSℎ-share that Aequitas
admits. While the simulation differs from the theoretical
model in many ways such as packet-level behavior and
congestion-control, we can observe, via the fitted curve in
the plot, the inverse proportionality of admitted traffic w.r.t.
burst load as per the theoretical formulation.
6.5 Fairness
Besides providing SLO guarantees, fairness is also a key
goal in Aequitas’ admission control. To evaluate if Aequitas
ensures fairness across RPC channels, we modify the 3-node
experiment in §6.2 such that Channel𝐴 issues 40% of its RPCs
on 𝑄𝑜𝑆ℎ (equivalent to 40 Gbps worth of RPCs at 100Gbps
link as the per-channel load is 1.0) whereas Channel 𝐵 issues
80% of its RPCs on 𝑄𝑜𝑆ℎ . We set QoSℎ SLO to be 15𝜇s such
that fairness implies that each channel gets 20% of its RPCs
admitted to 𝑄𝑜𝑆ℎ and the rest downgraded. Figure 17 shows
that Aequitas achieves fairness by converging to different
values of admit probability for each individual channels.

Another important aspect regarding fairness is how Ae-
quitas behaves when a channel is operating within its quota,
i.e., its demand for 𝑄𝑜𝑆ℎ is below its fair-share. The expec-
tation is that such a well-behaved RPC channel experiences
minimal to no downgrades while continuing to meet the
SLOs. We modify the above experiment in that Channel 𝐴 is-
sues only 10% of its RPCs on𝑄𝑜𝑆ℎ (lower than its fair share of

0 2 4 6
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

A
dm

it
Pr

ob
ab

ili
ty

Channel A Channel B

0 2 4 6
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(G

bp
s) Channel A Channel B

Figure 18: Aequitas maintains a near 1.0 admit probability for in-
quota RPC channels that have demand less than fair-share. Excess
quota is reclaimed by other channels to provide max-min fairness.

50 60 70 80
QoSℎ-share (%)

0
10
20
30
40
50

Q
oS
ℎ

99
.9
Cℎ

-?
R

N
L

QoSℎ SLO

Aequitas

SPQ

50 60 70 80
QoSℎ-share (%)

0

100

200

300

400

Q
oS
<

99
.9
Cℎ

-?
R

N
L

QoS< SLO

Aequitas

SPQ

Figure 19: Aequitas compares with Strict Priority Queuing (SPQ) in
providing SLO guarantees.

20%) and plot the admit probabilities and achieved through-
put in Figure 18. We find that Aequitas not only maintains
admit probability of Channel 𝐴 close to 1.0, it also allows
Channel 𝐵 to reclaim the excess, providing max-min fair-
ness. We observe Channel A is able to consistently achieve a
throughput of 10Gbps with 1𝑠𝑡 -𝑝 𝑝𝑎𝑑𝑚𝑖𝑡 = 0.82.
𝛼 and 𝛽 are key parameters in that they posit a tradeoff be-

tween SLO-compliance and stability. Results of a sensitivity
analysis on 𝛼 and 𝛽 can be found in Appendix C.

6.6 Convergence Time
Convergence time affects how quickly Aequitas’ algorithm
achieves max-min fair-sharing amongst channels while en-
suring SLO-compliance. Convergence time for both channels
is 10ms in Figure 17 and 3ms in Figure 18. As above, 𝛼 and
𝛽 are key parameters here and we choose them to favor
SLO-compliance.

6.7 Comparison with Strict Priority Queuing
Although strict priority queuing (SPQ) is not widely deployed
in many production networks, it is widely used in literature
to implement optimal scheduling such as SRPT [3, 40]. We
evaluate how using SPQ alone handles network overloads
by applying the same setting in our 33-node setup and re-
placing the underlying WFQs with SPQs. We fix the QoS𝑚
distribution at 20% and increase the percentage of QoSℎ traf-
fic as shown in Figure 19. We observe SPQ fails to maintain
predictability as more applications mark their RPCs as QoSℎ ;
meaning, it does not resolve the race to the top problem.

6.8 Handling Different RPC Sizes
We now evaluate how Aequitas handles different RPC sizes as
discussed in §5.1. We conduct an experiment where half the
channels continue to issue 32KB RPCs while the other half

SLOs Total w/o
Aequitas

Total w/
Aequitas

32KB w/o
Aequitas

32KB w/
Aequitas

64KB w/o
Aequitas

64KB w/
Aequitas

0

40

80

120

99
.9
Cℎ

-?
R

N
L

(`
s)

(N
or

m
al

iz
ed

)

4
17

3
20

4
14

35
23

5

26
6

19
4

104

44

116

49

76

31

QoSℎ
QoS<
QoS;

Figure 20: Aequitas uses RPC size to normalize latency with a non-
uniform size distribution in a 33-node cluster.

3000
3200 3062

QoSℎ QoS< QoS;
0

200
400
600
800

99
.9
Cℎ

-?
R

N
L

(`
s)

(N
or

m
al

iz
ed

)

30
13090

315

24
142

600

SLO
w/o Aequitas
w/ Aequitas

QoSℎ QoS< QoS;
0

25

50

75

100
Q

oS
-s

ha
re

(%
)

60

30

10
20 26

54

w/o Aequitas
w/ Aequitas

Figure 21: Aequitas’ performance in a large (144-node) topology
with production RPC sizes.

issue 64KB RPCs. Figure 20 shows that Aequitas continues
to meet the normalized RNL SLOs with different RPC sizes.
6.9 Large-Scale Eval with Production RPC Sizes
We evaluate Aequitas at a larger scale in a simulated 144-
node topology, with RPC sizes taken from production, under
extreme overload where we increase the burst load such
that the maximum instantaneous load on the link is 25× its
capacity. Figure 21 shows that Aequitas improves tail RNL
in QoSℎ/QoS𝑚 by 3.7×/2.2× in this workload, continuing to
meet RNL SLOs even under extreme overloads that can occur
in production. We observe 20ms convergence time before
the 99.9𝑡ℎ-𝑝 latency becomes stable.
6.10 Comparison with Related Works
We compare Aequitas with four related systems, pFabric [3],
QJump [26], D3 [62], PDQ [28], and Homa [40], each with a
complete implementation in our packet-level simulator. We
use our production RPC size distribution with 50%/30%/20%
input QoS-mix in the 33-node setup. We start with normal-
ized SLO targets; for D3 and PDQ, which do not consider
RPC sizes in their design, these translate to 250us and 300us
deadlines for QoSℎ and QoS𝑚 RPCs based on the average of
production RPC-size distribution, respectively.

We record per-QoS 99.9𝑡ℎ-𝑝 RNL and percentage of traffic
that meet the SLO targets from their initially assigned QoS
levels. We also record network utilization, which we define
as the achieved goodput divided by the maximum goodput
based on the input arriving rate. Figure 22 summarizes the
results and we make the following observations. First, Ae-
quitas achieves the highest amount of traffic meeting SLO
targets (QoS𝑚 results, not shown, are similar). Second, Ae-
quitas achieves better 99.9𝑡ℎ-𝑝 RNL for QoSℎ and QoS𝑚 than
pFabric and QJump, which are SLO-unaware. D3 and PDQ
observe good performance on RNL, however, a lower per-
centage of traffic meets the SLO targets / deadlines. This is
because both D3 and PDQ terminate an RPC early when it

QoSℎ Tra�ic
Meeting SLOs

Network
Utilization

0
20
40
60
80

100

Pe
rc

en
ta

ge
(%

)

70.3

100.0

56.0

99.3

40.9

99.7

33.2

51.9

34.9

52.9
46.5

99.1Aequitas

pFabric

QJump

D3
PDQ

Homa

QoSℎ QoS< QoS;
0

2k

4k

6k

8k

10k

99
.9
Cℎ

-?
R

N
L(
`

s)

437 483

4929

2169 2241 2198

473

1764

9321

239 293
888

240 292 678
1396 1350 1370

Aequitas

pFabric

QJump

D3

PDQ

Homa

Figure 22: Aequitas compared with related works in the simulated
33-node setup with production RPC size distribution.

QoSℎ QoS< QoS;
0
2
4
6
8

10

99
.9
Cℎ

-?
R

N
L

(N
or

m
al

iz
ed

) 8.1

5.0

1.31.0 0.8 0.9

w/o Aequitas
w/ Aequitas

QoSℎ QoS< QoS;
0

20
40
60
80

100

Q
oS

-s
ha

re
(%

)

50
35

15
22

29

49

w/o Aequitas
w/ Aequitas

Figure 23: Result from testbed implementation shows that Aequitas
maintains SLO compliance and converges to the target QoS-mix.

cannot meet its deadline, which also lowers network utiliza-
tion down to nearly 50%. pFabric favors short RPCs using
SRPT scheduling, but doesn’t meet SLO targets for large
RPCs, which can be equally important. Homa also adopts
SRPT, but its usage of dynamic in-network priorities favors
even more applications’ small RPCs, leaving more large RPCs’
SLO goals to be ignored. QJump provides good performance
at the packet level by rate-limiting higher QoS traffic at end-
hosts, however at RPC level, Aequitas’ performance is better
both in terms of RNL and percentage of traffic meeting SLOs.
6.11 Testbed Evaluation
Our prototype implementation of Aequitas is built in a pro-
duction RPC stack, and it incorporates both Phase 1 and
Phase 2 of Aequitas’ design. Aequitas’ algorithm computes
an admit probability per RPC channel, which is mapped to
multiple per-QoS TCP sockets. On RPC completion, the RNL
measurement is fed into the Aequitas’ algorithm.

We deployed the prototype in a 20-machine testbed with
100Gbps NICs connected to a single switch that supports
∼10 QoS queues with configurable weights. We set the
QoSℎ :QoS𝑚 :QoS𝑙 weights to 8:4:1. Each machine issues 32KB
WRITE RPCs to other machines in an all-to-all communica-
tion pattern. To circumvent the issues in RNL measurements
described in §2.2.1, we provision enough CPU such that the
elevated network-latency measurement is purely a result of
network overload.

Figure 23 shows the RNL SLOs and QoS-mix w/ and w/o
Aequitas. The setup is similar to §6.3 with 3 QoS levels and

0 1 2 3 4 5
Time (weeks)

0

20

40

60

80

M
is

al
ig

ed
R

PC
s

(%
) NC

BE

Total

PC

Sampled Clusters
−60

−50

−40

−30

−20

−10

0

10

99
Cℎ

-?
R

N
L

C
ha

ng
e

(%
)

Figure 24: Production deployment of Phase 1 of Aequitas shows im-
provement in QoS-misalignment and 99th-p RNL.

an input QoS-mix at (0.5, 0.35, 0.15). The SLOs are set as per
a QoS-mix of (0.2, 0.3, 0.5). For confidentiality reasons, we
show normalized7 RNL measurements and find that Aequitas
meets its promise of achieving SLO targets.

6.12 Results from Production Deployment
We now present results from Aequitas’ production deploy-
ment with a focus on Phase 1 deployment. Phase 2 results
are not ready to be collected as the paper is written. Figure 24
shows the results (collected from a random sampling of 50
clusters) from our fleet-wide deployment of Phase 1, with
two important metrics:

1) Misalignment percentage between RPC-priority and
QoS, i.e., percentage of 𝑃𝐶 RPCs flowing in QoS𝑙 and QoS𝑚
queues, 𝑁𝐶 RPCs flowing in QoSℎ and QoS𝑙 queues, and 𝐵𝐸

RPCs flowing in QoSℎ and QoS𝑚 queues. Aequitas brings
misalignment down from up to 80% to nearly zero.

2) Aequitas achieves up to 53% reduction in 99𝑡ℎ-𝑝 RNL
for high priority traffic. RNL was measured as described in
§2.2.1 for Storage READ and WRITE RPCs. A small number
of clusters showed a minor regression primarily because of
initial highly skewed QoS distribution, competing traffic that
is not yet aligned through Aequitas, and changes in traffic
pattern during the measurement window.

7 RELATEDWORK
Packet Scheduling: Packet scheduling is a classic network-
ing topic that focuses on different variations of weighted fair
queuing (WFQ) in switches, routers, and middleboxes [9, 19,
24, 25, 41, 47, 54, 60]. Aequitas builds upon this pioneering
work and extends the analysis by exploring the interactions
among QoS levels as well as WFQ’s admissible regions to
provide SLOs for higher-priority RPCs. Centralized packet
arbitration solutions [43, 48] could provide latency guaran-
tees, but are difficult to deploy at scale in datacenters.
Flow and Coflow Scheduling: Flow scheduling algo-
rithms in datacenters focus on minimizing the average or tail
flow completion time (FCT), typically by prioritizing short
flows [3, 5, 21, 23, 40]. Aequitas works at the RPC granular-
ity, provides guaranteed SLOs for RPC network-latency, and

7We normalize each QoS level with their observed 99.9𝑡ℎ-𝑝 RNL when input
QoS-mix is same as the target QoS-mix (0.2, 0.3, 0.5).

uses WFQ mechanism versus strict priority. Coflow sched-
uling minimizes the average coflow completion time (CCT)
instead of FCT [1, 14, 15, 20], but it does not capture RPC
semantics either.
Network Calculus-Based Scheduling: Network calculus
has been widely used as a tool to provide worst-case latency
guarantees by many related works [18, 31, 51, 57, 66–68].
However, none highlighted the interactions between QoS
levels and the possibility of priority inversion. PriorityMeis-
ter [68], SNI-Meister [66], and WorkloadCompactor [67] tar-
get tail latency SLOs, but they all base their analysis on SPQ
and rely on prior knowledge of stationary traffic traces.
AQM and QoS Solutions: Active Queue Management
(AQM) performs admission control by probabilistic drop-
ping at the packet layer to prevent congestion under over-
subscription while approximating fairness [22, 42, 45, 46, 64].
Aequitas uses a similar probabilistic admission control, but at
the layer of RPCs. QoS-based solutions such as IntServ [63]
and DiffServ [10] provide applications better service relative
to 𝐵𝐸 traffic running on the Internet. Aequitas is similar to
DiffServ in that it also differentiates traffic at the edges as
per their priority, but focuses on datacenter environments
to provide guaranteed latency SLOs for RPCs.
Congestion Control: Datacenter congestion control solu-
tions have focused on quickly achieving max-min fairness
with or without hardware support and using edge-based
(delay-based) and network-supported (e.g., using ECN or
programmable switch) mechanisms [2, 34, 36, 39, 40, 69].
Aequitas, which operates at the RPC layer, relies on a well-
functioning congestion control algorithm at the transport
layer to keep switch buffer occupancy small, alleviate packet-
losses, and fully utilize available bandwidth.
Network Bandwidth Sharing: Over the last decade, an-
other prominent direction of research has been network
bandwidth sharing in public and/or private clouds [6, 7, 13,
27, 32, 41, 49, 50, 53]. Similar solutions at the WAN level
include, among others, BwE [33] and SWAN [29]. Aequitas
differs from these efforts by focusing on providing isolation
in terms of RPC latency to critical RPCs.
Server-Side RPC Overload Management: Another line
of work is to provide overload management at the layer of
RPCs or request/responses but focuses on server-side over-
load such as CPU contention [12, 61, 65]. Aequitas com-
plements such schemes by focusing on network overload,
providing guarantees on RPC network-latency.

8 CONCLUSION
Today, developers running in shared multi-tenant cloud en-
vironments have no effective way to provide RPC latency
SLOs. In this paper, we take an important step toward this
higher-level goal by providing a first solution for SLOs for
the network component of RPC latency. We present the

design, implementation, and evaluation of Aequitas, built
around the observation that dynamically mapping RPCs
to widely-available network QoS classes can bound RPC
network-latency in a shared environment with no central-
ized control. We employ Network Calculus-based analysis to
set the ratio of RPCs admitted into the network at different
priority levels with the goal of guaranteeing quantitative tail
latency targets for all priority classes except for the lowest
(best-effort) class. We hope our work will inspire other tech-
niques to comprehensively deliver RPC latency SLOs as a
fundamental building and reasoning block for distributed
systems developers. On the theoretical side, we leave an open
question: what are the closed-form delay equations for an ar-
bitrary number of QoS levels, if any? Solving this challenge,
or proving non-existence of such generalization, will provide
valuable insights in designing future QoS-aware systems.

ACKNOWLEDGEMENTS
We would like to thank Neal Cardwell, David Wetherall,
the anonymous SIGCOMM reviewers, and our shepherd, Y.
Richard Yang, for providing valuable feedback. This work
was supported in part by NSF grants CNS-1845853, CNS-
1845853, and CNS-2104243.

REFERENCES
[1] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agar-

wal, David Shmoys, and Amin Vahdat. 2018. Sincronia: Near-optimal
network design for coflows. In SIGCOMM.

[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In SIGCOMM.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
Mckeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal
Near-Optimal Datacenter Transport. In SIGCOMM.

[4] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea,
and Eno Thereska. 2014. End-to-end Performance Isolation Through
Virtual Datacenters. (2014).

[5] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
2015. Information-Agnostic Flow Scheduling for Commodity Data
Centers. In NSDI.

[6] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
2011. Towards predictable datacenter networks. In SIGCOMM.

[7] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim,
Dinan Gunawardena, and Greg O’Shea. 2013. Chatty tenants and
the cloud network sharing problem. In NSDI.

[8] Nikhil Bansal and Mor Harchol-Balter. 2001. Analysis of SRPT Sched-
uling: Investigating Unfairness. In Proceedings of the 2001 ACM SIG-
METRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’01). Association for Computing
Machinery, New York, NY, USA, 279–290. https://doi.org/10.1145/
378420.378792

[9] J.C.R. Bennett and H. Zhang. 1996. WF2Q: Worst-case Fair Weighted
Fair Queueing. In INFOCOM.

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. 1998.
RFC2475: An Architecture for Differentiated Service. In IETF.

[11] Dah-Ming Chiu and Raj Jain. 1989. Analysis of Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks. In Com-
puter Networks and ISDN systems.

[12] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Al-
izadeh, and Adam Belay. 2020. Overload Control for µs-scale RPCs
with Breakwater. In NSDI.

[13] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. 2016.
HUG: Multi-Resource fairness for correlated and elastic demands. In
NSDI.

[14] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Schedul-
ing Without Prior Knowledge. In SIGCOMM.

[15] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient
Coflow Scheduling with Varys. In SIGCOMM.

[16] Jeremy Cloud. 2013. Decomposing twitter: Adventures in serviceori-
ented architecture. In n QCon New York.

[17] Rene L. Cruz. 1991. A calculus for network delay, Part I: Network
elements in isolation. In IEEE/ACMTransactions on Information Theory.

[18] Rene L Cruz. 1992. Service burstiness and dynamic burstiness mea-
sures: A framework. Journal of High Speed Networks 1, 2 (1992), 105–
127.

[19] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation
of a Fair Queueing Algorithm. In SIGCOMM.

[20] Fahad Dogar, Thomas Karagiannis, Hitesh Ballani, and Ant Rowstron.
2014. Decentralized Task-Aware Scheduling for Data Center Networks.
In SIGCOMM.

[21] Abdullah Bin Faisal, Hafiz Mohsin Bashir, Ihsan Ayyub Qazi, Zartash
Uzmi, and Fahad R. Dogar. 2018. Workload Adaptive Flow Scheduling.
In CoNEXT.

[22] Sally Floyd and Van Jacobson. 1993. Random Early Detection Gateways
for Congestion Avoidance. IEEE/ACM Transaction on Networking 1, 4
(1993), 397–1413.

[23] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. 2015. pHost: Distributed Near-Optimal
Datacenter Transport Over Commodity Network Fabric. In CoNEXT.

[24] S. Jamaloddin Golestani. 1995. Network delay analysis of a class of
fair queueing algorithms. IEEE JSAC 13, 6 (1995), 1057–1070.

[25] Pawan Goyal, Harrick M Vin, and Haichen Chen. 1996. Start-time
fair queueing: A scheduling algorithm for integrated services packet
switching networks. In SIGCOMM.

[26] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015.
Queues don’t matter when you can JUMP them!. In NSDI.

[27] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong,
Peng Sun, Wenfei Wu, and Yongguang Zhang. 2010. SecondNet: A data
center network virtualization architecture with bandwidth guarantees.
In CoNEXT.

[28] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-
ishing Flows Quickly with Preemptive Scheduling. In SIGCOMM.

[29] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving high
utilization with software-driven WAN. In SIGCOMM.

[30] Van Jacobson and Michael J. Karels. 1988. Congestion Avoidance and
Control. In SIGCOMM.

[31] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015.
Silo: Predictable message latency in the cloud. In SIGCOMM.

[32] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazieres, Bal-
aji Prabhakar, Changhoon Kim, and Albert Greenberg. 2013. EyeQ:
Practical Network Performance Isolation at the Edge. In NSDI.

[33] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinadhuni, En-
rique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart,
and Amin Vahdat. 2015. BwE: Flexible, Hierarchical Bandwidth Allo-
cation for WAN Distributed Computing. In SIGCOMM.

[34] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,

https://doi.org/10.1145/378420.378792
https://doi.org/10.1145/378420.378792

Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat.
2020. Swift: Delay is Simple and Effective for Congestion Control in
the Datacenter. In SIGCOMM.

[35] Gautam Kumar, Akshay Narayan, and Peter Gao. 2016. YAPS: Yet An-
other Packet Simulator. https://github.com/NetSys/simulator. (2016).

[36] Yuliang LI, Harry Hongqiang Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. 2019. HPCC: High Precision Congestion Control. In SIGCOMM.

[37] John D. C. Little. 1961. A proof for the queuing formula: L=𝜆W. In
Operations Research.

[38] Tony Mauro. 2015. Adopting Microservices at Netflix: Lessons for
Architectural Design. https://tinyurl.com/htfezlj. (2015).

[39] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter.
In SIGCOMM.

[40] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: A Receiver-Driven Low-Latency Transport Protocol
Using Network Priorities. In SIGCOMM.

[41] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,
Mohammad Alizadeh, and Sachin Katti. 2016. NUMFabric: Fast and
Flexible Bandwidth Allocation in Datacenters. In SIGCOMM.

[42] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay: A
modern AQM is just one piece of the solution to bufferbloat. In ACM
Queue.

[43] Amy Ousterhout, Jonathan Perry, Hari Balakrishnan, and Petr La-
pukhov. 2017. Flexplane: An experimentation platform for resource
management in datacenters. In NSDI.

[44] Dan Paik. 2016. Adapt or Die: A microservices story at Google.
https://www.slideshare.net/apigee/adapt-or-die-a-microservices-
story-at-google. (2016).

[45] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003.
Approximate Fairness through Differential Dropping. In SIGCOMM.

[46] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. 2000. CHOKe:
A stateless active queue management scheme for approximating fair
bandwidth allocation. In INFOCOM.

[47] Abhay K. Parekh and Robert G. Gallager. 1993. A Generalized Processor
Sharing Approach to Flow Control in Integrated Services Networks:
The Single-Node Case. In IEEE/ACM Transactions on Networking.

[48] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: A centralized zero-queue datacenter
network. (2014).

[49] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica. 2012. FairCloud: Sharing the Network in Cloud Comput-
ing. In SIGCOMM.

[50] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul,
Yoshio Turner, and Jose Renato Santos. 2013. ElasticSwitch: Practical
Work-Conserving Bandwidth Guarantees for Cloud Computing. In
SIGCOMM.

[51] Hanrijanto Sariowan, Rene L. Cruz, and George C. Polyzos. 1999. SCED:
A Generalized Scheduling Policy for Guaranteeing Quality-of-Service.

In IEEE/ACM Transactions on Networking.
[52] Cristian Satnic. 2016. Amazon, Microservices and the birth of

AWS cloud computing. https://www.linkedin.com/pulse/amazon-
microservices-birth-aws-cloud-computing-cristian-satnic/. (2016).

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim.
2011. Sharing the Data Center Network. In NSDI.

[54] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair
queueing using deficit round robin. In SIGCOMM.

[55] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Perfor-
mance Isolation and Fairness for Multi-Tenant Cloud Storage. (2012).

[56] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-
dan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems
Tracing Infrastructure. Technical Report. Google, Inc. https://
research.google.com/archive/papers/dapper-2010-1.pdf

[57] Ion Stoica, Hui Zhang, and TS Ng. 1997. A hierarchical fair service
curve algorithm for link-sharing, real-time, and priority services. In
SIGCOMM.

[58] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Ant
Rowstron, Tom Talepy, Richard Black, and Timothy Zhu. 2013. IOFlow:
A Software-Defined Storage Architecture. In SOSP.

[59] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz,
and Ion Stoica. 2012. Cake: enabling high-level SLOs on shared storage
systems. In SoCC.

[60] Xiao-Dong Wang, Xiao Chen, Jie Min, and Yu Zhou. 2012. A Priority-
Based Weighted Fair Queueing Algorithm in Wireless Sensor Network.
In WiCom.

[61] Matt Welsh and David Culler. 2002. Overload Management as a Fun-
damental Service Design Primitive. In SIGOPS.

[62] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Row-
stron. 2011. Better Never than Late: Meeting Deadlines in Datacenter
Networks. In SIGCOMM.

[63] J. Wroclawski. 1997. RFC 2210: The Use of RSVP with IETF Integrated
Services. In IETF.

[64] David Zats, Anand Padmanabha Iyer, Ganesh Anantharayanan, Rachit
Agarwal, Randy Katz, Ion Stoica, and Amin Vahdat. 2015. FastLane:
Making Short Flows Shorter with Agile Drop Notification. In SOCC.

[65] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junf. 2018. Overload Control for Scaling
WeChat Microservices. In SoCC.

[66] Timothy Zhu, Daniel S. Berger, and Mor Harchol-Balter. 2016. SNC-
Meister: Admitting More Tenants with Tail Latency SLOs. In SoCC.

[67] Timothy Zhu, Michael A. Kozuch, and Mor Harchol-Balter. 2017. Work-
loadCompactor: Reducing datacenter cost while providing tail latency
SLO guarantees. In SoCC.

[68] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. 2014. PriorityMeister: Tail Latency QoS
for Shared Networked Storage. In SoCC.

[69] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. 2015. Congestion control for
large-scale RDMA deployments. In SIGCOMM.

https://github.com/NetSys/simulator
https://tinyurl.com/htfezlj
https://www.slideshare.net/apigee/adapt-or-die-a-microservices-story-at-google
https://www.slideshare.net/apigee/adapt-or-die-a-microservices-story-at-google
https://www.linkedin.com/pulse/amazon-microservices-birth-aws-cloud-computing-cristian-satnic/
https://www.linkedin.com/pulse/amazon-microservices-birth-aws-cloud-computing-cristian-satnic/
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

Client App RPC stack Transport NIC

packets

RPC Response

RPC Request

Server

RP
C

ne

tw
or

k
la

te
nc

y
t0 = first byte handed

to transport layer

Network

ACK for last packet

msg segments packets

t1 = ACK for last byte
processed

Figure 25: Latency breakdown of a WRITE RPC. The RPC net-
work latency (RNL) measures the difference between the time
when the first RPC packet arrives at the L4 layer and the time
when the last RPC packet is acknowledged.

A MEASURING RNL
RNL is the portion of RPC latency impacted by network
overloads. Figure 25 shows the life of a Storage WRITE RPC;
the discussion applies similarly to READ RPCs. A complete
Storage RPC operation consists of a request followed by a
response. As Figure 25 shows, it constitutes a significant
portion of overall RPC latency, especially when network
bandwidth is constrained. RNL is defined by 𝑡1 − 𝑡0 where
𝑡0 is the time when the first RPC packet arrives at the L4
transport layer, e.g., TCP and 𝑡1 is the time when the last
packet of the RPC is acknowledged at the transport. We focus
on the payload portion of the RPC as we observe that total
data transmitted in a complete RPC operation (a request
followed by a response) is dominated by the side which
contains the actual payload of the RPC—the response of a
READ RPC is much larger than the request (200:1 on average
in our clusters), and the request of a WRITE RPC is much
larger than its response (400:1 on average).

There are two main challenges in precisely measuring RNL
in production stacks: (i) RPC boundaries may not be known
precisely at the transport layer, as is the case with Linux
kernel TCP, and (ii) RNL can still include delays unrelated
to network overload, such as delays due to insufficient CPU,
interrupts, flow control or kernel scheduler. One approach
is to measure RNL 𝑡0 and 𝑡1 at the sendmsg boundary. As
Aequitas incorporates RPC size in the SLO, this works well
even if an RPC consists of multiple 𝑠𝑒𝑛𝑑𝑚𝑠𝑔 calls.

B WFQ DELAY ANALYSIS
B.1 When Delay Occurs in WFQ
Delay occurs in a WFQ class iff (1) the total instantaneous
input arrival rate on the link is greater than the link capacity
(i.e., in the presence of overload), and (2) the arrival rate of
the class is greater than the service rate of the class:∑

𝑎𝑖 > 𝑟 𝑎𝑛𝑑 𝑎𝑖 > 𝑠𝑖 (5)

where 𝑎𝑖 ≥ 𝑠𝑖 ≥ 𝑚𝑖𝑛(𝑎𝑖 , 𝑔𝑖). Further, note that when the total
arrival rate is greater than the link rate 𝑟 , the total amount
of service rate which WFQ can provide is fixed at 𝑟 by the
definition of work conservation:∑

𝑠𝑖 = 𝑟, 𝑖 𝑓
∑

𝑎𝑖 > 𝑟 (6)

The expression for 𝑠𝑖 is not immediately given as one needs
to consider both 𝑄𝑜𝑆𝑖 ’s own guaranteed rate 𝑔𝑖 as well as a
share of unused rate from other QoS classes due to the work
conserving nature of WFQ.

120

Traffic (Gb)

80

40

Time (s)2/3 1.0

60

QoSh
QoSl

Total

(a) Arrival Curve

Traffic (Gb)

Time (s)1.0

20
40

2/3

60

100

80

0.8

QoSh
QoSl

Total

(b) Service Curve

Traffic (Gb)

Time (s)1.0

40

2/34/9 0.8

Arrival (QoSl)
Service (QoSl)

(c) Delay Bound
Figure 26: Applying network calculus on WFQ with 2 QoS levels.

Thus, the value 𝑠𝑖 changes dynamically as the QoS-mix
varies (e.g., when all the traffic from some QoS class has been
consumed). In other words, QoS-mix in a WFQ can affect
the delay profile of each QoS class. If the number of classes
is 2, 𝑄𝑜𝑆ℎ and 𝑄𝑜𝑆𝑙 , we can show that delay occurs on 𝑄𝑜𝑆𝑖
if the following condition holds true:∑

𝑎𝑖 > 𝑟 𝑎𝑛𝑑 𝑎𝑖 > 𝑔𝑖 (7)

We will show this for QoSℎ , and QoS𝑙 follows from sym-
metry. To prove this, we will show that in the two QoS case,
if 𝑎ℎ > 𝑠ℎ , then 𝑎ℎ > 𝑔ℎ . We use the following equations for
the proof:
(1) Overload Condition: 𝑎ℎ + 𝑎𝑙 > 𝑟

(2) Work Conservation Condition: 𝑠ℎ + 𝑠𝑙 = 𝑟

(3) WFQ Condition: 𝑔ℎ + 𝑔𝑙 = 𝑟

(4) Guaranteed-bandwidth Condition: If 𝑎𝑖 ≥ 𝑔𝑖 , then 𝑠𝑖 ≥
𝑔𝑖

(5) Excess-bandwidth Condition: If 𝑠ℎ > 𝑔ℎ , then (𝑎ℎ > 𝑔ℎ)
and (𝑎𝑙 < 𝑔𝑙)

Consider the two possible scenarios depending on whether
the arrival rate on QoS𝑙 is below or above its guaranteed
share.
Case 1: 𝒂𝒍 ≤ 𝒈𝒍 In this case, all of QoS𝑙 traffic gets in-
stantaneously served, i.e. 𝑠𝑙 = 𝑎𝑙 . Above equations give us:
𝑎ℎ > 𝑟 − 𝑎𝑙 > 𝑟 − 𝑔𝑙 = 𝑔ℎ .
Case 2: 𝒂𝒍 ≥ 𝒈𝒍 In this case, QoS𝑙 at least gets its guaranteed
rate, i.e., 𝑠𝑙 ≥ 𝑔𝑙 . However, since there is no excess in QoSℎ
(as 𝑎ℎ > 𝑠ℎ), 𝑠𝑙 = 𝑔𝑙 , therefore 𝑎ℎ > 𝑠ℎ = 𝑟 − 𝑠𝑙 = 𝑟 − 𝑔𝑙 = 𝑔ℎ .

The same proof applies to class 𝑙 due to symmetry.
B.2 Derivation of Delay Equations in 2-QoS WFQ
We first demonstrate how we apply Network Calculus [17]
to find closed-form equations for worst-case delay in WFQ
for the 2-QoS case.
Network Calculus
Similar to previous work [47], our analysis is based on Net-
work Calculus. Network Calculus furnishes a simple result:

Arrival
Service

t1 Time

Tr
affi
c

t2

(a) Case (1)

Arrival
Service

t1 Timet2

Tr
affi
c

(b) Case (2)

Arrival
Service

t1 Timet2

Tr
affi
c

(c) Case (3)

Arrival
Service

t1 Timet2

Tr
affi
c

(d) Case (4)

Arrival
Service

t1 Timet2

Tr
affi
c

(e) Case (5)
Figure 27: Service curve changes as QoS-share of QoSℎ changes.

given an arrival cumulative curve as per the traffic arrival
pattern and a service curve defining how traffic is served in
the system, then the maximum horizontal distance between
the arrival and the service curves gives the theoretical delay
bound of the queuing system.
Toy Example
Consider a simple example with a single bottleneck with 2
QoS levels, QoSℎ and QoS𝑙 , under the same traffic pattern
described in §4.1 with a weight ratio of 4:1, guaranteed rate
for QoSℎ is 80Gbps and is 20Gbps for QoS𝑙 . The switch has
a processing rate of 100 Gbps. The total Traffic is split into
50%/50% on QoSℎ/QoS𝑙 . Traffic arrives at a burst of 120Gbps
for some time (>100Gbps), and then stays idle to achieve an
average of 80% load (=80Gbps). Since 50% of the traffic is
on QoSℎ with a burst load of 120%, the switch immediately
processes all QoSℎ traffic incoming at a rate of 60Gbps (as
its lower than the guaranteed rate of 80Gbps), and the re-
maining 40 Gbps goes to QoS𝑙 , resulting in QoS𝑙 ’s queue size
growing at 20Gbps. Once all QoSℎ traffic has been processed,
the link is now able to process QoS𝑙 outstanding traffic at
100Gbsp and QoS𝑙 ’s queue stops growing. In other words, at
this moment QoS𝑙 experiences the maximum delay at this
moment – when all of QoSℎ traffic has been processed. Fig-
ure 26b summarizes the service curve for QoS𝑙 traffic, and
the maximum horizontal distance between these 2 curves
gives the delay bound (shown as the red bar in Figure 26c),

which is represented as a fraction of the data sending period
(including the burst and idle stage).
Closed-form Equations for 2-QoS case
With this explanation, we can start providing derivation of
worst-case delay for QoSℎ , 𝐷𝑒𝑙𝑎𝑦ℎ in Equation 1, under the
model depicted in Figure 7. The central idea is to determine
the different service curves as QoS-mix changes, a and for-
mulate equations for the delay bound based on the maximum
horizontal distance between the arrival and the service curve.

The following notation in addition to Table 1 will be fre-
quently used in the derivation.

𝑎ℎ = 𝜌𝑟𝑥

𝑎𝑙 = 𝜌𝑟 (1 − 𝑥)

𝑔ℎ =
𝜙

𝜙 + 1𝑟

𝑔𝑙 =
1

𝜙 + 1𝑟

where 𝑥 is the QoSℎ-share, and the ratio of QoS weights for
QoSℎ : QoS𝑙 is 𝜙 : 1.

As the value of QoSℎ-share (𝑥 in the equations) varies
from 0 to 1, we enter different domains with different service
curves and we explain the cases below.
Case (1) When QoSℎ-share just starts to increase from 0,
QoSℎ’s instantaneous input arrival rate can be immediately
processed by its minimum guaranteed rate, and thus, QoSℎ
experiences no delay, i.e., 𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 0. In other words, the
arrival and service curves overlap under this case, 𝑠ℎ = 𝑎ℎ
(as depicted in Figure 27a). The following conditions charac-
terize this domain:

𝑎ℎ ≤ 𝑔ℎ

=⇒ 𝑥 ≤ 𝜙

𝜙 + 1
1
𝜌

Case (2) As QoSℎ-share continues to increase, QoSℎ starts to
experience delay as well but it still finishes earlier than QoS𝑙 .
Therefore, priority inversion will not happen yet and we are
still in the admissible region. This domain implies:

𝑎ℎ > 𝑔ℎ

𝑎𝑙 > 𝑔𝑙

𝜇𝑥

𝑔ℎ
<

𝜇 (1 − 𝑥)
𝑔𝑙

=⇒ 𝜙

𝜙 + 1
1
𝜌
< 𝑥 ≤ 𝜙

𝜙 + 1
We draw the arrival and service curve of QoSℎ for Case (2)
in Figure 27b. The delay bound can be achieved by taking
the maximum horizontal distance between the two curves,
which is the difference between 𝑡1 and 𝑡2 in the figure. In this

case, 𝑡1 is as per the model in Figure 7, and 𝑡2 is calculated
as the time it takes to consume QoSℎ’s incoming traffic with
𝑠ℎ = 𝑔ℎ .

𝑡1 =
𝜇

𝜌

𝑡2 =
𝜇𝑟𝑥

𝑔ℎ
= 𝜇𝑥

𝜙 + 1
𝜙

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝑡2 − 𝑡1 = 𝜇 (𝜙 + 1
𝜙

𝑥 − 1
𝜌
)

Case (3) QoSℎ delay keeps growing as QoSℎ-share increases,
and eventually QoSℎ finishes processing all the incoming
traffic later than QoS𝑙 , causing priority inversion. To solve
for the domain in this case, we have:

𝑎ℎ > 𝑔ℎ

𝑎𝑙 > 𝑔𝑙

𝜇𝑥

𝑔ℎ
>=

𝜇 (1 − 𝑥)
𝑔𝑙

=⇒ 𝜙

𝜙 + 1 < 𝑥 ≤ 1 − 1
𝜙 + 1

1
𝜌

The arrival and service curve of QoSℎ in Case (3) is depicted
in Figure 27c. Similar to the last case, the delay is calculated
by the difference of 𝑡1 and 𝑡2. By definition, 𝑡2 in this case is
the time QoS𝑙 finishes processing its input traffic using 𝑔𝑙 in
the current period. In the interval [0, 𝑡2], 𝑠ℎ = 𝑔ℎ . One can
find 𝑡1 by matching the 𝑦-value of the arrival and the service
curves in Figure 27c as:

𝑎ℎ𝑡1 = 𝑔ℎ𝑡2

𝑡2 =
𝜇𝑟 (1 − 𝑥)

𝑔𝑙
= 𝜇 (1 − 𝑥) (𝜙 + 1)

𝑡1 =
𝑔ℎ𝑡2
𝑎ℎ

=
𝜇 (1 − 𝑥)𝜙

𝜌𝑥

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝑡2 − 𝑡1 = 𝜇 (1 − 𝑥) (𝜙 + 1 − 𝜙

𝜌 𝑥
)

Case (4) As QoS𝑙 -share keeps decreasing with increasing 𝑥 ,
QoS𝑙 eventually experiences no delay, however QoSℎ con-
tinues to experience delay. This is because we are in the
overload situation where 𝜌 > 1, there exists at least one QoS
level that must experience delay. This implies:

𝑎𝑙 < 𝑔𝑙

=⇒ 𝑥 > 1 − 1
𝜙 + 1

1
𝜌

Figure 27d describes the arrival and service curve of QoSℎ
in this case. 𝑡2 marks the time when QoS𝑙 finishes servicing
its traffic. 𝑡1 can be calculated in a similar way as Case (3) by

matching the 𝑦-values:

𝑡2 =
𝜇

𝜌

𝑡1 =
(𝑟 − 𝑎𝑙)𝑡2

𝑎ℎ
=

𝜇

𝜌2
1 − 𝜌 (1 − 𝑥)

𝑥

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝜇 (1
𝜌
− 1
𝜌2)

1
𝑥

Case (5) As QoSℎ-share keeps increasing, its arriving rate
eventually exceeds the line rate. This creates the final arrival
and service curve profile as shown in Figure 27e. The domain
in this case is represented by:

𝑎ℎ > 𝑟

=⇒ 𝑥 >
1
𝜌

Note that 𝑡1 in Figure 27e is when QoS𝑙 finishes. There are
multiple ways to obtain the delay bound in this case. A simple
one is to recognize that 𝑡2 is the time it takes to consume all
the incoming traffic. To solve for the delay bound, we have:

𝑡1 =
𝜇

𝜌

𝑡2 =
𝜇𝑟

𝑟
= 𝜇

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝑡2 − 𝑡1 = 𝜇 (1 − 1
𝜌
)

In summary, the five cases above have the following delay
characteristics:

(1) QoSℎ has no delay but QoS𝑙 has delay
(2) both have delay but QoSℎ finishes earlier
(3) both have delay but QoS𝑙 finishes earlier
(4) QoSℎ has delay but QoS𝑙 does not
(5) QoSℎ’s arrival rate is above the link rate
By combining the above 5 cases, QoSℎ worst-case delay

(𝐷𝑒𝑙𝑎𝑦ℎ (𝑥)) (Equation 1) is obtained as:

0, 𝑥 ≤ 𝜙

𝜙 + 1
1
𝜌

𝜇 (𝜙 + 1
𝜙

𝑥 − 1
𝜌
), 𝜙

𝜙 + 1
1
𝜌
< 𝑥 ≤ 𝜙

𝜙 + 1

𝜇 (1 − 𝑥) (𝜙 + 1 − 𝜙

𝜌 𝑥
), 𝜙

𝜙 + 1 < 𝑥 ≤ min{1 − 1
𝜙 + 1

1
𝜌
,

1
𝜌
}

𝜇 (1
𝜌
− 1
𝜌2)

1
𝑥
, min{1 − 1

𝜙 + 1
1
𝜌
,

1
𝜌
} < 𝑥 ≤ 1

𝜌

𝜇 (1 − 1
𝜌
), 𝑥 > max{ 𝜙

𝜙 + 1 ,
1
𝜌
}

Note that depending on the value of 𝜌 and 𝜙 , it is possible
that some of the domains are empty, however the equations
remain valid with different domain boundaries.

0 2 4 6
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

A
dm

it
Pr

ob
ab

ili
ty

Channel A Channel B

0 2 4 6
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(G

bp
s)

Channel A Channel B

Figure 28: Same experiment as in Figure 17with smaller 𝛽 value
(𝛽 = 0.0015).
For example, when 𝜙 = 4, 𝜌 = 2 and 𝜇 = 0.8, QoSℎ worst-

case delay becomes:

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) =


0, 𝑥 ≤ 0.4
𝑥 − 0.4, 0.4 < 𝑥 ≤ 0.8
0.4, 𝑥 > 0.8

Following a similar analysis, the closed-form worst-case
delay for QoS𝑙 (𝐷𝑒𝑙𝑎𝑦𝑙 (𝑥)) is given by:

𝜇 (1 − 1
𝜌
), 𝑥 ≤ min{1 − 1

𝜌
,

𝜙

𝜙 + 1 }

𝜇 (1
𝜌
− 1
𝜌2)

1
(1 − 𝑥) , 1 − 1

𝜌
< 𝑥 ≤ max{ 𝜙

𝜙 + 1
1
𝜌
, 1 − 1

𝜌
}

𝜇
𝑥

𝜙
(𝜙 + 1 − 1

𝜌 (1 − 𝑥)), max{ 𝜙

𝜙 + 1
1
𝜌
, 1 − 1

𝜌
} < 𝑥 ≤ 𝜙

𝜙 + 1

𝜇 ((𝜙 + 1) (1 − 𝑥) − 1
𝜌
), 𝜙

𝜙 + 1 < 𝑥 ≤ 1 − 1
𝜙 + 1

1
𝜌

0, 𝑥 > 1 − 1
𝜙 + 1

1
𝜌

(8)

C SENSITIVITY ANALYSIS
𝛼 and 𝛽 are key parameters in that they posit a tradeoff
between SLO-compliance and stability in achieved shares.
Under adversarial patterns, Aequitas favors SLO-compliance
over work-conservation by the virtue of being an admission-
control system.

We repeat the experiment in §6.5 with a lower 𝛽 value
of 0.0015 per MTU (Algorithm 1) compared to the original
setting of 0.01. A lower 𝛽 value implies a smaller decrease in
𝑝𝑎𝑑𝑚𝑖𝑡 whenever a latency miss is detected. While this pro-
vides excellent stability around fair-shares, it is less suited
towards SLO-compliance. We show the equivalent of Fig-
ure 17 with smaller 𝛽 value in Figure 28, and the equivalent
of Figure 18 in Figure 29. The 1𝑠𝑡 -𝑝 𝑝𝑎𝑑𝑚𝑖𝑡 for RPC Channel
A in Figure 29 is 0.96, an improvement over 0.82 in Figure 18.

The parameter 𝛼 has a similar tradeoff, a lower value
is averse to increasing admit probability and favors SLO-
compliance, whereas a higher value can provide better sta-
bility but with worse SLO-compliance.

D ARTIFACT APPENDIX
We provide a brief appendix of our artifact for in-
terested readers who want to try out Aequitas. You
can find more information about our artifact evaluation
on the artifact-eval branch of our GitHub repository
(https://github.com/SymbioticLab/Aequitas).

0 2 4 6
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

A
dm

it
Pr

ob
ab

ili
ty

Channel A Channel B

0 2 4 6
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(G

bp
s)

Channel A Channel B

Figure 29: Same experiment as in Figure 18 with smaller 𝛽 value
(𝛽 = 0.0015).

D.1 Abstract

This artifact is designed to reproduce major results in our pa-
per using the simulator we wrote. It contains the source code
of the simulator and the scripts used to launch experiments
that reproduce our evaluation results.

D.2 Scope

The artifact is used to validate major evaluation results in-
cluding theoretical 2-QoS worst-case delay analysis, SLO
compliance, QoS-mix convergence, and fairness aspects of
Aequitas. Readers are also encouraged to use the simulator
or build on top of it to study other research problems in
datacenter networking.

D.3 Contents

The artifact contains the following items:
(1) An README describing the artifact including how to

build the simulator code, how to launch the selected exper-
iments, and what expected results are after running those
experiments.

(2) Source code of the simulator, which is used to simulate
Aequitas and other systems in related work.

(3) Scripts to launch all the provided experiments.
The experiments include (a) a theoretical verification of

the 2-QoS worst case delay, (b) evaluating SLO-compliance
for both 2-QoS and 3-QoS cases, (c) evaluating QoS-mix
convergence in a 3-QoS setting, and (d) evaluating fairness
aspect in the same setting as the one we have in the paper.
We also includes the configuration files for all the systems in
our related work comparison. Users can try out the simulator
with their own RPC size distribution.

D.4 Hosting

To obtain the artifact, go to our GitHub repository at
https://github.com/SymbioticLab/Aequitas and switch to the
artifact-eval branch with the latest commit.

D.5 Requirements

The artifact requires a build environment to compile the
simulator, which is written in C++. We developed the sim-
ulator in Linux. The code should work as long as it can be
compiled correctly with automake. The compilation is very
straightforward.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RPC Workloads in Modern Datacenters
	2.2 Network Impact on RPCs
	2.3 Challenges in Mitigating the Network Impact

	3 Aequitas Overview
	3.1 Objectives and Challenges
	3.2 System Overview

	4 Analytical Results
	4.1 WFQ Bandwidth and Queuing-Delay Analysis
	4.2 Controlling QoS-Mix for RNL SLOs

	5 System Design
	5.1 Distributed Admission Control
	5.2 SLO Guarantees and Robustness

	6 Evaluation
	6.1 Simulator
	6.2 SLO Compliance
	6.3 Maximizing Admitted Traffic within SLOs
	6.4 Impact of Burstiness on Admitted Traffic
	6.5 Fairness
	6.6 Convergence Time
	6.7 Comparison with Strict Priority Queuing
	6.8 Handling Different RPC Sizes
	6.9 Large-Scale Eval with Production RPC Sizes
	6.10 Comparison with Related Works
	6.11 Testbed Evaluation
	6.12 Results from Production Deployment

	7 Related Work
	8 Conclusion
	References
	A Measuring RNL
	B WFQ Delay Analysis
	B.1 When Delay Occurs in WFQ
	B.2 Derivation of Delay Equations in 2-QoS WFQ

	C Sensitivity Analysis
	D Artifact Appendix
	D.1 Abstract
	D.2 Scope
	D.3 Contents
	D.4 Hosting
	D.5 Requirements

